首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Monosodium methanearsonate (MSMA)-resistant and -susceptible common cocklebur (Xanthium strumarium L.) and cotton (Gossypium hirsutum L.) were treated with MSMA. Plant parameters analyzed were: glutathione synthetase activity, selected amino acid (arginine, glutamic acid, alanine, citrulline, glutamine, and glutathione) content and arsenic content (MSMA, total arsenic, and arsonate). No reduction of arsenic from the parent pentavalent form present in MSMA to the trivalent form was detected. Arginine, glutamic acid, and glutamine content increased in tissue three days after MSMA treatment. Glutathione content decreased during the first three days after treatment; however, five days after treatment the resistant biotype of cocklebur and cotton had elevated glutathione levels (8-20 times greater, respectively). Glutathione Synthetase activity was higher in cotton than in either of the cocklebur biotypes; MSMA did not affect its activity in cotton or either cocklebur biotype. Resistant biotypes have a slightly higher activity than the susceptible biotype. Tolerance of cotton to MSMA may be related to glutathione synthetase activity and possibly to the presence of phytochelatins. Also, increased glutathione levels in the resistant biotype may implicate phytochelatin involvement in the resistance mechanism.  相似文献   

2.

Leaf cuticle waxes were extracted from monosodium methanearsonate (MSMA)-resistant (R) and -susceptible (S) common cocklebur (Xanthium strumarium L.) and cotton (Gossypium hirsutum L.) plants at 0, 3, 5, and 7 days after treatment (DAT) following 1× and 2× MSMA applications. Wax constituents were analyzed by gas chromatography (GC) with flame ionization detection and compared to alkane and alcohol standards of carbon lengths varying from C21 to C30. Differences in waxes were calculated and reported as change per ng mm2–1. Tricosane (C23) was found to increase following MSMA applications. All other alkanes decreased by 7 DAT, with some showing a linear effect over time in the R-cocklebur. Alcohol constituents were also observed to decrease by 7 DAT. Total arsenic in the extracted wax fraction was determined, with greatest quantities detected in the R-cocklebur. Wax changes are not believed to play a role in cotton tolerance, since changes in cuticle concentrations were minimal. Cocklebur resistance to MSMA is not due to cuticle constituents; the wax changes are a secondary effect in response to herbicide application.  相似文献   

3.
Leaf cuticle waxes were extracted from monosodium methanearsonate (MSMA)-resistant (R) and -susceptible (S) common cocklebur (Xanthium strumarium L.) and cotton (Gossypium hirsutum L.) plants at 0, 3, 5, and 7 days after treatment (DAT) following 1x and 2x MSMA applications. Wax constituents were analyzed by gas chromatography (GC) with flame ionization detection and compared to alkane and alcohol standards of carbon lengths varying from C21 to C30. Differences in waxes were calculated and reported as change per ng mm2-1. Tricosane (C23) was found to increase following MSMA applications. All other alkanes decreased by 7 DAT, with some showing a linear effect over time in the R-cocklebur. Alcohol constituents were also observed to decrease by 7 DAT. Total arsenic in the extracted wax fraction was determined, with greatest quantities detected in the R-cocklebur. Wax changes are not believed to play a role in cotton tolerance, since changes in cuticle concentrations were minimal. Cocklebur resistance to MSMA is not due to cuticle constituents; the wax changes are a secondary effect in response to herbicide application.  相似文献   

4.
Abstract

The rate and extent of accumulation and washout of arsenic, during daily oral administration of the herbicide monosodium methanearsonate (MSMA) were evaluated in Iranian dairy sheep and goats. Subjects received a dose of 10 mg of MSMA as arsenic per kg of body weight daily for 28 consecutive days. The total arsenic concentration in blood and milk was measured during and after the period of MSMA administration while arsenic in urine and feces was measured for 10 days following administration of last dosage of MSMA.

