首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Stenbjörn Styring 《Ambio》2012,41(2):156-162
The world needs new, environmentally friendly and renewable fuels to allow an exchange from fossil fuels. The fuel must be made from cheap and ‘endless’ resources that are available everywhere. The new research area on solar fuels, which are made from solar energy and water, aims to meet this demand. The paper discusses why we need a solar fuel and why electricity is not enough; it proposes solar energy as the major renewable energy source to feed from. The present research strategies, involving direct, semi-direct and indirect approaches to produce solar fuels, are overviewed.  相似文献   

2.
Styring S 《Ambio》2012,41(Z2):156-162
The world needs new, environmentally friendly and renewable fuels to allow an exchange from fossil fuels. The fuel must be made from cheap and 'endless' resources that are available everywhere. The new research area on solar fuels, which are made from solar energy and water, aims to meet this demand. The paper discusses why we need a solar fuel and why electricity is not enough; it proposes solar energy as the major renewable energy source to feed from. The present research strategies, involving direct, semi-direct and indirect approaches to produce solar fuels, are overviewed.  相似文献   

3.
Eva-Mari Aro 《Ambio》2016,45(1):24-31
Roadmaps towards sustainable bioeconomy, including the production of biofuels, in many EU countries mostly rely on biomass use. However, although biomass is renewable, the efficiency of biomass production is too low to be able to fully replace the fossil fuels. The use of land for fuel production also introduces ethical problems in increasing the food price. Harvesting solar energy by the photosynthetic machinery of plants and autotrophic microorganisms is the basis for all biomass production. This paper describes current challenges and possibilities to sustainably increase the biomass production and highlights future technologies to further enhance biofuel production directly from sunlight. The biggest scientific breakthroughs are expected to rely on a new technology called “synthetic biology”, which makes engineering of biological systems possible. It will enable direct conversion of solar energy to a fuel from inexhaustible raw materials: sun light, water and CO2. In the future, such solar biofuels are expected to be produced in engineered photosynthetic microorganisms or in completely synthetic living factories.  相似文献   

4.
Inganäs O  Zhang F  Andersson MR 《Ambio》2012,41(Z2):138-142
The efficiency of conversion of light to electrical energy with the help of conjugated polymers and molecules is rapidly improving. The optical absorption properties of these materials can be designed, and implemented via molecular engineering. Full coverage of the solar spectrum is thus feasible. Narrow absorption spectra allow construction of tandem solar cells. The poor transport properties of these materials require thin devices, which limits optical absorption. Alternative device geometries for these flexible materials compensate for the optical absorption by light trapping, and allow tandem cells.  相似文献   

5.
There is an urgent need to develop sustainable solutions to convert solar energy into energy carriers used in the society. In addition to solar cells generating electricity, there are several options to generate solar fuels. This paper outlines and discusses the design and engineering of photosynthetic microbial systems for the generation of renewable solar fuels, with a focus on cyanobacteria. Cyanobacteria are prokaryotic microorganisms with the same type of photosynthesis as higher plants. Native and engineered cyanobacteria have been used by us and others as model systems to examine, demonstrate, and develop photobiological H(2) production. More recently, the production of carbon-containing solar fuels like ethanol, butanol, and isoprene have been demonstrated. We are using a synthetic biology approach to develop efficient photosynthetic microbial cell factories for direct generation of biofuels from solar energy. Present progress and advances in the design, engineering, and construction of such cyanobacterial cells for the generation of a portfolio of solar fuels, e.g., hydrogen, alcohols, and isoprene, are presented and discussed. Possibilities and challenges when introducing and using synthetic biology are highlighted.  相似文献   

