首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The spatial distribution patterns of Polycyclic Aromatic Hydrocarbons (PAHs) in soil are important to regional environmental assessment. In this paper, the spatial structural features of sixteen prior PAH compounds in the topsoil of Tianjin area, as well as soil properties, were studied. Results shown that medium scale spatial autocorrelations were well revealed. Spherical models with sills could be used to fit all experimental variograms. The spatial structures of PAHs contents demonstrated significant anisotropy. Air precipitation caused by the combustion of coal was the key factor in the formation of the spatial structural patterns of PAHs in the topsoil of Tianjin area.  相似文献   

2.
Contamination of rivers in Tianjin, China by polycyclic aromatic hydrocarbons   总被引:30,自引:0,他引:30  
Tianjin urban/industrial complex is highly polluted by some persistent organic pollutants. In this study, the levels of 16 priority polycyclic aromatic hydrocarbons (PAHs) were tested in sediment, water, and suspended particulate matter (SPM) samples in 10 rivers in Tianjin. The total concentration of 16 PAHs varied from 0.787 to 1943 microg/g dry weight in sediment, from 45.81 to 1272 ng/L in water, and from 0.938 to 64.2 microg/g dry weight in SPM. The levels of PAHs in these media are high in comparison with values reported from other river and marine systems. Variability of total concentrations of PAHs in sediment, water, and SPM from nine different rivers is consistent with each other. No obvious trends of total PAHs concentration variations were found between upstream and downstream sediment, water, and SPM samples for most rivers, which indicate local inputs and disturbances along these rivers. The spatial distributions of three-phase PAHs are very similar to each other, and they are also similar to those found in topsoil. However, their chemical profiles are significantly different from that of topsoil. The change of profiles is consistent with the different aqueous transport capability of 16 PAHs. Low molecular weight PAHs predomination suggests a relatively recent local source and coal combustion source of PAHs in the study area.  相似文献   

3.
The concentrations, profiles, sources and spatial distribution of polycyclic aromatic hydrocarbons (PAHs) were determined in 40 surface soil samples collected from Beijing, Tianjin and surrounding areas, North China in 2007, and all sampling sites were far from industrial areas, roadsides and other pollution sources, and across a range of soil types in remote, rural villages and urban areas. The total concentrations of 16 PAHs ranged from 31.6 to 1475.0 ng/g, with an arithmetic average of 336.4 ng/g. The highest PAH concentrations were measured in urban soils, followed by rural village soils and soils from remote locations. The remote-rural village-urban PAH concentration gradient was related to population density, gross domestic product (GDP), long-range atmospheric transport and different types of land use. In addition, the PAH concentration was well correlated with the total organic carbon (TOC) concentration of the soil. The PAH profile suggested that coal combustion and biomass burning were primary PAH sources.  相似文献   

4.
Uptake of vapor and particulate polycyclic aromatic hydrocarbons by cabbage   总被引:1,自引:0,他引:1  
Polycyclic aromatic hydrocarbons (PAHs) in cabbage (aerial part), air (gas and particles) and soil samples collected from two sites in Tianjin, China were measured. Although the levels of PAHs in all samples from the heavily contaminated site B were higher than those from the less contaminated site A, the PAH profiles were similar, suggesting the similarity in source type. PAH concentrations in cabbages were positively correlated to either gas or particle-bound PAHs in air. A multivariate linear regression with cabbage PAH as a function of both gas and particle-bound PAHs in air was established to quantitatively characterize the relationship between them. Inclusion of soil PAH concentrations would not improve the model, indicating that the contribution of soil PAHs to cabbage (aerial part) accumulation was insignificant.  相似文献   

5.
Samples of ambient air (including gaseous and particulate phases), dust fall, surface soil, rhizosphere soil, core (edible part), outer leaf, and root of cabbage from eight vegetable plots near a large coking manufacturer were collected during the harvest period. Concentrations, compositions, and distributions of parent PAHs in different samples were determined. Our results indicated that most of the parent PAHs in air occurred in the gaseous phase, dominated by low molecular weight (LMW) species with two to three rings. Specific isomeric ratios and principal component analysis were employed to preliminarily identify the local sources of parent PAHs emitted. The main emission sources of parent PAHs could be apportioned as a mixture of coal combustion, coking production, and traffic tailing gas. PAH components with two to four rings were prevailing in dust fall, surface soil, and rhizosphere soil. Concentrations of PAHs in surface soil exhibited a significant positive correlation with topsoil TOC fractions. Compositional profiles in outer leaf and core of cabbage, dominated by LMW species, were similar to those in the local air. Overall, the order of parent PAH concentration in cabbage was outer leaf > root > core. Partial correlation analysis and multivariate linear stepwise regression revealed that PAH concentrations in cabbage core were closely associated with PAHs present both in root and in outer leaf, namely, affected by adsorption, then absorption, and translocation of PAHs from rhizosphere soil and ambient air, respectively.  相似文献   

