首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 946 毫秒
1.
The effects of clomazone on the growth of tobacco (Nicotiana tabacum L. 'NC2326') callus and leaf discs were studied under four light regimes. Callus cultures and leaf discs were grown on Murashige and Skoog medium supplemented with IAA and kinetin. Light regimes were: dark grown callus kept in the dark and also transferred to the light; light grown callus kept in the light and also transferred to the dark. Two-month-old callus (cultured for 2 months from initiation) grew more rapidly than twelve-month-old callus (cultured for 12 months from initiation) under all conditions tested. Callus transferred from light to dark, or from dark to light, increased in fresh weight slower than did the callus maintained totally in light or dark. Clomazone (2-[(2-chlorophenyl)methyl]-4,4-dimethyl-3-isoxazolidinone) at 140 mg l(-1) or more was lethal to both callus and leaf discs whereas 10 mg l(-1) was stimulatory to growth. Callus tissue responded to clomazone differently depending on the light regime under which it was grown. While clomazone may be affecting the isoprenoid pathway in the callus and leaf disks resulting in growth inhibition, it is possible that other target sites are also being affected and contribute to the reduced growth.  相似文献   

2.
For the first time we investigated the effect of solar irradiation upon the heterogeneous ozonation of adsorbed 3,4,5-trimethoxybenzaldehyde on solid surface. Light-induced heterogeneous reactions between gas-phase ozone and 3,4,5-trimethoxybenzaldehyde adsorbed on silica particles were performed and the consecutive reaction products were identified. At an ozone mixing ratio of 250 ppb, the loss of 3,4,5-trimethoxybenzaldehyde ranged from 1.0 · 10?6 s?1 in the dark to 2.9 · 10?5 s?1 under light irradiation. Such large enhancement of 29 times clearly shows the importance of light (λ > 300 nm) during the heterogeneous ozonolysis on organic coated particles.The reaction products identified in this study (3,4,5-trimethoxybenzoic acid, syringic acid, methyl 3,4,5-trimethoxybenzoate) absorb light in the spectral window (λ > 300 nm) which implies that light-induced heterogeneous ozone processing can have an influence on the aerosol surfaces by changing their physico-chemical properties.The main identified product of the heterogeneous reactions between gas-phase ozone and 3,4,5-trimethoxybenzaldehyde under dark conditions and in presence of light was 3,4,5-trimethoxybenzoic acid. For this reason we estimated the carbon yield of 3,4,5-trimethoxybenzoic acid. Carbon yields of 3,4,5-trimethoxybenzoic acid decreased with increasing ozone mixing ratio; from 40% at 250 ppb to 15% at ≥2.5 ppm under dark conditions. At ozone mixing ratio (250 ppb–1 ppm), carbon yields of 3,4,5-trimethoxybenzaldehyde are relatively higher in the experiment under dark condition than under simulated solar light.  相似文献   

3.
4.
A glasshouse study of the coastal shrub Limoniastrum monopetalum was carried out to evaluate its tolerance and capacity to accumulate copper. We investigate the effects of Cu from 0 to 60 mmol l?1 on the growth, photosynthetic apparatus, and nutrient uptake of L. monopetalum, by measuring gas exchange, chlorophyll fluorescence parameters, photosynthetic pigments, and total copper, nitrogen, phosphorus, sulfur, calcium, and magnesium content in the plant tissues. Although L. monopetalum did not survive at 60 mmol l?1 Cu, the species demonstrated a high tolerance to Cu-induced stress, since all plants survived external Cu concentrations of up to 35 mmol l?1 and displayed similar growth in the Cu-enriched medium as in the control treatment of up to the external level of 15 mmol Cu l?1 (1,000 mg Cu l?1). The reduced growth registered in plants exposed to 35 mmol Cu l?1 can be attributed to reduced photosynthetic carbon assimilation associated with the adverse effect of the metal on the photochemical apparatus and a reduction in the absorption of essential nutrients. Copper tolerance was associated with the capacity of the plant to accumulate the metal in its roots and effectively prevent its translocation to photosynthetic tissues. L. monopetalum has the characteristics of a Cu-excluder plant and could be used in the revegetation of Cu-contaminated soils.  相似文献   