Arsenic was accumulated slowly during 28 days of MSMA administration and steady states were essentially complete in sheep after 20 days and in goats following 25 days of MSMA administration. Blood arsenic concentration decreased rapidly after termination of MSMA administration. In both test animals, the half‐lives of washout were smaller than accumulation. The concentration of arsenic in the urine and feces of both species did not increase significantly over controls and animals were free of arsenic relatively shortly after administration stopped.

These data indicate that arsenic from MSMA is mainly absorbed from gastrointestinal tract and is not significantly accumulated in the body. Arsenic is eliminated from body by way of urine and feces with urinary excretion being the most important route.  相似文献   

5.
Abstract

Glutathione content and glutahione‐dependent enzymes were measured in the liver of two fish species, gudgeon (Gobio gobio) and roach (Rutilus arcasii), from the river Bernesga (Spain) caught downstream and upstream of the waste site of several chemical industries. Animals from contaminated sites display a reduced glutathione concentration and a tendency to the decrease of glutathione S‐transferase activity. Glutathione peroxidase activity was significantly elevated only in the liver of Gobio gobio and glutathione reductase activity in that of Rutilus arcasii. Our data indicate that the glutathione system constitutes a sensitive biochemical indicator of chemical pollution. Relative changes of glutathione and glutathione‐dependent enzymes in both fish species suggest a different susceptibility to toxins.  相似文献   

6.
The rate and extent of accumulation and washout of arsenic, during daily oral administration of the herbicide monosodium methanearsonate (MSMA) were evaluated in Iranian dairy sheep and goats. Subjects received a dose of 10 mg of MSMA as arsenic per kg of body weight daily for 28 consecutive days. The total arsenic concentration in blood and milk was measured during and after the period of MSMA administration while arsenic in urine and feces was measured for 10 days following administration of last dosage of MSMA. Arsenic was accumulated slowly during 28 days of MSMA administration and steady states were essentially complete in sheep after 20 days and in goats following 25 days of MSMA administration. Blood arsenic concentration decreased rapidly after termination of MSMA administration. In both test animals, the half-lives of washout were smaller than accumulation. The concentration of arsenic in the urine and feces of both species did not increase significantly over controls and animals were free of arsenic relatively shortly after administration stopped. These data indicate that arsenic from MSMA is mainly absorbed from gastrointestinal tract and is not significantly accumulated in the body. Arsenic is eliminated from body by way of urine and feces with urinary excretion being the most important route.  相似文献   

7.
Abstract

Iranian fat‐tailed sheep and dairy goats were administered the herbicide monosodium methanearsonate orally at a dose of 10 mg. MSMA (as arsenic) per kg. of body weight. The concentration time curves of MSMA in the blood of sheep and goats followed a first order composite exponential equation of the form: Cb(t) = Ae αt + Be ‐βt ‐ C°be‐kat.

Absorption, distribution and elimination of MSMA, therefore, corresponds to an open two‐compartment model.

Arsenic from MSMA was readily absorbed from gastrointestinal tract and distributed in the body fluids and the various tissues. Approximately 90% of the arsenic was excreted in the urine within 120 hrs and small amounts were also recovered in feces. Arsenic accumulation in the tissues was low and urinary excretion was the most important exit route. Arsenic concentrations in milk were low when compared to the controls, which indicates that arsenic is not excreted in the milk to significant levels.

