首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
垃圾渗滤液处理技术   总被引:1,自引:0,他引:1  
垃圾渗滤液是垃圾填埋过程中产生的高浓度有机废水,是国内外污水处理的一大难题.综述了垃圾渗滤液的水质特性,并总结了近年来在垃圾渗滤液的预处理、主体工艺及深度处理技术上的研究进展,对垃圾渗滤液处理技术提出研究方向.  相似文献   

2.
《化工环保》2008,28(4)
该发明提供了一种垃圾渗滤液中腐殖酸回收利用的综合治理方法。将垃圾渗滤液粗滤、去除杂质后用酸调节pH至1.0~5.5;然后按垃圾渗滤液体积的0.01%~0.06%加入絮凝剂,快速搅拌均匀并沉降20~80min;经沉淀、分离后得到腐殖酸,其上层清液用吸附剂吸附过滤后pH为6~8;处理后的上层清液回灌人垃圾填埋场或经高级氧化技术处理达标后排放。  相似文献   

3.
污泥的处理是"世界难题",污泥处理处置现状与我国污水处理差距甚大,远远落后发达国家,与我国的大国地位及生态文明建设不相符。污泥处理主要是进行减量化、稳定化、无害化和资源化。无论怎么处理,污泥脱水都是必须的处理过程。污泥中的水分主要以孔隙水和毛细水两种形态存在,主要为间隙水、毛细管结合水,表面吸附水和内部水。污泥填埋场的污泥经过多年的沉积,污泥干化严重,含水率低,流动性差,不能直接进行板框压滤,需要添加污泥渗滤液增加污泥的含水率和流动性,通过添加污泥炭调理剂,污泥炭调理剂能够作为骨架支撑,提高了污泥的透水性,影响污泥比阻。污泥炭充分研磨后,比表面积增大、质轻,具有较强的吸附能力,能与吸附质的化学键或离子发生结合,从而产生吸附作用。  相似文献   

4.
建立了针对生活垃圾填埋场地下水污染问题的数学预测模型,以丹阳北庄生活垃圾填埋场工程为例,预测和分析了北庄生活垃圾填埋场渗滤液对地下水的污染。  相似文献   

5.
随着垃圾分类向纵深发展,厨余垃圾处理备受关注,分散就地处理作为集中处理的补充技术,逐渐被各地重视并应用起来。从政策导向、设备工艺等方面阐述厨余垃圾就地处理的现状。以某厨余垃圾就地处理站为例,就物料特性、工艺流程、污染物治理、产物特性和运营成本进行分析。对比集中处理技术,厨余垃圾就地处理技术对于运输距离远的郊区和农村,具有减少运费、改善收运环境的优势。  相似文献   

6.
综述了微波在废物处理中的应用,主要介绍了微波加热的机理及特点,微波在处理放射性废物、废旧电路板、污泥、医疗垃圾、废轮胎中的应用,展望了微波技术在废物处理中的应用前景.  相似文献   

7.
厨余垃圾水解酸化液中有大量的挥发性脂肪酸(VFA)、乳酸、溶解性有机物等可降解有机物,具有极佳的可生化性。因此可用作传统外加碳源的替代品,具有较大的工业化应用潜力。主要介绍了厨余碳源化技术原理,厨余垃圾碳源化条件优化研究进展,以及厨余垃圾碳源化技术在生活污水和垃圾渗滤液等方面的应用研究进展。  相似文献   

8.
高分子絮凝剂对污泥脱水性能的影响   总被引:7,自引:0,他引:7  
邹鹏  宋碧玉  舒丽芬 《化工环保》2004,24(Z1):114-116
使用活性污泥法处理废水会产生大量剩余污泥,给污泥的处理和处置带来很大麻烦.许多方法可用于减少剩余污泥量,如消化和脱水.化学药剂可用于提高污泥的脱水性能.介绍了污泥脱水性能的表达方式及聚电解质提高污泥脱水性能的原理,讨论了聚电解质提高污泥脱水性能的相关影响因素.  相似文献   

9.
石化废水剩余污泥在厌氧消化时,污泥停留时间长,且产气量较低,并且反应器容积较大,所需资金投入较高.污泥厌氧消化预处理能够改变污泥特性,缩短了后续消化时间,提高甲烷产量,减少剩余污泥量.综述了各种污泥预处理技术的最新进展,分析了石化污泥厌氧消化预处理的可行性.  相似文献   