5.
The effects of the herbicide, clomazone, on acetylcholinesterase (AChE), catalase and TBARS formation in teleost fish (Rhamdia quelen) were studied. The fish were exposed to 0.5 or 1.0 mg L−1 of clomazone for 12, 24, 48, 96 and 192 h. After 192 h of exposure period, fish were transferred to clean water and kept in the same for 192 h to study the recovery response. Same parameters as that of exposure period were assayed after 96 and 192 h of recovery period. Specific AChE activity was reduced in the brain and muscle after treatments, reaching a maximum inhibition of 47% in the brain and 45% in the muscle after 12 h of exposure. Fish exposed to clomazone increased TBARS production in the liver for all exposure periods. The brain presented elevated TBARS levels after 12, 24 and 48 h, but after 96 and 192 h, these levels decreased. The decrease of TBARS levels persisted in brain tissue after 96 h of recovery and returned to the control value after 192 h in clean water. Catalase activity was reduced for all periods of exposure. Histological analysis showed vacuolation in the liver after herbicide exposure. Some of the alterations observed were completely restored after recovery period.  相似文献   

6.
The effects of elevated O3 on photosynthetic properties in adult beech trees (Fagus sylvatica) were investigated in relation to leaf mass per area as a measure of the gradually changing, within-canopy light availability. Leaves under elevated O3 showed decreased stomatal conductance at unchanged carboxylation capacity of Rubisco, which was consistent with enhanced δ13C of leaf organic matter, regardless of the light environment during growth. In parallel, increased energy demand for O3 detoxification and repair was suggested under elevated O3 owing to enhanced dark respiration. Only in shade-grown leaves, light-limited photosynthesis was reduced under elevated O3, this effect being accompanied by lowered Fv/Fm. These results suggest that chronic O3 exposure primarily caused stomatal closure to adult beech trees in the field regardless of the within-canopy light gradient. However, light limitation apparently raised the O3 sensitivity of photosynthesis and accelerated senescence in shade leaves.  相似文献   

7.
It is the first report in which a novel psychrotrophic Pseudomonas putida SKG-1 strain was evaluated for simultaneous bioremediation of pentachlorophenol and Cr6+ under various cultural and nutritional conditions. Pentachlorophenol (PCP) dechlorination products, bacterial structure, and functional groups were characterized by gas chromatography and mass spectrometry (GC–MS), scanning electron microscope and energy dispersive X-ray spectroscopy (SEM–EDS), and Fourier-transform infrared (FTIR) techniques. The strain was extremely tolerant to excessively higher individual concentration of PCP (1,400 mg l?1) and Cr6+ (4,300 mg l?1). Increasing concentration of PCP and Cr6+ exerted inhibitory effect on bacterial growth and toxicants’ removal. The strain exhibited growth, and concomitantly remediated both the pollutants simultaneously over a broad pH (7.0–9.0) and temperature (28–32 °C) range; maximum growth, PCP dechlorination (87.5 %), and Cr6+ removal (80.0 %) occurred at optimum pH 8.0 and 30 °C (from initial PCP 100 mg l?1 and Cr6+ 500 mg l?1) under shaking (150 rpm) within 72 h incubation. Optimization of agitation (125 rpm) and aeration (0.4 vvm) in bioreactor further enhanced PCP dechlorination by ~10 % and Cr6+ removal by 2 %. A direct correlation existed between growth and bioremediation of both the toxicants. Among other heavy metals, mercury exerted maximum and cobalt minimum inhibitory effect on PCP dechlorination and Cr6+ removal. Chromate reductase activity was mainly associated with the supernatant and cytosolic fraction of bacterial cells. GC–MS analysis revealed the formation of tetrachloro-p-hydroquinone, 2,4,6-trichlorophenol, and 2,6-dichlorophenol as PCP dechlorination products. FTIR spectrometry indicated likely involvement of carbonyl and amide groups in Cr3+ adsorption, and SEM–EDS showed the presence of chromium on P. putida surface. Thus, our promising isolate can be ecofriendly employed for biotreatment of various industrial wastes contaminated with high PCP and Cr6+ concentrations.  相似文献   

8.
Bisphenol A (BPA) is a well-known environmental toxic substance, which exerts unfavorable effects through endocrine disruptor (ER)-dependent and ER-independent mechanisms to threaten ecological systems seriously. BPA may also interact with other environmental factors, such as light and heavy metals, to have a synergetic effect in plants. However, there is little data concerning the toxic effect of BPA on the primary producers-plants and its possible interaction with light-dependent response. Here, the effects of BPA on germination, fresh weight, tap root length, and leaf differentiation were studied in Arabidopsis thaliana under different parts of light spectrum (dark, red, yellow, green, blue, and white light). Our results showed that low-dose BPA (1.0, 5.0 μM) caused an increase in the fresh weight, the tap root length and the lateral root formation of A. thaliana seedlings, while high-dose BPA (10.0, 25.0 μM) show an inhibition effect in a dose-dependent manner. Unlike karrikins, the effects of BPA on germination fresh weight and tap roots length under various light conditions are similar, which imply that BPA has no notable role in priming light response in germination and early seedling growth in A. thaliana. Meanwhile, BPA exposure influences the differentiation of A. thaliana leaf blade significantly in a light-dependent manner with little to no effect in dark and clear effect under red illumination.  相似文献   