6.
A dynamic fugacity model was developed to simulate the spatial and seasonal variations of PAHs in Haihe Plain, China. The calculated and measured concentrations exhibited good consistency in magnitude with deviations within a factor of 4 in air and 2 in soil. The spatial distributions of PAHs in air were mainly controlled by emission while the seasonal variations were dominated by emission and gas-particle partition. In soil, the spatial distributions of PAHs were controlled by the soil organic carbon content while the seasonal variations were insignificant. The severest soil contamination was observed in Shanxi and followed by the southwest of Hebei province. Transfer fluxes of total PAHs between air and soil were calculated. The spatial distribution of air-to-soil flux was closely related to the landcover while the soil-to-air flux changed with soil organic matter content. Monte Carlo simulation was done to evaluate the uncertainty of the estimated results in air.  相似文献   

7.
Polycyclic aromatic hydrocarbons (PAHs) were quantified in 30 soil profiles from the Yangtze River Delta Region, in east China. Relative concentrations of PAH compounds with different benzene rings and ratios of fluoranthene to fluoranthene plus pyrene and benz(a)anthracene to benz(a)anthracene plus chrysene were used to identify the possible sources of soil PAHs. Total concentrations of 15 PAHs in topsoils ranged from 8.6 to 3881 microg kg(-1) with an average of 397 microg kg(-1). Half of the soil samples were considered to be contaminated with PAHs (>200 microg kg(-1)) and two sampling sites were heavily polluted by PAHs with concentrations >1000 microg kg(-1). Phenanthrene was found in soils below a depth of 100 cm in half of the sampling sites, but the detectable ratio of benzo(a)pyrene decreased sharply from 100% in topsoil to 0 in the 4th horizon.  相似文献   

8.
Zhao Y  Shi X  Yu D  Wang H  Sun W 《Chemosphere》2005,59(11):1527-1535
The spatial patterns of soil organic carbon (SOC) are closely related to the global climate change. In quantifying the spatial patterns of SOC density, the concept of uncertainty of the SOC density values at unsampled locations is particularly important because such uncertainty can be propagated into the subsequent global climate change modelling and has fundamental impacts on the ultimate results of the model. A total of 361 SOC density data of topsoil (0–20 cm) in Hebei province and sequential indicator simulation (SIS) were applied to perform a conditional stochastic simulation in this study to quantitatively assess the uncertainty of mapping SOC density. The results showed that a great variation exists in the SOC density data. The conditional variance of 500 realizations generated by SIS was larger in mountainous areas of the study area where the SOC density fluctuated the most, and the uncertainty was smaller on the plain area where SOC density was consistently small. Realizations generated by SIS can represent the possible spatial patterns of SOC density without smoothing effect. A set of realizations can be used to explore all possible spatial patterns of SOC density and provide a visual and quantitative measure of the spatial uncertainty of mapping SOC density. With a given threshold of SOC density, SIS can quantitatively assess both local uncertainty and spatial uncertainty of SOC density that is greater the threshold.  相似文献   

9.
Li Z  Kong S  Chen L  Bai Z  Ji Y  Liu J  Lu B  Han B  Wang Q 《Chemosphere》2011,85(3):494-501
A total of 82 surface soil samples collected from central urban sites, surrounding rural sites, coastal sites and background sites in Tianjin were analyzed for 84 PCB congeners. The mean values of total PCBs concentrations for surrounding rural sites, central urban sites, coastal sites, background sites and the whole Tianjin region were 4.45, 3.20, 12.65, 1.96 and 4.02 ng g(-1), respectively. No "urban fractionation effect" was found in Tianjin, which reflected the influence of local emission sources for PCBs such as industries and township enterprises in surrounding rural sites. In contrast, a "primary fractionation effect" was found in Tianjin region. The PCBs concentrations for whole Tianjin region showed a strong east-west gradient and the percentages of lighter molecular weight PCBs homologs (sum of di- to tetra-PCBs) to the total PCBs concentrations increased from east to west. The seven indicator PCBs concentrations were well correlated with the total PCBs concentrations with the correlation coefficients as 0.76 for Tianjin region and 0.74 for central urban sites, respectively. Predominant PCB homolog groups were penta- and tri-PCBs for Tianjin region. 10 dioxin-like PCBs concentrations were well correlated with total PCBs concentrations for all the sampling sites (R=0.79, P<0.0001). The TEQ concentrations for 10 dioxin-like PCBs were 5.3424 ng kg(-1) for Tianjin region and showed a strong east to west gradient. The spatial distribution of PCBs levels, homolog composition patterns and TEQ concentrations were all obviously influenced by local emission sources for PCBs in the east part of Tianjin region.  相似文献   