6.
There is an urgent need to develop sustainable solutions to convert solar energy into energy carriers used in the society. In addition to solar cells generating electricity, there are several options to generate solar fuels. This paper outlines and discusses the design and engineering of photosynthetic microbial systems for the generation of renewable solar fuels, with a focus on cyanobacteria. Cyanobacteria are prokaryotic microorganisms with the same type of photosynthesis as higher plants. Native and engineered cyanobacteria have been used by us and others as model systems to examine, demonstrate, and develop photobiological H2 production. More recently, the production of carbon-containing solar fuels like ethanol, butanol, and isoprene have been demonstrated. We are using a synthetic biology approach to develop efficient photosynthetic microbial cell factories for direct generation of biofuels from solar energy. Present progress and advances in the design, engineering, and construction of such cyanobacterial cells for the generation of a portfolio of solar fuels, e.g., hydrogen, alcohols, and isoprene, are presented and discussed. Possibilities and challenges when introducing and using synthetic biology are highlighted.  相似文献   

7.
Households consume more energy embodied in goods and services than they consume with energy carriers. Thus, energy assessments need to address both direct consumption and indirect consumption via commodities. This paper first presents a conceptual framework for describing and analysing the direct and indirect energy use of households. The framework is based on material flux analysis and differentiates between four household activities feeding, housing, transporting and consuming. Secondly, Swiss data on household energy consumption are presented and discussed in the context of household size, technology and consumption behaviour. It is shown that these factors considerably shape per capita energy demand. The third part presents energy projections based on trend assumptions for demographic and technological developments for the next 30 years. When zero growth per capita in commodities consumption is assumed, overall energy demand will increase by about 5%, mainly due to strong increases in gasoline demand. When the growth rate of commodities consumption exceeds 0.3% per year, embodied energy demand will offset efficiency gains achieved by technological improvements in the economic and domestic sectors and will fuel overall energy growth.  相似文献   

8.
The photocatalytic disinfection of urban waste waters   总被引:7,自引:0,他引:7  
In this paper we present the results of the photocatalytic disinfection of urban waste water. Two microbial groups, total coliforms and Streptococcus faecalis, have been used as indexes to test disinfection efficiencies. Different experimental parameters have been checked, such as the effect of TiO2, solar or UV-lamp light and pH. Disinfection of water samples has been achieved employing both UV-lamp and solar light in agreement with data shown by other authors. The higher disinfection rates obtained employing an UV-lamp may be explained by the stronger incident light intensity. Nevertheless no consistent differences have been found between TiO2-photocatalysis and direct solar or UV-lamp light irradiation at natural sample pH (7.8). At pH 5 the presence of TiO2 increases the relative inactivation rate compared with the absence of the catalyst. After the photocatalytic bacterial inactivation, the later bacterial reappearance was checked for total coliforms at natural pH and pH 5, with and without TiO2. Two h after the photocatalytic treatment, CFU increment was almost nill. But 24 and 48 h later an important bacterial CFU increment was observed. This CFU increment is slower after irradiation with TiO2 at pH 5 in non-air-purged samples.  相似文献   

9.

Solar thermal dryers are solar-operated gadgets utilized to dehumidify various products, especially food items and rubber sheets. This article provides detailed design, parametric studies, and an in-depth review of mixed-mode solar dryers (MMSD) with a case study of fish drying near coastal lines. Due to several advantages compared to open sun drying and prominent performance index compared to indirect and direct type solar dryers, mixed-mode solar dryers have large adaptability on the field. Moreover, mixed-mode solar thermal dryers with different augmentations are reviewed, for instance, mixed-mode solar dryers with evacuated tube collectors, phase change materials, ultraviolet rays stabilized housing, and dehumidifiers. The case study of fish drying near the coastal line of Gujarat, India has been carried out to study the present scenario of the drying activities. Hence, the objective of this review is to identify the capable mixed-mode solar dryer with heat recovery systems. Substantial reviews within the article suggest an essential need to implement the hybrid mixed-mode solar dryer cum distiller technology for small-scale enterprises that can simultaneously provide potable water near coastal lines along with drying of fishes from the solar dryer. Furthermore, future research demands such hybrid mixed-mode solar drying systems that strongly fulfill the requirements of local communities near coastal lines involved in fish drying activities.