9.
Vehicle exhaust emissions are a dominant feature of urban environments and are widely believed to have detrimental effects on plants. The effects of diesel exhaust emissions on 12 herbaceous species were studied with respect to growth, flower development, leaf senescence and leaf surface wax characteristics. A diesel generator was used to produce concentrations of nitrogen oxides (NOx) representative of urban conditions, in solardome chambers. Annual mean NOx concentrations ranged from 77 nl l−l to 98 nl l−1, with NO:NO2 ratios of 1.4-2.2, providing a good experimental simulation of polluted roadside environments. Pollutant exposure resulted in species-specific changes in growth and phenology, with a consistent trend for accelerated senescence and delayed flowering. Leaf surface characteristics were also affected; contact angle measurements indicated changes in surface wax structure following pollutant exposure. The study demonstrated clearly the potential for realistic levels of vehicle exhaust pollution to have direct adverse effects on urban vegetation.  相似文献   

10.
Atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) was degraded using cobalt-peroximonosulfate (Co/PMS) advanced oxidation process (AOP). Three Co concentrations (0.00, 0.25 and 0.50 mM) and five peroximonosulfate (PMS) concentrations (0, 5, 8, 16 and 32 mM) were tested. Maximum degradation reached was 88% using dark Co/PMS in 126 minutes when 0.25 mM of cobalt and 32 mM of PMS were used. Complete atrazine degradation was achieved when the samples were irradiated by the sun under the same experimental conditions described. Tests for identification of intermediate products allowed identification and quantification of deethylatrazine in both dark and radiated conditions. Kinetic data for both processes was calculated fitting a pseudo-first order reaction rate approach to the experimental data. Having kinetic parameters enabled comparison between both conditions. It was found that the kinetic approach describes data behavior appropriately (R2 ≥ 0.95). Pseudo-kinetic constants determined for both Co/PMS processes, show k value of 10?4 for Co/PMS and a k value of 10?3 for Co/PMS/ultraviolet (UV). This means, that, with the same Co/PMS concentrations, UV light increases the reaction rate by around one order of magnitude than performing the reaction under dark conditions.  相似文献   

11.
Gogoi N  Baruah KK  Gogoi B  Gupta PK 《Chemosphere》2005,59(11):1677-1684
Methane flux from rice varieties grown under two identical soils of Assam were monitored. In the first experiment, variety Jaya and GRT was grown in sandy loam soil of Lower Brahmaputra Valley Zone of Assam and the second experiment was conducted with variety Jyotiprasad and Bishnuprasad in sandy to sandy loam soils of Upper Brahmaputra Valley Zones of Assam. Methane flux recorded from variety Jyotiprasad and GRT was higher compared to variety Bishnuprasad and Jaya. The seasonal integrated flux recorded was 10.76 g m−2, 9.98 g m−2, 9.74 g m−2 and 11.31 g m−2 for variety GRT, Jaya, Bishnuprasad and Jyotiprasad, respectively. All the varieties exhibited two methane peaks one at maximum tillering stage and other at panicle initiation stage of the crop. Crop growth parameters such as leaf number, number of tillers and leaf area index (LAI) showed strong positive relationship with total methane flux. In both the experiments it was calculated that CH4 emission was substantially influenced by crop phenology and growth. This study emphasise the relationship of different growth parameters with methane emission.  相似文献   

12.
为有效处理含异草酮除草剂废水,以Sb掺杂Ti/SnO2电极为阳极,不锈钢板为阴极,采用电催化氧化技术对异草酮废水进行降解,研究了不同影响因素对异草酮去除率的影响,并分析了异草酮的降解效果。结果表明,当异草酮初始浓度为100 mg/L、电流密度为20 mA/cm2、电解质投加量为0.10 mol/L,反应120 min后,异草酮去除率达到94%,此时TOC去除率为57.9%,能耗为25 kWh/m3,且废水的可生化性能显著提高。  相似文献   

