首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 640 毫秒
1.
为了探究煤样冲击倾向性与煤样破裂电荷感应关系,利用自主研发的多通道电荷感应监测系统,开展单轴压缩条件下不同冲击倾向性煤样电荷信号规律的试验研究,对不同冲击倾向性煤样破坏全程电荷信号分布趋势以及电荷相关参量分别进行定性和定量分析。结果表明:煤样破裂过程的应力-电荷变化具有一致性,加载初始阶段电荷信号稳定,应力突降阶段电荷信号变化显著;不同冲击倾向性煤样,电荷信号变化规律有所不同;强冲击倾向煤样电荷信号主要集中在应力峰前的临近峰值应力阶段,弱冲击倾向煤样电荷信号在应力峰前和峰后均有,无冲击倾向煤样电荷信号主要集中在应力峰后的软化阶段;煤体冲击倾向性越强,应力峰后累积电荷量越小,单位时间电荷量越大;因此,可以通过电荷信号的分布以及电荷相关参量的量化分析,初步判断煤体冲击倾向,为冲击地压动力灾害的预测提供理论依据。  相似文献   

2.
为得到不同类型煤体在压缩破坏过程中应力和电荷的变化规律,利用自主研制的电荷感应测试系统进行室内试验。试验分别对冲击型原煤试样、突出型原煤试样及型煤试样压缩破坏过程进行实时电荷监测。结果表明,不同类型的煤样在压缩过程中产生的应力变化曲线有明显的区别,冲击型煤样在加载过程中的应力-应变曲线在达到峰值应力前表现为较好的线性关系,峰后区的应力-应变曲线一般主要表现为近似竖直的直线。突出型煤样在加载过程中峰前区的应力曲线出现了多个峰值,在峰后区应力-应变曲线一般表现为上凹形的曲线。型煤试样的应力曲线峰前区有更为明显的压密阶段、线弹性阶段及弹塑性阶段,峰后区的应力-应变曲线一般表现为上凸的曲线。3种不同类型煤体压缩破裂时电荷感应信号峰值出现的位置及电荷感应信号的集中或分散程度也不同。冲击型煤样的电荷感应信号出现的位置相对比较集中,主要出现在峰值应力前后和试样完全失稳破坏阶段。突出型煤试样的电荷感应信号则比较分散,一般出现在应力出现峰值前后或应力急剧增加阶段。型煤试样的电荷感应信号一般出现在应力软化阶段,在峰值应力前阶段并没有收集到电荷感应信号。利用不同类型煤体在压缩破坏时的电荷感应信号不同,可以为矿山灾害的发生提供预报信息。  相似文献   

3.
为准确预测冲击地压,采用加载系统及信号监测系统对烘干24 h、自然含水和饱水的取自阜新某矿的3种煤样进行试验研究,探究含水煤体冲击倾向性变化规律及其与破裂过程声-电荷信号时频域特征的对应关系。结果表明:随着煤样含水率降低,冲击倾向性增强,煤体加载破坏过程声-电荷信号变化具有规律性;时域方面,煤样冲击越强,强化及峰后阶段声发射(AE)波形、电荷信号更加连续密集且幅值更高;频域方面,煤样冲击增强,强化及峰后阶段声、电荷频谱图频率向低频方向移动,且冲击越强低频段信号幅值越高。  相似文献   

4.
基于电荷监测技术预测矿山动力灾害试验研究   总被引:2,自引:1,他引:1  
为提高矿山动力灾害预测准确率,应用自主研制的电荷传感器,将标准煤样置于三轴压力室内进行应力-电荷试验。分析围压对煤样压缩破坏过程中电荷信号的影响。结合现场测试,揭示工作面开挖过程中煤体应力与煤壁表面感应电荷的时间和空间变化规律。试验结果表明,煤体压缩过程中电荷信号的变化与煤体所处的应力水平关系密切,处于应力集中区域和应力松弛区域的煤体有明显脉冲状电荷信号,原始应力区电荷信号平稳,电荷信号的变化超前于煤体应力的变化,围压对电荷信号有延缓、强化的作用。  相似文献   