  相似文献   

10.
Stephen F. Lincoln 《Ambio》2012,41(8):841-850
Climate change is occurring largely as a result of increasing CO2 emissions whose reduction requires greater efficiency in energy production and use and diversification of energy sources away from fossil fuels. These issues were central to the United Nation climate change discussions in Durban in December 2011 where it was agreed that a legally binding agreement to decrease greenhouse gas emissions should be reached by 2015. In the interim, nations were left with the agreement reached at the analogous 2009 Copenhagen and 2010 Cancun meetings that atmospheric CO2 levels should be constrained to limit the global temperature rise to 2 °C. However, the route to this objective was largely left to individual nations to decide. It is within this context that options for reduction in the 95 % fossil fuel dependency and high CO2 emissivity of the Australian energy profile using current technologies are considered. It is shown that electricity generation in particular presents significant options for changing to a less fossil fuel dependent and CO2 emissive energy profile.  相似文献   

11.
Tamaura Y 《Ambio》2012,41(Z2):108-111
When a concentrated solar beam is irradiated to the ceramics such as Ni-ferrite, the high-energy flux in the range of 1500-2500 kW/m(2) is absorbed by an excess Frenkel defect formation. This non-equilibrium state defect is generated not by heating at a low heating-rate (30 K/min), but by irradiating high flux energy of concentrated solar beam rapidly at a high heating rate (200 K/min). The defect can be spontaneously converted to chemical energy of a cation-excess spinel structure (reduced-oxide form) at the temperature around 1773 K. Thus, the O(2) releasing reaction (α-O(2) releasing reaction) proceeds in two-steps; (1) high flux energy of concentrated solar beam absorption by formation of the non-equilibrium Frenkel defect and (2) the O(2) gas formation from the O(2-) in the Frenkel defect even in air atmosphere. The 2nd step proceeds without the solar radiation. We may say that the 1st step is light reaction, and 2nd step, dark reaction, just like in photosynthesis process.  相似文献   

12.
We examine the life cycles of gasoline, diesel, compressed natural gas (CNG), and ethanol (C2H5OH)-fueled internal combustion engine (ICE) automobiles. Port and direct injection and spark and compression ignition engines are examined. We investigate diesel fuel from both petroleum and biosources as well as C2H5OH from corn, herbaceous bio-mass, and woody biomass. The baseline vehicle is a gasoline-fueled 1998 Ford Taurus. We optimize the other fuel/powertrain combinations for each specific fuel as a part of making the vehicles comparable to the baseline in terms of range, emissions level, and vehicle lifetime. Life-cycle calculations are done using the economic input-output life-cycle analysis (EIO-LCA) software; fuel cycles and vehicle end-of-life stages are based on published model results. We find that recent advances in gasoline vehicles, the low petroleum price, and the extensive gasoline infrastructure make it difficult for any alternative fuel to become commercially viable. The most attractive alternative fuel is compressed natural gas because it is less expensive than gasoline, has lower regulated pollutant and toxics emissions, produces less greenhouse gas (GHG) emissions, and is available in North America in large quantities. However, the bulk and weight of gas storage cylinders required for the vehicle to attain a range comparable to that of gasoline vehicles necessitates a redesign of the engine and chassis. Additional natural gas transportation and distribution infrastructure is required for large-scale use of natural gas for transportation. Diesel engines are extremely attractive in terms of energy efficiency, but expert judgment is divided on whether these engines will be able to meet strict emissions standards, even with reformulated fuel. The attractiveness of direct injection engines depends on their being able to meet strict emissions standards without losing their greater efficiency. Biofuels offer lower GHG emissions, are sustainable, and reduce the demand for imported fuels. Fuels from food sources, such as biodiesel from soybeans and C2H5OH from corn, can be attractive only if the co-products are in high demand and if the fuel production does not diminish the food supply. C2H5OH from herbaceous or woody biomass could replace the gasoline burned in the light-duty fleet while supplying electricity as a co-product. While it costs more than gasoline, bioethanol would be attractive if the price of gasoline doubled, if significant reductions in GHG emissions were required, or if fuel economy regulations for gasoline vehicles were tightened.  相似文献   