13.
The TCE-degrading poplar endophyte Pseudomonas putida W619-TCE was inoculated in poplar cuttings, exposed to 0, 200 and 400 mg l−1 TCE, that were grown in two different experimental setups. During a short-term experiment, plants were grown hydroponically in half strength Hoagland nutrient solution and exposed to TCE for 3 days. Inoculation with P. putida W619-TCE promoted plant growth, reduced TCE phytotoxicity and reduced the amount of TCE present in the leaves. During a mid-term experiment, plants were grown in potting soil and exposed to TCE for 3 weeks. Here, inoculation with P. putida W619-TCE had a less pronounced positive effect on plant growth and TCE phytotoxicity, but resulted in strongly reduced amounts of TCE in leaves and roots of plants exposed to 400 mg l−1 TCE, accompanied by a lowered evapotranspiration of TCE. Dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), which are known intermediates of TCE degradation, were not detected.  相似文献   

14.
Beech seedlings were grown under different nitrogen fertilisation regimes (0, 20, 40, and 80 kg Nha(-1)yr(-1)) for three years and were fumigated with either charcoal-filtered (F) or ambient air (O3). Nitrogen fertilisation increased leaf necroses, aphid infestations, and nutrient ratios in the leaves (N:P and N:K), as a result of decreased phosphorus and potassium concentrations. For plant growth, biomass accumulation, and starch concentrations, a positive nitrogen effect was found, but only for fertilisations of up to 40 kg Nha(-1) yr(-1). The highest nitrogen load, however, reduced leaf area, leaf water content, growth, biomass accumulation, and starch concentrations, whereas soluble carbohydrate concentrations were enhanced. The ozone fumigation resulted in reduced leaf area, leaf water content, shoot growth, root biomass accumulation, and decreased starch, phosphorus, and potassium concentrations, increasing the N:P and N:K ratios. A combined effect of the two pollutants was detected for the leaf area and the shoot elongation, where ozone fumigation amplified the nitrogen effects.  相似文献   

15.
Abstract

Treatment of pea and tobacco leaf discs with the resistance inducer DL‐β‐amino‐n‐butyric acid (BABA) led to a substantial induction of glutathione reductase (GR, E.C. 1.6.4.2.) enzyme activity. After exposure to 1 mM BABA for 96 hrs, the GR activities were 3.2‐fold and 2.9‐fold higher in pea and tobacco leaf discs, respectively, than GR activities in untreated controls. Elevated GR levels may contribute to the antioxidative protection of plants during pathogen attack.  相似文献   

16.
To clarify the effects of O3 on crop plants cultivated in Bangladesh, two Bangladeshi wheat cultivars (Sufi and Bijoy) were grown in plastic boxes filled with Andisol and exposed daily to charcoal-filtered air or O3 at 60 and 100 nl l−1 (10:00-17:00) from 13 March to 4 June 2008. The whole-plant dry mass and grain yield per plant of the two cultivars at the final harvest were significantly reduced by the exposure to O3. Although there was no significant effect of O3 on stomatal diffusive conductance to H2O of flag leaf, net photosynthetic rate of the leaf was significantly reduced by the exposure to O3. The sensitivity of growth, yield, yield components and leaf gas exchange rates to O3 was not significantly different between the two cultivars. The results obtained in the present study suggest that ambient levels of O3 may detrimentally affect wheat production in Bangladesh.  相似文献   

17.
In order to probe into the enzymological mechanism for the regulation of lanthanum chloride (LaCl3) on flavonoid synthesis in plants under enhanced ultraviolet-B (UV-B) radiation, the effects of LaCl3 (20 and 60 mg l?1) on the content of flavonoids as well as the activities of phenylalanine ammonia-lyase (PAL), cinnamate-4-hydroxylase (C4H), 4-coumarate?:?coenzyme A ligase (4CL), and chalcone synthase (CHS) in soybean seedlings under enhanced UV-B radiation (2.6 and 6.2 kJ m?2 day?1) were investigated. Enhanced UV-B radiation (2.6 and 6.2 kJ m?2 day?1) caused the increase in the content of flavonoids as well as the activities of PAL, C4H, 4CL, and CHS in soybean seedlings. The treatment of 20 mg l?1 LaCl3 also efficiently increased these indices, which promoted the flavonoid synthesis and provided protective effects for resisting enhanced UV-B radiation. On the contrary, the treatment of 60 mg l?1 LaCl3 decreased the content of flavonoids as well as the activities of C4H, 4CL, and CHS in soybean seedlings except increasing the activity of PAL, which were not beneficial to the flavonoid synthesis and provided negative effects for resisting enhanced UV-B radiation. In conclusion, enhanced UV-B radiation caused the increase in the flavonoid synthesis by promoting the activities of PAL, C4H, 4CL, and CHS in soybean seedlings. The treatment of LaCl3 could change flavonoid synthesis in soybean seedlings under enhanced UV-B radiation by regulating the activities of PAL, C4H, 4CL, and CHS, which is an enzymological mechanism for the regulation of LaCl3 on flavonoid synthesis in plants under enhanced UV-B radiation.  相似文献   