5.
为完善冲击地压灾害的预测判据,采用试验方法研究不同岩煤高度比条件下组合煤岩体冲击倾向性、破坏特征以及破坏过程中电荷感应规律。结果表明,随岩煤高度比的增大,组合煤岩试样的冲击倾向性由弱变强;破坏特征由煤体部分破坏型向煤岩整体破坏型和煤体-底板破坏型过渡;试样冲击倾向性越强,其峰后电荷脉冲数和电荷积累总量越小。可将应力峰后电荷脉冲数和电荷积累总量作为组合煤岩体冲击倾向性及破坏特征的初步判定依据。  相似文献   

6.
为探究组合煤岩力学性质与声-电荷信号关系,选用新邱矿区煤样和砂岩制备组合煤岩试样,采用物理实验和数值实验相结合的方法,开展不同岩煤高度比的组合煤岩试样受载破坏声发射与电荷感应监测试验,得到了组合煤岩力学性质、声-电荷信号规律及其相互关系。结果表明:组合煤岩试样中的岩石高度提高会提升其整体强度,其破坏脆性特征显著,冲击倾向性增强,弹性阶段的声发射信号提前,声发射能量累积量增加,峰后声发射能量变化率及电荷变化率增大;组合煤岩峰后产生连续声发射信号和电荷信号,强冲击和中等冲击组合煤岩破坏时声发射能量变化率分别为0.336和0.047 J/s,电荷变化率分别为204.88和24.52 pC/s。声发射信号与电荷信号可以在一定程度上反应组合煤岩应力状态并预测失稳破坏,为通过信号监测煤体冲击地压灾害发生提供依据。  相似文献   

7.
为了探究大采深条件下厚煤层大巷孤立煤体频繁发生冲击地压的原因,以梁宝寺煤矿35000采区为工程背景,采取现场实践、数值模拟等方法分析不同采深、煤厚、大巷间距等因素对大巷孤立煤体冲击地压的影响,提出深井厚煤层大巷孤立煤体冲击地压的危险性评价方法。研究结果表明:大巷孤立煤体的采深与垂直应力峰值呈正相关,采深1 200 m时煤体的垂直应力峰值是采深500 m时的3倍左右;大巷孤立煤体随着煤层厚度的增加,其应力集中程度不断升高,且应力峰值向煤体弹性承载区转移;大巷间距越小,孤立煤体弹性承载区应力越集中,发生冲击地压可能性越高;包含开采影响因素和煤层冲击倾向性的大巷孤立煤体冲击危险性评价方法符合现场实际情况,可为大巷孤立煤体冲击危险性评价提供1种思路。  相似文献   

8.
为深入探究不同瓦斯吸附压作用下的煤岩力学行为及声-电荷反演规律,完善冲击-突出复合灾害的预测预警方法,以阜新孙家湾矿168工作面煤样为研究对象,利用载荷-声-电-应变复合监测系统对不同瓦斯吸附压力作用下的试样的力学特性、破坏特征、冲击-突出特征及声-电信号反演进行试验研究。结果表明:随瓦斯吸附压力增大,瓦斯煤岩冲击倾向指标均降低,应力峰前调整逐渐增多,煤岩峰值破坏时间延长,煤体内部损伤、软化程度及破碎程度升高,煤体动力灾害存在冲击向突出转化的可能;监测获得的声-电荷高幅值信号在时间序列上与煤体应力状态呈现较好对应关系,能够反演瓦斯煤岩的力学特征。  相似文献   