The absorption, distribution and overall elimination rate constants for the two animal species studied were statistically different at the 0.95 level of confidence which indicates that there are apparently differences in MSMA metabolism by sheep and goats.  相似文献   

8.
Abstract

The objective of this study was to determine the effects of varying nitrogen sources and concentrations upon glutamine synthetase and protease activities in Prevotella ruminicola strain B14. Based on growth response it appears that ammonium chloride or pepticase limited P. ruminicola becomes nitrogen limited when nitrogen concentration is at 0.5 mM. However, when casein was provided as the sole source of nitrogen P. ruminicola becomes nitrogen limited at 2.5 mM. Glutamine synthetase activity was measured from mid‐log phase cells grown in either nitrogen‐limited or non‐limited conditions. No activity was detectable in the non‐limited treatments. However, in the N‐ limited treatments, pepticase had the highest activity (20.76 units), followed by ammonium chloride (18.72 units) and casein (14.42 units). Protease activity assays indicated that nitrogen‐limited cultures had higher proteolytic activity than non‐limited cultures. Moreover, these activities appeared to follow the same response pattern as the previously observed glutamine synthetase activities. The results of this study indicate that P. ruminicola strain B, 4 protease activity may be influenced by nitrogen concentration such that activity increases when nitrogen availability decreases.  相似文献   

9.
Zinc (Zn) is a necessary element for plants, but excess Zn can be detrimental. To investigate Zn toxicity, rapeseed (Brassica napus) seedlings were treated with 0.07–1.12 mM Zn for 7 d. Inhibition of plant growth along with root damage, chlorosis and decreased chlorophyll (a and b) content in newly expanded leaves (the second and third leaves formed following cotyledons) were found under Zn stress. The Zn content increased in plants under external Zn stress, while concentrations of phosphorus, copper, iron, manganese and magnesium reduced significantly, especially in roots. Meanwhile, increased lipid peroxidation was detected biochemically and histochemically. Compared with controls, NADH oxidase and peroxidase (POD) activity increased in leaves and roots of plants under high Zn, but superoxide dismutase (SOD), catalase and ascorbate peroxidase activities decreased. The changes in glutathione S-transferase activity and in ascorbic acid, dehydroascorbate, non-protein thiols and glutathione contents were also measured under Zn stress. Isoforms of SOD and POD were separated using non-denaturing polyacrylamide gel electrophoresis and their activities were analyzed. Our results suggested that excess Zn exerts its toxicity partially through disturbing nutrient balance and inducing oxidative stress in plants. These data will be helpful for better understanding of toxicity of Zn and the adaptive mechanism in Zn non-hyperaccumulator plants.  相似文献   

10.
Abstract

The present study was under taken to demonstrate the effect of some commonly used insecticides on the activity of cytochrome P450 system including cytochrome b5, aryl hydrocarbon [benzo(a)pyrene] hydroxylase (AHH), N-nirosodimethylamine N-demethylase I [NDMA-dI] and NADPH-cytochrome c reductase as phase I of drug oxidation. In addition, the activity of glutathione S-transferase (GST), glutathione reductase (GR), and the level of glutathione (GSH) were determined in the liver of male mice after oral administration of sumithion, dursban, chlordane, methoxychlor, heptachlor epoxide, and lindane as single (24 h) or as repeated doses for six consecutive days. Oral administration of sumithion, dursban, chlordane, methoxychlore, and heptachlor epoxide as repeated doses decreased: (i) the hepatic content of cytochrome P450 by 36, 37, 47, 37, and 67%, respectively, (ii) AHH activity by 28, 29, 70, 31, and 79%, respectively, (iii) NDMA-dI activity by 43, 44, 32, 27, and 31, respectively. On the other hand, sumithion, chlordane, and methoxychlore induced the activity of NADPH-cytochrome c reductase by 45, 62, and 43 respectively after repeated dose treatments. In addition, single and repeated-dose treatments of mice with lindane induced; (i) cytochrome P450 by 23 and 65%, respectively, (ii) cytochrome b5 by 49 and 131%, respectively, (iii) AHH activity by 64 and 50%, respectively. Repeated-dose treatments of mice with chlordane, methoxychlore, and heptachlor epoxide decreased the GSH level by 42, 38, and 68%, respectively and GST activity by 44, 44, and 55% respectively. Moreover, single- and repeated-dose treatments of mice with lindane decreased the GSH levels by 40 and 54%, respectively, and induced GST activity by 25 and 41%, respectively. Interestingly, single-dose treatments with chlordane, methoxychlore, and heptachlor epoxide decreased the activity of GR by 32, 38, and 31, respectively whereas repeated doses of these compounds induced such activity by 83, 50, and 64%, respectively. It is concluded that modifications in cytochrome P450 system by pesticides could potentiate the toxicity and carcinogenicity of environmental carcinogens such as polycyclic aromatic hydrocarbon and N-nirosodimethylamine (NDMA).  相似文献   

11.