18.
Anthropogenic-induced water quality pollution is a major environmental problem in freshwater ecosystems today. As a result of this, eutrophication of lakes occurs. Population and economic development are key drivers of water resource pollution. To evaluate how growth in the riparian population and in the gross domestic product (GDP) with unplanned development affects the water quality of the lake, this paper evaluates Lake Victoria Kenyan waters basin. Waters quality data between 1990 and 2012 were analyzed along with reviews of published literature, papers, and reports. The nitrate-nitrogen (NO3-N), soluble phosphorus (PO4-P), chlorophyll a, and Secchi transparencies were evaluated as they are key water quality indicators. The NO3-N increased from 10 μg l?1 in 1990 to 98 μg 1?1 in 2008, while PO4-P increased from 4 μg l?1 in 1990 to 57 μg l?1 in 2008. The population and economic growth of Kenya are increasing with both having minimums in 1990 of 24.143 million people and 12.18 billion US dollars, to maximums in 2010 of 39.742 million people and 32.163 billion US dollars, respectively. A Secchi transparency is reducing with time, indicating an increasing pollution. This was confirmed by an increase in aquatic vegetation using an analysis of moderate resolution imaging spectroradiometer (MODIS) images of 2000 and 2012 of Kenyan waters. This study found that increasing population and GDP increases pollution discharge thus polluting lakes. One of major factors causing lake water pollution is the unplanned or poor waste management policy and service.  相似文献   

19.
Sixteen black cherry (Prunus serotina, Ehrh.), 10 white ash (Fraxinus americana, L.) and 10 red maple (Acer rubrum, L.) 1-year old seedlings were planted per plot in 1997 on a former nursery bed within 12 open-top chambers and six open plots. Seedlings were exposed to three different ozone scenarios (ambient air: 100% O3; non-filtered air: 98% ambient O3; charcoal-filtered air: 50% ambient O3) within each of two different water regimes (nine plots irrigated, nine plots non-irrigated) during three growing seasons.During the 1998 and 1999 growing season, leaf gas exchange, plant water relations, and foliar injury were measured. Climatic data,ambient- and chamber-ozone-concentrations were monitored. We found that seedlings grown under irrigated conditions had similar (in 1998) but significantly higher gas exchange rates (in 1999) than seedlings grown within non-irrigated plots among similar ozone exposures. Cherry and ash had similar ozone uptake but cherry developed more ozone-induced injury (< 34% affected leaf area, LAA) than ash (<5% LAA), while maple rarely showed foliar injury, indicating the species differed in ozone sensitivity. Significantly more severe injury on seedlings grown under irrigated conditions than seedlings grown under non-irrigated conditions demonstrated that soil moisture altered seedling responses to ambient ozone exposures.  相似文献   

20.

Bacillus sp. CL18 was investigated to propose a bioprocess for protease production using feathers as organic substrate. In feather broth (FB), containing feathers as sole organic substrate (1–100 g l?1), maximal protease production was observed at 30 g l?1 (FB30) after 6 days of cultivation, whereas increased feather concentrations negatively affected protease production and feather degradation. Protease production peaks were always observed earlier during cultivations than maximal feather degradation. In FB30, 80% of initial feathers mass were degraded after 7 days. Addition of glucose, sucrose, starch, yeast extract (2 g l?1), CaCl2, or MgCl2 (10 mmol l?1) to FB30 decreased protease production and feather degradation. FB30 supplementation with NH4Cl (1 g l?1) resulted in less apparent negative effects on protease production, whereas peptone (2 g l?1) increased protease yields earlier during cultivations (3 days). Through a central composite design employed to investigate the effects of peptone and NH4Cl (0.5–4.5 g l?1) on protease production and feather degradation, FB30 supplementation with peptone and NH4Cl (0.5–1.1 g l?1) increased protease production within a shorter cultivation time (5 days) and hastened complete feather degradation (6 days). Feather bioconversion concurs with sustainable production of value-added products.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号