9.
为研究含水煤体失稳破坏过程中电荷感应规律,探寻应用电荷感应法监测煤矿突水灾害可行性,利用自主研制的电荷传感器对含水煤体单轴压缩过程进行电荷信号监测,分析煤体压缩过程中应力及电荷信号变化规律。试验结果表明:烘干煤体和含水煤体单轴加载过程中均有自由电荷产生,电荷信号呈脉冲状波动,通过分析含水煤体电荷信号变化规律同时统计煤体峰值强度前电荷脉冲数及脉冲宽度,从水通过削弱煤体强度进而影响电荷信号;Stern双电层中形成流动电荷,增强了煤体电荷信号;水的存在增加了煤体破裂面自由电荷存留时间三个方面总结了水对煤体电荷的影响机理。  相似文献   

10.
为研究煤体剪切破坏过程中的电荷感应规律,基于变角板法对某矿区煤体在不同剪切角度破坏下进行电荷监测,探究了煤体在剪切破坏过程中的力-电感应变化规律。结果表明:随剪切角增大,煤体发生剪切破坏的强度逐渐减弱,失稳破坏形式由压剪破坏向张拉破坏过渡;煤体剪切破坏过程中有显著电荷感应信号产生,电荷信号异常区域对应于剪应力突变阶段;随剪切角增大,煤体应力峰值前电荷信号逐渐减少并不断向剪应力峰值附近集中,剪应力峰值前累计的电荷量也逐渐减少;提出了煤体剪切破坏过程中产生电荷的机理主要为摩擦作用的观点;电荷感应信号峰值在剪应力达到极限强度之前出现,电荷信号峰值比剪应力峰值提前出现时间随剪切角度增加有减短趋势;在首次出现电荷峰值信号之后短时间内煤体将发生较大幅度的应力跌落过程;可以以电荷信号峰值的出现为基点来预测煤体将要发生变形破坏及通过电荷信号的整体分布特征来揭示煤体剪切破坏规律。  相似文献   

11.
通过研究特厚煤层巷道能量储存、应力分布及围岩强度特征,揭示了特厚煤层巷道与薄及中厚煤层相比具有储存能量多、应力影响范围广及围岩强度低的主要冲击特征。基于特厚煤层巷道冲击特征和冲击地压启动理论,提出了综合弹性能指数、应力比指数和冲击能量速度指数的冲击危险性评价多元指数法,建立了特厚煤层巷道冲击危险性的综合评价指标体系。将该评价指标体系应用于陕西某矿特厚煤层掘进期间巷道冲击危险性评价,根据评价结果对冲击地压危险区域采取了合理的卸压措施,保证了工作面的安全开采。  相似文献   

12.
为解决采煤工作面冲击地压危险性难以准确分区预评价的难题,运用模糊综合评判法建立冲击地压危险性评价模型,模拟工作面开采过程,对工作面开采过程中不同区域煤体应力影响因素进行综合分析,评判冲击危险性,实现了采煤工作面冲击危险性分区预评价。根据专家现场经验和试验研究结果,确定了影响冲击地压危险性等级的7个主要影响因素,采用层次分析法,确定各个因素的权重。评价模型在山东某煤矿3105工作面进行了应用,得到7个高度危险区,4个中度危险区,评价结果与现场实际基本吻合,表明该模型是合理可行的。  相似文献   

13.
煤的微观结构特征对煤的力学特性起着重要作用。为了更加真实准确地研究非均质煤样的细观力学特性,首先通过扫描电镜(SEM)获取煤样放大8 000倍的微观结构图像;然后采用数字图像处理技术对SEM图像进行处理,构建能反映煤样较为真实结构特征的CAD矢量结构模型,并将其导入颗粒流离散元软件(PFC)建立符合煤样结构特征的数值模型;最后开展了煤样细观力学特性的双轴压缩颗粒流数值模拟。结果表明:煤作为一种混合物,它所包含的矿物质和微孔裂隙对其力学性能有重要作用;应力应变曲线有明显的峰值转折点,可以分为弹性阶段、应变软化阶段和残余阶段;煤样在双轴压缩条件下产生的宏观裂纹主要受拉伸力影响,其破裂形态不规则;在应力峰值位置附近,裂纹的增长速率最快,此时的颗粒体间平均接触力也最大,能够达到3.25×108N;另外随围压和加载速率增大,应力-应变曲线形式基本保持不变,但轴向应力峰值及裂纹数逐渐增加;应力峰值对应的轴向应变与围压无确定的规律,而与加载速率呈正比关系。  相似文献   