10.
我国污水处理厂每年都会产生大量的污泥,其复杂的成分及高含水率制约污泥的有效利用,如何降低污泥的含水率是其资源化利用的关键.首先调研了污泥产生及成分,从污泥干化的典型工艺及设备、干化过程的环境污染与控制、污泥干化过程的尾气处理和污泥干化经济性分析4个方面对污泥干化技术进行阐述,指出污泥余热干化是污泥实现节能、经济及环保的有效处置方式.  相似文献   

11.
Municipal solid waste disposal sites in arid countries such as Kuwait receive various types of waste materials like sewage sludge, chemical waste and other debris. Large amounts of leachate are expected to be generated due to the improper disposal of industrial wastewater, sewage sludge and chemical wastes with municipal solid waste at landfill sites even though the rainwater is scarce. Almost 95% of all solid waste generated in Kuwait during the last 10 years was dumped in five unlined landfills. The sites accepting liquid waste consist of old sand quarries that do not follow any specific engineering guidelines. With the current practice, contamination of the ground water table is possible due to the close location of the water table beneath the bottom of the waste disposal sites. This study determined the percentage of industrial liquid waste and sludge of the total waste dumped at the landfill sites, analyzed the chemical characteristics of liquid waste stream and contaminated water at disposal sites, and finally evaluated the possible risk posed by the continuous dumping of such wastes at the unlined landfills. Statistical analysis has been performed on the disposal and characterization of industrial wastewater and sludge at five active landfill sites. The chemical analysis shows that all the industrial wastes and sludge have high concentrations of COD, suspended solids, and heavy metals. Results show that from 1993 to 2000, 5.14+/-1.13 million t of total wastes were disposed per year in all active landfill sites in Kuwait. The share of industrial liquid and sludge waste was 1.85+/-0.19 million t representing 37.22+/-6.85% of total waste disposed in all landfill sites. Such wastes contribute to landfill leachate which pollutes groundwater and may enter the food chain causing adverse health effects. Lined evaporation ponds are suggested as an economical and safe solution for industrial wastewater and sludge disposal in the arid climate of Kuwait.  相似文献   

12.
Treatment of municipal solid waste (MSW) landfill leachate generally results in low percentages of nutrient removal due to the high concentration and accumulation of refractory compounds. For this reason, individual physical, chemical and biological processes have been used for the treatment of raw landfill leachate and sometimes for the mixture of domestic wastewater and landfill leachate. In this work, the possibility of treating landfill leachate was tested in a bench-scale pilot plant by a two-step method combining adsorption and coagulation-flocculation. Zeolite synthesized from coal fly ash, a by-product of coal-fired power stations, was used in this study both as a decantation aid reagent and as an adsorbent of COD and NH4-N. The coagulation-flocculation step was performed by the use of aluminium sulphate and a polyelectrolyte (ACTIPOL A-401). The leachate was collected directly from a storage unit of the organic fraction of MSW, before it was composted. For this reason the raw leachate was diluted before treatment. The sludge was recirculated to enhance the removal efficiency of nutrients as well as to optimize flocculant saving and to decrease sludge production. The results showed that it is possible to remove 43%, 53% and 82% of COD, NH4-N, and suspended solids, respectively. Therefore, this method may be an alternative for ammonium removal, as well as a suitable pre- or post-treatment step, in combination with other processes in order to meet regulatory limits.  相似文献   

13.
Mechanisms involved in moisture storage in refuse are explored using data from four sets of experiments in a semi-arid climate. Two laboratory series of experiments contained municipal solid waste (MSW) amended with sewage sludge, one with higher proportions of ash in the MSW than the other. Outdoor experiments contained waste streams with different proportions of ash. Field cells compared moisture retention of refuse and MSW co-disposed with sewage sludge. Sewage sludge at high loads was found to increase the moisture storage relative to unamended MSW. Belt-pressed sludge retained water as bound water that was released by decay and changing pH. Sun-dried sludge also retained more moisture than MSW alone. In gravimetric terms, ash reduced the storage potential of MSW, in laboratory and outdoor experiments. However, outdoor experiments released less leachate from ash-rich refuse than middle-income waste with no ash fraction.  相似文献   