Parthenium weed is a problematic invasive species in several countries around the world. Although it is considered to be a highly invasive species within Australia, not all biotypes of parthenium weed exhibit the same ability in regard to aggressive colonization and distribution. Differences among biotypes, particularly in regard to environmental ranges as a possible basis for this variation, have not always been elucidated. To determine whether drought tolerance could be a factor in biotype demographics, we quantified the biological responses of two Australian parthenium weed biotypes known to differ in invasive ability Clermont (“high”) and Toogoolawah (“low”) to 100, 75 and 50% of soil water holding capacity (WHC). The Clermont biotype had greater vegetative growth, seed production and chlorophyll content than Toogoolawah, across all moisture levels. Net photosynthesis, stomatal conductance, internal CO2 concentration, seed production per plant, 1000 seed weight and subsequent germination percentage were also higher for Clermont than for Toogoolawah and were maximum at 75% WHC. Clermont plants also had higher total soluble sugar, phenolics and free proline content than Toogoolawah, and a significant increase in the levels of all of these biochemicals was observed at 50% WHC. In conclusion, Clermont grew and reproduced better than Toogoolawah across all moisture regimes consistent of enhanced invasive ability of this biotype. Overall, the ability of parthenium weed to maintain good growth, physiology and seed production under moisture stress may enable it to colonize a wide range of Australian environments.

  相似文献   

12.
Abstract

The effect of mercuric chloride (HgCl2) on the activities of catalase, Superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and its effect on glutathione (GSH) content were evaluated in different organs (liver, kidneys, and brain) of mice after administration at 0, 0.25, 0.5 and 1.0 mg/kg/day for 14 days. The uptake of mercury shows that the kidneys accumulated the highest levels of mercury compare to brain and liver. The enzyme levels varied in mercury treated organs compare to control. A dose dependent increase of antioxidant enzymes occurred in the liver and kidneys. The increase in enzyme activities correlated with highest mercury accumulation in the kidneys and liver. Mercury is known to generate reactive oxygen species (ROS) in vivo and in vitro, therefore, it is likely that enzyme activities increased to scavenge ROS levels produced as a result of mercury accumulation. Glutathione content increased in liver and kidneys of mercury treated mice compare to control. The results showed that the highest oral dose of mercury significantly increased antioxidant enzymes in kidneys and liver. The increased antioxidant enzymes enhance the antioxidant potential of the organs to reduce oxidative stress.  相似文献   

13.
14.
Abstract

The in vivo effects of methomyl, thiodicarb and metaldehyde on total soluble proteins, total lipids and glycogen content, in addition, the activity of glutamic oxaloacetic transaminase, (GOT), (GPT) glutamic pyruvic transaminase and catalase (CAT) enzymes of terrestrial E. vermiculata snails was studied. The experimental snails were treated with low concentration of 0.2% bran bait w/w of the pesticides for a period of 1,3,5,7 and 10 days. The results showed that methomyl and thiodicarb lead to significant reduction in total soluble proteins, lipids, and glycogen content, while significant increases in the activity of all enzymes tested were noted. Metaldehyde treatment showed no significant effect on total soluble proteins, lipids and GOT level, whereas a significant increase in GPT and CAT enzymes was observed. Also, metaldehyde resulted a significant reduction in glycogen content of snails.  相似文献   