13.
Synthetic fuel is prepared to imitate municipal solid waste (MSW) in experimental studies of incineration processes. The fuel is composed based on the Environmental Protection Agency reports on the materials contained in MSW. Uniform synthetic fuel pellets are prepared using available and inexpensive components including newsprint, hardwood mulch, low density polyethylene, iron, animal feed, sand, and water to imitate paperbound, wood, yard trimming, plastic, metal, food wastes, and other materials in MSW. The synthetic fuel preparation procedure enables one to reproduce and modify the fuel for a wide range of experiments in which the mechanisms of waste incineration are addressed. The fuel is characterized using standard ASTM tests and it is shown that its parameters, such as combustion enthalpy, density, as well as moisture, ash and fixed carbon contents are adequate for the representation of municipal solid waste. In addition, chlorine, nitrogen, and sulfur contents of the fuel are shown to be similar to those of MSW. Experiments are conducted in which the synthetic fuel is used for operation of a pilot-scale incinerator research facility. Steady-state temperature operation regimes are achieved and reproduced in these experiments. Thermodynamic equilibrium flame conditions are computed using an isentropic one-dimensional equilibrium code for a wide range of fuel/air ratios. The molecular species used to represent the fuel composition included cellulose, water, iron, polyethylene, methanamine, and silica. The predicted concentrations of carbon monoxide, nitric oxides, and oxygen in the combustion products are compared with the respective experimental concentrations in the pilot-scale incinerator exhaust.  相似文献   

14.
The implementation of renewable wind and solar energy sources instead of fossil fuels to produce such energy carriers as electricity and hydrogen facilitates reductions in air pollution emissions. Unlike from traditional fossil fuel technologies, air pollution emissions from renewable technologies are associated mainly with the construction of facilities. With present costs of wind and solar electricity, it is shown that, when electricity from renewable sources replaces electricity from natural gas, the cost of air pollution emission abatement is more than ten times less than the cost if hydrogen from renewable sources replaces hydrogen produced from natural gas. When renewable-based hydrogen is used instead of gasoline in a fuel cell vehicle, the cost of air pollution emissions reduction approaches the same value as for renewable-based electricity only if the fuel cell vehicle efficiency exceeds significantly (i.e., by about two times) that of an internal combustion vehicle. The results provide the basis for a useful approach to an optimal strategy for air pollution mitigation.  相似文献   

15.
Environmental Science and Pollution Research - The conversion of CO2 into useful raw materials for fuels and chemicals by solar energy is described using a plasmonic photocatalyst comprised of Ag...  相似文献   

16.
Wastewater released from textile industries causes water pollution, and it needs to be treated before discharge to the environment by cost effective technologies. Solar photocatalysis is a promising technology for the treatment of dye wastewater. The Ag@TiO2 nanoparticles comprising of Ag core and TiO2 shell (Ag@TiO2) have unique photocatalytic property of inhibition of electron–hole recombination and visible light absorption, which makes it a promising photocatalyst for use in solar photocatalysis and with higher photocatalytic rate. Therefore, in the present work, the Ag@TiO2 nanoparticles synthesized by one pot method with postcalcination step has been used for the degradation of Acid Yellow-17 (AY-17) dye under solar light irradiation. The Ag@TiO2 nanoparticles were characterized using thermogravimetric–differential thermal analysis, X-ray diffraction, transmission electron microscopy, selected area electron diffraction, and energy dispersive X-ray analysis. The catalyst has been found to be very effective in solar photocatalysis of AY-17, as compared to other catalysts. The effects of pH, catalyst loading, initial dye concentration, and oxidants on photocatalysis were also studied. The optimized parameters for degradation of AY-17 using Ag@TiO2 were found to be pH?3, dye/catalyst ratio of 1:10 (g/g), and 2 g/L of (NH4)2S2O8 as oxidant. Efficient decolorization and mineralization of AY-17 was achieved. The kinetics of color, total organic carbon, and chemical oxygen demand removal followed the Langmuir–Hinshelwood model. Ag@TiO2 catalyst can be reused thrice without much decline in efficiency. The catalyst exhibited its potential as economic photocatalyst for treatment of dye wastewater.  相似文献   

17.
Environmental Science and Pollution Research - Refuse-derived fuel (RDF) can be produced from combustible materials contained in municipal waste. This article investigates energy and material flow...  相似文献   

18.