14.
针对煤岩在屈服破坏过程中有微震和电荷信号产生这一特征,利用自行设计的微震和电荷感应信号监测试验系统,分析不同组合比例煤岩在变形破裂过程中微震和电荷信号的变化规律。研究结果表明:微震和电荷信号是低频信号,信号频谱集中分布在0~80 Hz,应力突变与微震信号和电荷信号的产生及变化有较好的一致性;随着“煤-岩”高度比的增加,试样的单轴抗压强度减小,试样屈服破裂时微震和电荷信号幅值增大,同步性增强,试件破坏的突发性增强;试件破坏过程中电荷比微震信号数更多,初次明显的电荷信号也早于初次明显的微震信号。  相似文献   

15.
When fully-mechanized caving face passed fault, rock burst accidence easily occurred. The SOS microseism monitoring system was applied to monitor the microseismic activities all time occurred in the coal and rock mass near the fault area. Variation features of microseismic energy releasing and microseismic frequency were analyzed. Numerical simulation method was used to research the abutment stress distribution when coal face passed fault, which was compared with microseism occurrence rules. When the coal face approached to fault, the abutment stress increases gradually, so the high stress would accumulate near the fault region. When the coal face left fault, the abutment stress decreased. The SOS microseism monitoring results showed that microseismic activity in the fault area had a high instability. When the coal face neared to the fault, total energy value and frequency released by the microseism steadily increased. The maximum energy peak value also had the tendency to rapidly increase. Before the strong shock occurred, there was a period of weak seismic activity. The weak seismic activity showed energy accumulation for strong shock, which can be used to forecast the danger of rock burst.  相似文献   

16.
为提高深孔爆破措施对防治华丰煤矿冲击地压的有效性,采用微地震监测技术连续监测其1410工作面围岩破裂情况。根据采场附近岩层"破裂-应力"对应关系,得到工作面前方、侧向及垂直方向上的支承压力峰值区,由此确定深孔爆破卸压的具体参数。结果表明:卸压孔深40 m(倾向投影为4倍采高)时,爆破对煤岩的整体性破坏明显,煤岩体中积聚的弹性能得到释放。监测期间共释放能量9.47 MJ,高应力区向煤岩深部转移,采场附近形成一定的卸载区域,减弱或消除了煤岩体的冲击危险性。  相似文献   

17.
为了解冲击地压细观发生过程,从而分析冲击地压不同阶段特点,从能量消耗角度对该过程进行了研究。认为冲击地压是岩体系统由于外界扰动引起的能量释放过程,总释放能量理论上等于岩体形成期间残余弹性势能。由于该弹性势能和岩体形成后裂隙发育的不同,导致岩体受开采扰动后经历的能量释放形式有所不同。大体上能量释放形式可分弹性变形、可产生裂隙的大变形、岩体破碎飞石、广义变形集中区岩体失稳和伴随裂隙产生的机械振动5种。过程可分三部分:初期变形和裂隙、中期飞石-变形-破碎-飞石的循环破坏过程(岩爆)、末期广义应变失稳破坏。使用颗粒流理论的PFC3D对上述过程进行了模拟,结果表明:-120 m、-220 m、-320 m时开采面岩体只发生变形和裂隙;-420 m、-520 m、-620 m岩体先经历变形和裂隙,然后发生岩爆;-720 m和-820 m岩体经历变形和裂隙、岩爆和广义应变区失稳坍塌。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号