10.
Bixiong Y  Zhihuan Z  Ting M 《Chemosphere》2006,64(4):525-534
A total of 188 surface soil samples were collected from different types of utilization soils in Tianjin area. Factor analysis and scatter point surface tension spine function interpolation were used to analyze types and spatial distributions of PAH sources of surface soils in Tianjin area. The results showed that most pollution sources were mixed sources including coal burning and petroleum spill. Mixed sources occupied 56.12%, 58.96%, 46.45% and 59.50% in farmland of wastewater irrigation, common farmland, wild land and city greenbelt, respectively. Other pollution sources such as vehicle emission, biogenic conversion, wood burning and natural gas combustion were also significant. The spatial distributions of pollution sources were closely related to geographic location, geographic condition and living habit of indigenes.  相似文献   

11.
BACKGROUND, AIM, AND SCOPE: Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental contaminants and contribute to the pollution of soil environment. Soil ingestion is of increasing concern for assessing health risk from PAH-contaminated soils because soil ingestion is one of the potentially important pathways of exposure to environmental pollutants, particularly relevant for children playing at contaminated sites due to their hand-to-mouth activities. In vitro gastro-intestinal tests imitate the human digestive tract, based on the physiology of humans, generally more simple, less time-consuming, and especially more reproducible than animal tests. This study was conducted to investigate the level of PAH contamination and oral bioaccessibility in surface soils, using physiologically based in vitro gastro-intestinal tests regarding both gastric and small intestinal conditions. MATERIALS AND METHODS: Wastewater-irrigated soils were sampled from the metropolitan areas of Beijing and Tianjin, China, which were highly contaminated with PAHs. Reference soil samples were also collected for comparisons. At each site, four soils were sampled in the upper horizon at the depth of 0-20 cm randomly and were bulked together to form one composite sample. PAH concentrations and origin were investigated and a physiologically based in vitro test was conducted using all analytical grade reagents. Linear regression model was used to assess the relationship between total PAH concentrations in soils and soil organic carbon (SOC). RESULTS: A wide range of total PAH concentrations ranging from 1,304 to 3,369 mug kg(-1) in soils collected from different wastewater-irrigated sites in Tianjin, while ranging from 2,687 to 4,916 mug kg(-1) in soils collected from different wastewater-irrigated sites in Beijing, was detected. In general, total PAH concentrations in soils from Beijing sites were significantly higher than those from Tianjin sites, indicating a dominant contribution from both pyrogenic and petrogenic sources. Results indicated that the oral bioaccessibility of PAHs in small intestinal was significantly higher (from P < 0.05 to P < 0.001) than gastric condition. Similarly, the oral bioaccessibility of PAHs in contaminated sites was significantly higher (from P < or = 0.05 to P < 0.001) than in reference sites. Individual PAH ratios (three to six rings), a more accurate and reliable estimation about the emission sources, were used to distinguish the natural and anthropogenic PAH inputs in the soils. Results indicated that PAHs were both pyrogenic and petrogenic in nature. DISCUSSION: The identification of PAH sources and importance of in vitro test for PAH bioaccessibility were emphasized in this study. The oral bioaccessibility of individual PAHs in soils generally decreased with increasing ring numbers of PAHs in both the gastric and small intestinal conditions. However, the ratio of bioaccessibility of individual PAHs in gastric conditions to that in the small intestinal condition generally increased with increasing ring numbers, indicating the relatively pronounced effect of bile extract on improving the bioaccessibility of PAHs with relatively high ring numbers characterized by their high K ( ow ) values. Similarly, total PAH concentrations in soils were strongly correlated with SOC, indicating that SOC was the key factor determining the retention of PAHs in soils. CONCLUSIONS: Soils were contaminated with PAHs due to long-term wastewater irrigation. PAHs with two to six rings showed high concentrations with a significant increase over reference soils. Based on the molecular indices, it was suggested that PAHs in soils had both pyrogenic and petrogenic sources. It was also concluded that the oral bioaccessibility of total PAHs in the small intestinal condition was significantly higher than that in the gastric condition. Furthermore, the bioaccessibility of individual PAHs in soils generally decreased with the increasing ring numbers in both the gastric and small intestinal conditions. RECOMMENDATIONS AND PERSPECTIVES: It is suggested that more care should be given while establishing reliable soil criteria for PAHs, especially concerning the health of children who may ingest a considerable amount of PAH-contaminated soil via outdoor hand-to-mouth activities.  相似文献   