This pilot study aimed to develop a production line for SRF production from RDF by extracting prohibited materials, grinding, and drying, and the energy potential for using SRF in the cement industry as an alternative fuel was evaluated. This paper defined the main characteristics of RDF, which were obtained after the separation of the biological fraction from MSW at an MBT plant. According to its characteristics, RDF can only be used for incineration in the CPP to obtain heat and energy. The produced SRF meets the requirements for fuel from waste and can be used as an alternative fuel for clinker firing. A technological process line for SRF production from RDF has been developed by adding technical units to the existing MBT line. The SRF production line yield was calculated as 4.47 t/h. At the end of the SRF production process, the moisture content of the finished product decreased by 85%, and the volume decreased by 18%. The obtained SRF had a high calorific value, low moisture content, and a permissible value of chlorine and mercury. It was proposed that the produced SRF and sewage sludge (already used during the clinker firing process) be utilized as alternative fuels since they correspond to the oxide composition of the finished clinker in elemental and oxide composition. A calculation to assess the economic and environmental efficiency of the use of SRF in the cement kiln was conducted. The result showed that using 10% SRF as a substitute fuel for coal used in clinker roasting at 1.92 t/h would save 601.7 USD/h coal costs. This use of SRF will emit 3.7 t/h CO2 and achieve net savings of 754.7 USD/h.

  相似文献   

19.

Agriculture is the main occupation of the majority of people in India. The majority of the population in India is dependent (directly or indirectly) on agriculture as an occupation. The agriculture sector requires more freshwater and power for better yield in the current scenario. Nevertheless, the ever-increasing rate of energy consumption, limited fossil fuels, and rising pollution have made the expansion of renewable resources essential. Due to the suitable solar potential available in India, the deployment of solar energy has been more as compared to other renewable resources. The current study aims to discuss the various technologies, initiatives and policies of solar energy usage in agriculture. This work delivers an assessment of the advancement of solar energy vis-à-vis agricultural applications through the greenhouse concept and photovoltaic approach in India. Various agricultural applications of solar energy, such as solar water desalination system, solar water pumping system, solar crop dryer system for food safety, etc. are discussed as a means to promote solar-based technology. It also highlights the scenario of solar energy in India with important accomplishments, developmental approaches, and future potential. In-depth studies of various policies and government initiatives including those in research and development are also discussed. The current survey on solar technologies will be an aid to agribusiness frameworks to comprehend the statuses, obstructions, and extent of advancement. Finally, some future recommendations for further developments in this approach are discussed. This work sheds light on varied areas of solar energy-assisted agricultural systems as a potentially sustainable and eco-friendly pathway.

Graphical abstract
  相似文献   

20.
Yutaka Tamaura 《Ambio》2012,41(2):108-111
When a concentrated solar beam is irradiated to the ceramics such as Ni-ferrite, the high-energy flux in the range of 1500–2500 kW/m2 is absorbed by an excess Frenkel defect formation. This non-equilibrium state defect is generated not by heating at a low heating-rate (30 K/min), but by irradiating high flux energy of concentrated solar beam rapidly at a high heating rate (200 K/min). The defect can be spontaneously converted to chemical energy of a cation-excess spinel structure (reduced-oxide form) at the temperature around 1773 K. Thus, the O2 releasing reaction (α-O2 releasing reaction) proceeds in two-steps; (1) high flux energy of concentrated solar beam absorption by formation of the non-equilibrium Frenkel defect and (2) the O2 gas formation from the O2? in the Frenkel defect even in air atmosphere. The 2nd step proceeds without the solar radiation. We may say that the 1st step is light reaction, and 2nd step, dark reaction, just like in photosynthesis process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号