首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
In the present study, a series of activated carbons were prepared from agricultural waste corn cob by chemical and physical activations with potassium hydroxide (KOH)/potassium carbonate (K2CO3) and carbon dioxide (CO2). The effect of process variables such as impregnation ratio, impregnation time, activation temperature and soaking time of CO2 was studied in order to relate these preparation parameters with the physical properties of final carbon products. The resulting activated carbons were characterized by nitrogen adsorption-desorption isotherms at 77 K. The surface areas and pore volumes of carbons were estimated by the BET equation, the Langmuir equation and the t-plot method. Under the experimental conditions investigated, the main parameters in the activation of corn cob were found to be the impregnation ratio and activation temperature. The soaking time of CO2 is another important variable, which had a strong effect on the pore volume development. The BET surface area and total pore volume were as large as about 2000 m2/g and about 1.0 cm3/g, respectively. This study showed that the activation of agricultural waste corn cob with KOH/K2CO3 and CO2 was suitable for the preparation of large-surface-area activated carbons.  相似文献   

2.
Activated carbons were prepared from tobacco stem by chemical activation using potassium hydroxide (KOH), potassium carbonate (K2CO3), and zinc chloride (ZnCl2). The effects of the impregnation ratio (activating agent/precursor) and activating agents on the physical and chemical properties of activated carbons were investigated. The textual structure and surface properties of activated carbons were characterized by nitrogen (N2) adsorption isotherm, scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), x-ray photoelectron spectroscopy (XPS), and thermogravimetry (TG). ZnCl2, acting as a superior activating agent compared to the others, produced much more porosity. The maximum specific surface area reached 1347 m2/g, obtained by ZnCl2 activation with an impregnation ratio of 4.0. Moreover, ZnCl2 activation yielded products with an excellent thermostability, attributed to different activation mechanisms. Various oxygen functions were detected on the activated carbon surface, and hydroxyl and ester groups were found to be in the majority.

Implications: Tobacco stem, the residue from cigarette manufacturing, is usually discarded as waste, leading to serious resource waste and environmental problems. This study provides an effective utilization available for this solid residue by using it as the starting material in the preparation of activated carbon with chemical activation. Activated carbons with high specific area and various surface functions have been prepared, and the effects of the amount and type of activating agents on the physical and chemical properties of activated carbon were investigated as well.  相似文献   


3.
ABSTRACT

Activated carbons were produced from waste tires using a chemical activation method. The carbon production process consisted of potassium hydroxide (KOH) impregnation followed by pyrolysis in N2 at 600-900 °C for 0-2 hr. The activation method can produce carbons with a surface area (SA) and total pore volume as high as 470 m2/g and 0.57 cm3/g, respectively. The influence of different parameters during chemical activation, such as pyrolysis temperature, holding time, and KOH/tire ratio, on the carbon yield and the surface characteristics was explored, and the optimum preparation conditions were recommended. The pore volume of the resulting carbons generally increases with the extent of carbon gasified by KOH and its derivatives, whereas the SA increases with degree of gasification to reach a maximum value, and then decreases upon further gasification.  相似文献   

4.
The char produced in the thermolysis of granulated scrap tyres has few market outlets, reducing the economic viability of the thermolytic process. This paper reports the potential of this char as a low-cost precursor of porous carbons. The tyre-derived char was demineralized in either alkaline or acidic media to reduce its ash, zinc, sulfur, and silica contents. The lowest impurity content was achieved with an HNO3/H2O treatment. The resulting demineralized char was then subjected to activation by KOH or CO2. The Brunauer-Emmett-Teller (BET)-specific surface area of the activated carbon produced by the KOH treatment was 242 m2/g, whereas that of the CO2-activated carbon was 720 m2/g. The textural properties of the latter product were similar to those of some commercial activated carbons. The use of tyre-derived char as a precursor of porous carbons could render the thermolytic treatment of scrap tyres more economically attractive.