15.
Abstract

Paraquat/atrazine coresistant (PqAR) and paraquat resistant (PqR) horseweed (Conyza canadensis /L./ Cronq.) plants showed ‐ in the first hour after 0.5 mM paraquat spraying ‐ a decreased catalase activity followed by a slight increase. However, the enzyme activity remained always below the initial value. Sensitive plants showed a significant increase of catalase activity in the first 4 hour after spraying. The transient character of paraquat inhibition, the recovery of photosyn‐thetic activity of the PqAR Conyza plants (characterized by variable fluorescence) after spraying remained unaffected by the Superoxide dismutase (SOD) inhibitor, diethyldithiocarbamate. This indicates that SOD is not involved in the resistance mechanism. Untreated resistant biotypes showed about 2.5 times higher total polyamine and putrescine level than the sensitive one. 100 μM of exogenously added putrescine was observed as having a protecting effect against paraquat in floated leaves of the sensitive biotype only. The resistant leaves were unaffected probably on account of their higher endogenous polyamine level. It is concluded that polyamines may play a role in the paraquat resistance of Conyza canadensis.  相似文献   

16.
Cotton (Gossypium hirustum L.) is grown globally as a major source of natural fiber. Nitrogen (N) management is cumbersome in cotton production systems; it has more impacts on yield, maturity, and lint quality of a cotton crop than other primary plant nutrient. Application and production of N fertilizers consume large amounts of energy, and excess application can cause environmental concerns, i.e., nitrate in ground water, and the production of nitrous oxide a highly potent greenhouse gas (GHG) to the atmosphere, which is a global concern. Therefore, improving nitrogen use efficiency (NUE) of cotton plant is critical in this context. Slow-release fertilizers (e.g., polymer-coated urea) have the potential to increase cotton yield and reduce environmental pollution due to more efficient use of nutrients. Limited literature is available on the mitigation of GHG emissions for cotton production. Therefore, this review focuses on the role of N fertilization, in cotton growth and GHG emission management strategies, and will assess, justify, and organize the researchable priorities. Nitrate and ammonium nitrogen are essential nutrients for successful crop production. Ammonia (NH3) is a central intermediate in plant N metabolism. NH3 is assimilated in cotton by the mediation of glutamine synthetase, glutamine (z-) oxoglutarate amino-transferase enzyme systems in two steps: the first step requires adenosine triphosphate (ATP) to add NH3 to glutamate to form glutamine (Gln), and the second step transfers the NH3 from glutamine (Gln) to α-ketoglutarate to form two glutamates. Once NH3 has been incorporated into glutamate, it can be transferred to other carbon skeletons by various transaminases to form additional amino acids. The glutamate and glutamine formed can rapidly be used for the synthesis of low-molecular-weight organic N compounds (LMWONCs) such as amides, amino acids, ureides, amines, and peptides that are further synthesized into high-molecular-weight organic N compounds (HMWONCs) such as proteins and nucleic acids.  相似文献   

17.
Differences in the toxicological and metabolic pathway of inorganic arsenic compounds are largely unknown for aquatic species. In the present study the effects of short-time and acute exposure to AsIII and AsV were investigated in gills and liver of the common carp, Cyprinus carpio (Cyprinidae), measuring accumulation and chemical speciation of arsenic, and the activity of glutathione-S-transferase omega (GST Ω), the rate limiting enzyme in biotransformation of inorganic arsenic. Oxidative biomarkers included antioxidant defenses (total glutathione-S-transferases, glutathione reductase, glutathione, and glucose-6-phosphate dehydrogenase), total scavenging capacity toward peroxyl radicals, reactive oxygen species (ROS) measurement and lipid peroxidation products. A marked accumulation of arsenic was observed only in gills of carps exposed to 1000 ppb AsV. Also in gills, antioxidant responses were mostly modulated through a significant induction of glucose-6-phosphate dehydrogenase activity which probably contributed to reduce ROS formation; however this increase was not sufficient to prevent lipid peroxidation. No changes in metal content were measured in liver of exposed carps, characterized by lower activity of GST Ω compared to gills. On the other hand, glutathione metabolism was more sensitive in liver tissue, where a significant inhibition of glutathione reductase was concomitant with increased levels of glutathione and higher total antioxidant capacity toward peroxyl radicals, thus preventing lipid peroxidation and ROS production. The overall results of this study indicated that exposure of C. carpio to AsIII and AsV can induce different responses in gills and liver of this aquatic organism.  相似文献   