12.
A procedure was developed for determination of 16 polycyclic aromatic hydrocarbons (PAHs) in heavily contaminated paddy soil from wastewater irrigated farmland near Tianjin. The sample was distilled with accelerated solvent extraction (ASE), purified by a silica gel column, and measured with GC/MS. The optimal conditions for the distillation were at 140 degrees C (1500 psi) with a 1:1 mixture of dichloromethane and acetone for 5 min. Application of cyclohexane for extract transfer improved the recovery when the ASE extraction was followed by a silica gel cleanup procedure. Recoveries from the method for 16 PAHs ranged from 57-140% with the coefficients of variation of the results ranging from 0.35% to 5.75%. The total 16 PAHs in a composite sample collected from a wastewater irrigated paddy field near Tianjin was 3.90 mg/kg.  相似文献   

13.
Surface soil and passive air samples from a network of 23 sampling sites across Costa Rica were analyzed for polycyclic aromatic hydrocarbons (PAHs), allowing for an evaluation of absolute levels, spatial distribution patterns, air/soil concentration (A/S) ratios and relative composition. Annual mean concentrations of four-ring PAHs in air were low (median of approximately 40 pg m−3), except in Costa Rica's densely populated central valley (approximately 650 pg m−3). PAH concentrations in soil were also low (median of 5 ng g−1 dry weight) and comparable to those reported for other tropical regions. These low soil concentrations result in A/S ratios of four-ring PAHs in Costa Rica that are higher than the equilibrium air–soil partitioning coefficients and also higher than A/S ratios reported for temperate locations. A series of model calculations of increasing complexity were used to seek an explanation for variable A/S ratios of PAHs under tropical and temperate conditions. Temperature-driven changes in air–soil partitioning and differences in PAH degradability under temperate and tropical conditions are insufficient to explain the higher soil concentrations and lower A/S ratios in temperate regions. However, these can be explained by atmospheric deposition of PAHs during historical periods of much higher emissions and air concentrations and by persistence of PAHs in soils on the order of decades. Low PAH concentrations in tropical soils were found to be consistent with constant or increasing emissions, and in particular, do not require that degradation rates in soil are much faster than in temperate areas. In comparison to temperate soils, soils from Costa Rica and other tropical regions have a higher relative abundance of the lighter PAHs. This likely reflects a higher source contribution from biomass burning in the tropics, as well as the preferential loss of lighter PAHs from temperate soils that experienced high PAH deposition in the past.  相似文献   

14.
Persistent organic pollutants (PAHs and PCBs) in soil samples from seven sites across the Seine basin were analysed. Samples were taken from industrialized, urban, suburban and remote sites. Results showed spatial differences, in terms of concentrations and congener profiles. PAH (Sigma14 PAHs) and PCB (Sigma 7 PCBs) concentrations ranged from 450 to 5650 microg kg(-1) and 0.09 to 150 microg kg(-1), respectively. A clear gradient from industrial to remote sites was highlighted, with a ratio of up to one order of magnitude for PAHs and two orders of magnitude for PCBs. Fluoranthene and pyrene were predominant, while the carcinogenic PAHs represented 15-46% of the total PAH content. Using hierarchical cluster analysis, soil samples profiles were compared and the influence of site location and potential sources were identified: automobile traffic, domestic heating, and industrial emissions were the prevalent PAHs sources in the Seine basin. PCB profiles suggested different transport patterns among congeners. For remote sites, the congener fingerprint showed a relatively higher proportion of the most volatile congeners, which were attributed to increased atmospheric residence times. Thus, PAH and PCB distributions in soils provided information on sources and evidence for short-range transport, and profiles of compounds reflected differences between regional and local emissions. This study demonstrates that soil sampling can be used to investigate spatial differences in atmospheric inputs of persistent organic pollutants based on differences in the mixtures of compounds, reflecting differences in regional and local atmospheric emissions.  相似文献   

15.
Hotspots and coldspots of concentration and biodegradation of polycyclic aromatic hydrocarbons (PAHs) marginally overlapped at the 0.5-100 m scale in a creosote contaminated soil in southern Sweden, suggesting that concentration and biodegradation had little spatial co-variation. Biodegradation was substantial and its spatial variability considerable and highly irregular, but it had no spatial autocorrelation. The soil concentration of PAHs explained only 20-30% of the variance of their biodegradation. Soil respiration was spatially autocorrelated. The spatial uncoupling between biodegradation and soil respiration seemed to be governed by the aging of PAHs in the soil, since biodegradation of added 13C phenanthrene covaried with both soil respiration and microbial biomass. The latter two were also correlated with high concentrations of phospholipid fatty acids (PLFAs) that are common in gram-negative bacteria. However, several of the hotspots of biodegradation coincided with hotspots for the distribution of a PLFA indicative of fungal biomass.  相似文献   