Implications: Char produced in thermolysis of granulated scrap tyres has a few market outlets; in this paper an alternative for its use is presented. The char was converted into activated carbon with textural properties similar to those of some commercial activated carbons. This process could render the thermolytic treatment of scrap tyres more economically attractive.  相似文献   

5.
Activated carbons were prepared from the agricultural waste of sugarcane bagasse by the chemical activation with zinc chloride (ZnCl2) at the activation temperature of 500 degrees C with soaking time of 0.5 hour. The influence of activation parameters on the final carbon products was examined by varying the impregnation ratio (i.e., mass ratio of added ZnCl2 to bagasse) and bagasse size. The physical properties of carbon products were characterized by nitrogen adsorption/desorption isotherms (at 77 K) and helium displacement method. The surface area and pore volume of carbons were thus obtained by the BET equation and t-plot method. Also, the particle density and porosity of carbons were estimated by the total pore volume and true density. The increases of the values of surface area and pore volume are approximately proportional to the impregnation ratio. The microporous carbon product with the BET surface area of 905 m2/g and total pore volume of 0.44 cm3/g was obtained in the present study. Further, the adsorption isotherms of two acid dyes from aqueous solutions onto the carbon products were performed at 30 degrees C. The results show that the adsorption isotherms of acid dyes with high molecular weight or large molecular size on the microporous adsorbents of activated carbons are plateau forms, indicating multilayer adsorptions, which may be attributed to the steric hindrance of the adsorbate molecules.  相似文献   

6.
Abstract

The objective of this study is to develop an innovative compositive impregnation process for preparing sulfurized powdered activated carbon (PAC) from waste tires. An experimental apparatus, including a pyrolysis and activation system and a sulfur (S) impregnation system, was designed and applied to produce sulfurized PAC with a high specific surface area. Experimental tests involved the pyrolysis, activation, and sulfurization of waste tires. Waste-tire-derived PAC (WPAC) was initially produced in the pyrolysis and activation system. Experimental results indicated that the Brunauer-Emmett-Teller (BET) surface area of WPAC increased, and the average pore radius of WPAC decreased, as water feed rate and activation time increased. In this study, a conventional direct impregnation process was used to prepare the sulfurized PAC by impregnating WPAC with sodium sulfide (Na2S) solution. Furthermore, an innovative compositive impregnation process was developed and then compared with the conventional direct impregnation process. Experimental results showed that the compositive impregnation process produced the sulfurized WPAC with high BET surface area and a high S content. A maximum BET surface area of 886 m2/g and the S content of 2.61% by mass were obtained at 900°C and at the S feed ratio of 2160 mg Na2S/g C. However, the direct impregnation process led to a BET surface area of sulfurized WPAC that decreased significantly as the S content increased.  相似文献   

7.
Activated carbons were produced from waste tires using a chemical activation method. The carbon production process consisted of potassium hydroxide (KOH) impregnation followed by pyrolysis in N2 at 600-900 degrees C for 0-2 hr. The activation method can produce carbons with a surface area (SA) and total pore volume as high as 470 m2/g and 0.57 cm3/g, respectively. The influence of different parameters during chemical activation, such as pyrolysis temperature, holding time, and KOH/tire ratio, on the carbon yield and the surface characteristics was explored, and the optimum preparation conditions were recommended. The pore volume of the resulting carbons generally increases with the extent of carbon gasified by KOH and its derivatives, whereas the SA increases with degree of gasification to reach a maximum value, and then decreases upon further gasification.  相似文献   

8.
微波辐照碳酸钾化学活化法制备菌渣活性炭   总被引:1,自引:0,他引:1  
以食用菌渣为原料,以K2CO3为活化剂,利用微波辐照加热法制备活性炭。采用正交实验设计,研究了活化功率、活化时间、K2CO3与菌渣质量比、浸渍时间对活性炭碘值及得率的影响。实验结果表明,活化时间、活化功率、K2CO3与菌渣质量比对活性炭碘值影响显著,浸渍时间对活性炭碘值影响不显著;对活性炭得率,各因素影响均不显著。综合考虑碘值和得率2个指标,实验得出的最佳活性炭制备工艺条件为:活化功率560 W,活化时间20 min,K2CO3与菌渣质量比0.8,浸渍时间20 h。  相似文献   