18.
To evidence a possible mechanism of defense toward oxidative stress induced by herbicides in plants, an investigation was carried on the activity of glutathione peroxidase (GPX) in Italian ryegrass (Lolium multiflorum) and in Festuca (Festuca arundinacea) in response to atrazine (6-chloro-N-ethyl-N′-isopropyl-1,3,5-triazine-2,4-diamine) and fluorodifen (4-nitrophenyl α,α,α-trifluoro-2-nitro-p-tolyl ether). In general, the herbicide treatments significantly induced GPX activity in the shoots of Italian ryegrass, whereas inhibited it in Festuca. These opposite behaviors are examined, taking into account the accumulation and persistence of the two herbicides in the plants, and they are discussed in terms of GPX counteraction to oxidative stress in the first case, and of a lower detoxification rate unable to prevent a deleterious effect on the GPX activity in the second case. Further information on the properties of Italian ryegrass and Festuca GPX were achieved by purification and isolation of the enzymes, performed by protein liquid chromatography and by electrophoretic analyses. GPX of both the plants were found to be heterodimer with multiple function in showing also glutathione S-transferase (GST) activity.  相似文献   

19.
The present study aimed to establish the seasonal variations in the redox potential ranges of young Tibouchina pulchra plants growing in the Cubatão region (SE Brazil) under varying levels of oxidative stress caused by air pollutants. The plants were exposed to filtered air (FA) and non-filtered air (NFA) in open-top chambers installed next to an oil refinery in Cubatão during six exposure periods of 90 days each, which included the winter and summer seasons. After exposure, several analyses were performed, including the foliar concentrations of ascorbic acid and glutathione in its reduced (AsA and GSH), total (totAA and totG) and oxidized forms (DHA and GSSG); their ratios (AsA/totAA and GSH/totG); the enzymatic activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and glutathione reductase (GR); and the content of malondialdehyde (MDA). The range of antioxidant responses in T. pulchra plants varied seasonally and was stimulated by high or low air pollutant concentrations and/or air temperatures. Glutathione and APX were primarily responsible for increasing plant tolerance to oxidative stress originating from air pollution in the region. The high or low air temperatures mainly affected enzymatic activity. The content of MDA increased in response to increasing ozone concentration, thus indicating that the pro-oxidant/antioxidant balance may not have been reached.  相似文献   

20.
Iranian fat-tailed sheep and dairy goats were administered the herbicide monosodium methanearsonate orally at a dose of 10 mg. MSMA (as arsenic) per kg. of body weight. The concentration time curves of MSMA in the blood of sheep and goats followed a first order composite exponential equation of the form: Cb(t) = Ae- alpha t + Be- beta t - C degrees be-kat. Absorption, distribution and elimination of MSMA, therefore, corresponds to an open two-compartment model. Arsenic from MSMA was readily absorbed from gastrointestinal tract and distributed in the body fluids and the various tissues. Approximately 90% of the arsenic was excreted in the urine within 120 hrs and small amounts were also recovered in feces. Arsenic accumulation in the tissues was low and urinary excretion was the most important exit route. Arsenic concentrations in milk were low when compared to the controls, which indicates that arsenic is not excreted in the milk to significant levels. The absorption, distribution and overall elimination rate constants for the two animal species studied were statistically different at the 0.95 level of confidence which indicates that there are apparently differences in MSMA metabolism by sheep and goats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号