16.
Elevated PAH concentrations were detected in bank soils along the Mosel and Saar Rivers in Germany. Information on the identification of PAH sources in this area however remains unclear. This study was able to characterize the PAH sources by application of several approaches, including consideration of the distribution patterns of 45 PAHs (including 16 EPA PAHs and some alkyl PAHs), specific PAH ratios, distribution patterns of n-alkanes and principal component analysis (PCA). In addition, the efficiency of the tested approaches was assessed. The results from the application of the various source identification methods showed that pyrogenic PAHs dominate soil samples collected upstream of the confluence of the Mosel and Saar Rivers, and petrogenic and pyrogenic PAHs dominate samples downstream of the confluence. Based on the analysis of reference materials and organic petrography, the petrogenic input was found to be dominated by coal particles. More detailed information on the petrogenic sources was provided by the n-alkane analyses. The current study concludes that to accurately determine the origin of PAHs, several identification methods must be applied.  相似文献   

17.
18.
Principal component analysis and multiple linear regression were applied to apportion sources of polycyclic aromatic hydrocarbons (PAHs) in surface soils of Tianjin, China based on the measured PAH concentrations of 188 surface soil samples. Four principal components were identified representing coal combustion, petroleum, coke oven plus biomass burning, and chemical industry discharge, respectively. The contributions of major sources were quantified as 41% from coal, 20% from petroleum, and 39% from coking and biomass, which are compatible with PAH emissions estimated based on fuel consumption and emission factors. When the study area was divided into three zones with distinctive differences in soil PAH concentration and profile, different source features were unveiled. For the industrialized Tanggu-Hangu zone, the major contributors were cooking (43%), coal (37%) and vehicle exhaust (20%). In rural area, however, in addition to the three main sources, biomass burning was also important (13%). In urban-suburban zone, incineration accounted for one fourth of the total.  相似文献   

19.
The levels and distribution of polynuclear aromatic hydrocarbons (PAHs) were determined in soil samples from background locations in the UK and Norway, to investigate their spatial distribution and the controlling environmental factors. Concentrations ranged between 42 and 11200 microg kg(-1) (geometric mean 640 microg kg(-1)) and 8.6 and 1050 microg kg(-1) (150 microg kg(-1)) dry weight in the UK and Norwegian soil, respectively. Proximity to sources and locations susceptible to high atmospheric depositional inputs resulted in higher concentrations. Statistically significant relationships were observed between PAH and total organic carbon (TOC) in the Norwegian samples. High molecular weight PAHs correlated with black carbon (BC) in UK-woodland soil. These observations support the hypothesis that TOC plays an important role in the retention of PAHs in soil and that PAHs are often combined with BC during combustion emissions. PAHs with 4 and more rings comprised approximately 90% of total PAHs in the UK soil, but only 50% in the Norwegian soil. The mixture of PAHs implied that fractionation occurred during long-range atmospheric transport and deposition. The lighter PAHs with lower K(ow) values more readily reached the most remote sites. The heavier PAHs with higher K(ow) values remained in closer proximity to sources.  相似文献   

20.
Ye B  Zhang Z  Mao T 《Chemosphere》2007,68(1):140-149
Surficial sediment samples were collected from three rivers and six canals in Tianjin, China and analyzed for petroleum hydrocarbons. Chemical compositions and distribution patterns, as well as possible sources, of the petroleum hydrocarbons in the sediments were discussed. A series of petroleum hydrocarbons, including n-alkanes, isoprenoid alkanes, anteiso-alkanes, alkyl hexamethylene, hopanes and steranes were detected in the samples. The concentration of petroleum hydrocarbons varied in a wide range of 0.072-3.000 mg g(-1) in the surficial sediment of the rivers and canals in Tianjin. In the samples studied, the total concentrations of petroleum hydrocarbons in the sediment samples from North Canal, South Canal, and G3 segment of South Sewage Canal were higher than those from Hai River, South Sewage Canal and North Sewage Canal. Accumulation of pollutants in the sediments from reaches close to urban area was also observed. The PHC spatial variability is mostly affected by many local inputs. The main sources of petroleum hydrocarbons in the sediment in Tianjin were considered to be petroleum importation and biochemical degradation of organisms, including cuticular of aquatic vegetation and algae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号