9.
ABSTRACT

Activated carbons with diverse physical and chemical properties were produced from four agriculture residues, including raw barley husk, biotreated barley husk, rice husk, and pistachio shell. Results showed that with adequate steam activation (30–90 min, 50% H2O(g)/50% N2), activated carbons with surface areas between 360 and 950 m2 g?1 were developed. Further increases in the activation time destroyed the pore structure of activated carbons, which resulted in a decrease in the surface area and pore volume. Biotreated agricultural residues were found to be suitable precursors for producing mesoporous activated carbons. The oxygen content of activated carbons increased with increasing activation time. Results from X-ray photoelectron spectroscopy examination further suggested that H2O molecules react with the carbon surface, enhancing the deconvoluted peak area of carbonyl and carboxyl groups. Equilibrium adsorption of toluene indicated that the adsorption capacities increased with an increase in the inlet toluene concentration and a decrease in temperature. The adsorption isotherms were successfully fitted with Freundlich, Langmuir, and Dubinin– Radushkevich equations. Activated carbons derived from agricultural residues appear to be more applicable to adsorb volatile organic compounds at a low concentration and high-temperature environment.

IMPLICATIONS This paper presents data on the preparation of activated carbons from agricultural residues, especially the waste from biohydrogen generation. Experimental results indicated that with proper carbonization and steam activation, activated carbons with diverse characteristics can be produced from various agricultural residues. The resulting activated carbons effectively adsorb toluene. This work provides useful information for reutilization of these agricultural residues, helping in decreasing the cost of biological waste treatment and providing a cost-effective alternative to conventional adsorbent production and application.  相似文献   

10.
Corncob-derived char wastes (CCW) obtained from biomass conversion to syngas production through corncob steam gasification, which were often discarded, were utilized for preparation of activated carbon by calcination, and KOH and HNO3 activation treatments, on the view of environment protection and waste recycling. Their adsorption performance in the removal of heavy metal ions and dye molecules from wastewater was evaluated by using Cu2+ and methyl orange (MO) as the model pollutant. The surface and structure characteristics of the CCW-based activated carbons (CACs) were investigated by N2 adsorption, CO2 adsorption, FT-IR, and He-TPD. The adsorption capacity varied with the activation methods of CACs and different initial solution concentrations, indicating that the adsorption behavior was influenced by not only the surface area and porosity but also the oxygen functional groups on the surface of the CACs. The equilibrium adsorption data were analyzed with the Langmuir, Freundlich, and Temkin isotherm models, and the adsorption kinetics was evaluated by the pseudo-first-order and pseudo-second-order models.  相似文献   

11.
In this study, activated carbon was prepared from Chinese chestnut burs assisted by microwave irradiation with potassium hydroxide (KOH) as activator, and the process conditions were optimized employing Box-Behnken design (BBD) and response surface methodology (RSM). The optimized variables were irradiation time, impregnation time, and mass ratio of alkali-to-carbon, and the iodine adsorption value was used to evaluate the adsorption property of activated carbon. The optimal preparation conditions were determined as follows: irradiation time 17 min, impregnation time 240 min, and mass ratio of alkali-to-char 1.5:1. Meanwhile, the relatively high iodine adsorption value (1141.4 mg/g) was also obtained. Furthermore, the pore structural characterization of activated carbon was analyzed. The analyzed results showed a larger Brunauer-Emmett-Teller (BET) specific surface area (1254.5 m2/g) and a higher microporosity ratio (87.2%), a bigger total pore volume (0.6565 m3/g), but a smaller average pore size (2.093 nm), which demonstrated the obtained activated carbon possessed strong adsorption capacity and well-developed microporous structure. This research could not only establish the foundation of utilizing chestnut burs to prepare activated carbon, but also provide the basis for exploitation of Chinese chestnut by-products.

Implications: Because Chinese chestnut burs are the by-products and usually discarded upon harvesting subsequently, the utilization of chestnut burs as a potential source of activated carbon is of great profit to the chestnut processing industries.  相似文献   

12.
Series sludge straw–based activated carbons were prepared by sewage sludge and corn straw with potassium hydroxide (KOH) activation, and the desulfurization performance of activated carbons was studied. To obtain the best desulfurization performance, the optimum ratio between the raw materials and the activator was investigated. The results showed that when the mass ratio of sewage sludge, corn straw, and KOH was 3:7:2, the activated carbon obtained the best breakthrough and saturation sulfur sorption capacities, which were 12.38 and 5.74 times, respectively, those of samples prepared by the nonactivated raw materials. The appropriate KOH could improve the microporosity and alkaline groups, meanwhile reducing the lactone groups, which were all beneficial to desulfurization performance. The chemical adsorption process of desulfurization can be simplified to four main steps, and the main desulfurization products are elemental sulfur and sulfate.

Implications: Sewage sludge (SS) and corn straw (CS) both have great production and wide distribution and are readily available in China. Much attention has been paid on how to deal with them effectively. Based on the environment protection idea of waste treatment with waste and resource recycling, low-cost adsorbents were prepared by these processes. The proposed method can be expanded to the municipal solid waste recycling programs and renewable energy plan. Thus, proceeding with the study of preparing activated carbon by SS and straw as a carbon-based dry desulfurization agent could obtain huge social, economic, and environmental benefits.  相似文献   


13.
In this study, activated carbon was prepared from waste tire by KOH chemical activation. The pore properties including the BET surface area, pore volume, pore size distribution, and average pore diameter were characterized. BET surface area of the activated carbon was determined as 558 m2/g. The adsorption of uranium ions from the aqueous solution using this activated carbon has been investigated. Various physico-chemical parameters such as pH, initial metal ion concentration, and adsorbent dosage level and equilibrium contact time were studied by a batch method. The optimum pH for adsorption was found to be 3. The removal efficiency has also been determined for the adsorption system as a function of initial concentration. The experimental results were fitted to Langmuir, Freundlich, and Dubinin–Radushkevich (D-R) isotherm models. A comparison of best-fitting was performed using the coefficient of correlation and the Langmuir isotherm was found to well represent the measured sorption data. According to the evaluation using the Langmuir equation, the saturated monolayer sorption capacity of uranium ions onto waste tire activated carbon was 158.73 mg/g. The thermodynamic equilibrium constant and the Gibbs free energy were determined and results indicated the spontaneous nature of the adsorption process. Kinetics data were best described by pseudo-second-order model.  相似文献   

14.
Abstract

Used tires were pyrolyzed in a pilot-scale quasi-inert rotary kiln. Influences of variables, such as time, temperature, and agent flow, on the activation of obtained char were subsequently investigated in a laboratory-scale fixed bed. Meso-porous pores are found to be dominant in the pore structures of raw char. Brunauer-Emmett-Teller (BET) surfaces of activated chars increased linearly with carbon burnoff. The carbon burnoff of tire char achieved by carbon dioxide (CO2) under otherwise identical conditions was on average 75% of that achieved by steam, but their BET surfaces are almost the same. The proper activation greatly improved the aqueous adsorption of raw char, especially for small molecular adsorbates, for example, phenol from 6 to 51 mg/g. With increasing burnoff, phenol adsorption exhibited a first-stage linear increase followed by a rapid drop after 30% burnoff. Similarly, iodine adsorption first increased linearly, but it held as the burnoff exceeded 40%, which implied that the reduction of iodine adsorption due to decreasing micro-pores was partially made up by increasing mesopores. Both raw chars and activated chars showed appreciable adsorption capacity of methylene-blue comparable with that of commercial carbons. Thus, tire-derived activated carbons can be used as an excellent mesoporous adsorbent for larger molecular species.  相似文献   

15.
The objective of this study is to develop an innovative compositive impregnation process for preparing sulfurized powdered activated carbon (PAC) from waste tires. An experimental apparatus, including a pyrolysis and activation system and a sulfur (S) impregnation system, was designed and applied to produce sulfurized PAC with a high specific surface area. Experimental tests involved the pyrolysis, activation, and sulfurization of waste tires. Waste-tire-derived PAC (WPAC) was initially produced in the pyrolysis and activation system. Experimental results indicated that the Brunauer-Emmett-Teller (BET) surface area of WPAC increased, and the average pore radius of WPAC decreased, as water feed rate and activation time increased. In this study, a conventional direct impregnation process was used to prepare the sulfurized PAC by impregnating WPAC with sodium sulfide (Na2S) solution. Furthermore, an innovative compositive impregnation process was developed and then compared with the conventional direct impregnation process. Experimental results showed that the compositive impregnation process produced the sulfurized WPAC with high BET surface area and a high S content. A maximum BET surface area of 886 m2/g and the S content of 2.61% by mass were obtained at 900 degrees C and at the S feed ratio of 2160 mg Na2S/g C. However, the direct impregnation process led to a BET surface area of sulfurized WPAC that decreased significantly as the S content increased.  相似文献   

16.
17.
A series of activated carbons were prepared from agricultural waste sugarcane bagasse by chemical activation with zinc chloride (ZnCl2) as an activating agent at 500 degrees C and 0.5 h soaking time. The Langmuir surface area and total pore volume were used to estimate the average pore diameter of the carbon products. The values of the surface area and pore volume increased linearly with increase in the impregnation ratio (IR) up to 100 wt%. The adsorption capacities of the derived adsorbents for Acid Orange 10 were measured at 20 degrees C and 40 degrees C to gain further insights into the acidic surface oxides of the adsorbent from the results of Fourier transform infrared (FTIR) spectroscopy analysis and pH measurement. Adsorption isotherms of the acid dye on adsorbents prepared were determined and correlated with common isotherm equations. It was found that the Langmuir model appears to fit the isotherm data better than the Freundlich model. The physical properties of these adsorbents were consistent with the parameters obtained from the isotherm equations.  相似文献   

18.
Arachis hypogaea hulls, an agricultural waste, were used to prepare activated carbon by chemical activation with zinc chloride under four different activation atmospheres. The most important parameter in chemical activation was found to be the chemical ratio (activating agent/precursor). Carbonization temperature and time are the other two important variables, which had significant effect on the pore structure of carbon. The maximum Brunquer-Emmett-Teller (BET) surface area and micropore volume of the activated carbon was found to be 418 m2/g and 0.28 cm3/g, respectively. The activated carbon developed shows substantial capability to adsorb phenol from aqueous solutions. The kinetic data were fitted to the models of intraparticle diffusion, pseudo-second-order, and Lagergren, and followed more closely the pseudo-second-order chemisorption model. The isotherm equilibrium data were well fitted by the Langmuir and Freundlich models. Solution pH has significant effect on adsorption and the maximum uptake of phenol was reported at pH 3.5.  相似文献   

19.
Waste oil fly ash (OFA) collected from disposal of power generation plants was treated by physicochemical activation technique to improve the surface properties of OFA. This synthesized material was further used for potential hydrogen sulfide (H2S) adsorption from synthetic natural gas. The raw OFA was basically modified with a mixture of acids (20% nitric acid [HNO3] and 80% phosphoric acid [H3PO4]), and it was further treated with 2 M potassium hydroxide (KOH) to enhance the surface affinity as well as surface area of synthesized activated carbon. Correspondingly, it enhanced the adsorption of H2S. Crystallinity, surface morphology, and pore volume distribution of prepared activated carbon were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) analyses. Fourier transform infrared (FTIR) study was also performed to identify the functional groups during different synthesis stages of modified activated carbon. The Langmuir, Freundlich, Sips, and dual-site Langmuir (DSL) models were used to study the kinetic and breakthrough behavior of H2S adsorption over alkali-modified activated carbon. Modeling results of isotherms indicated that OFA has dual sites with high and low affinity for H2S adsorption. The Clark model, Thomas model, and Yoon-Nelson model were used to examine the effects of flow rate and inlet concentration on the adsorption of H2S. Maximum uptake capacity of 8.5 mg/g was achieved at 100 ppm inlet concentration and flow rate of 0.2 L/min.

Implications: Utilization of worthless oil fly ash from power plant is important not only for cleaning the environment but also for solid waste minimization. This research scope is to eradicate one pollutant by using another pollutant (waste ash) as a raw material. Chemical functionalization of synthesized activated carbon from oil fly ash would lead to attachment of functional groups of basic nature to attract the acidic H2S. Such type of treatment can enhance the uptake capacity of sorbent several times.  相似文献   


20.
分别以不同浓度的硝酸处理活性焦载体,采用硝酸铜溶液浸渍法制备CuO/AC催化剂,利用BET、FT-IR和XRD等方法对载体及催化剂进行表征.考察了不同浓度的硝酸处理对活性焦载体性质的影响,并对制得的催化剂的脱硫性能进行了比较.结果表明,活性焦经过硝酸处理后孔结构参数变化很小,而表面含氧酸性官能团的含量有了很大的提高,使...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号