14.
Water flows were analysed for the filling phase and the first 4 years after closure of two types of full-scale landfill cells: 'special cells' containing mostly fly ash from municipal solid waste (MSW) incineration disposed with other special/hazardous waste, and 'biocells' (biological cells) containing co-disposed MSW and food industry sludge. The landfill cells were constructed about -1.5 m above sea level (masl) at Lomma Bay, southern Sweden. The hydrological effects of water intrusion into the special cells from surroundings and sludge moisture within the biocells were studied. HELP modelling of hydrological processes predicted delay in peaks of leachate generation from uncovered special cells following rain, which was not confirmed. Faster leachate production as a response to rainfall from special cells than from biocells was observed. It was inferred that special waste has more intensive channelling, lower water absorption and higher hydraulic conductivity than mixtures of sludge/MSW. To avoid convergence problems in modelling uncovered special cells, the use of a 5 cm deep top layer with saturated hydraulic conductivity 1.7 x 10(-3) cm s(-1), porosity 0.437, and field capacity 0.105, is suggested.  相似文献   

15.
Hydrothermal carbonization (HTC) is a thermal conversion process that can be an environmentally beneficial approach for the conversion of municipal solid wastes to value-added products. The influence of using activated sludge and landfill leachate as initial moisture sources during the carbonization of paper, food waste and yard waste over time at 250 °C was evaluated. Results from batch experiments indicate that the use of activated sludge and landfill leachate are acceptable alternative supplemental liquid sources, ultimately imparting minimal impact on carbonization product characteristics and yields. Regression results indicate that the initial carbon content of the feedstock is more influential than any of the characteristics of the initial liquid source and is statistically significant when describing the relationship associated with all evaluated carbonization products. Initial liquid-phase characteristics are only statistically significant when describing the solids energy content and the mass of carbon in the gas-phase. The use of these alternative liquid sources has the potential to greatly increase the sustainability of the carbonization process. A life cycle assessment is required to quantify the benefits associated with using these alternative liquid sources.  相似文献   

16.
A field study using monoliths (lysimeters) of a sandy clay loam soil was conducted to assess the fate of mutagenic chemicals after refinery and wood preserving bottom sediment sludges were land treated. The Ames Salmonella/microsome assay1 was used to determine the direct (without metabolic activation, −S9) and indirect (with metabolic activation, + S9) mutagenicity of the wastes, unamended soil, waste amended soils, and leachate. Extracts having a mutagenic ratio (MR) (MR= No. colonies from sample extract/No. colonies from DMSO solvent control) of ⩾ 2 were considered positively mutagenic. Extracts of the wood preserving waste sludge without activation were non-mutagenic (MR < 2) but extracts with activation ( + S9) produced very strong indirect mutagenicity (MR = 7.9). After soil incorporation, the waste amended soil produced very strong direct (MR = 8.9) and indirect (MR = 11.9) mutagenicity by day 180 and remained mutagenic (MR = 5.7, −S9; MR = 3.95, + S9) through day 350. The amount of residue in leachate from the wood preserving waste amended lysimeters was significantly greater (P <0.05) than the unamended soil during the first 90 days after waste application, but was not different after 90 days. The leachate residue from wood preserving waste amended lysimeters in the 90–180-day period produced mutagenic responses both with (MR = 2.24 and 2.51) and without (MR = 2.29) activation. Polynuclear aromatic hydrocarbons were the main constituents identified in the leachate residues that produced a mutagenic response. Soil treatment of the refinery sludge reduced its weak indirect mutagenicity before soil incorporation (MR = 2) to non-mutagenic (MR = 1.4) immediately following soil treatment. The MR of the waste amended soil increased to 1.7 by day 180 but by day 350 decreased to a level equal to that observed at day 0 (MR = 1.4). Leachate from the refinery amended lysimeters had significantly greater (P < 0.05) amounts of organic residue than unamended lysimeters 180 to 350 days after waste application. The leachate from one refinery waste amended lysimeter (90–180 days after waste application) produced a mutagenic response (MR = 3.16). The refinery sludge was detoxified shortly after soil treatment, but the wood preserving sludge required > 350 days to detoxify in the soil environment. The possibility exists that mobile mutagenic chemicals may leach into underlying groundwater from the treatment zone of soils amended with refinery and wood preserving sludges.  相似文献   

17.
A study of existing organic waste types in Malm?, Sweden was performed. The purpose was to gather information about organic waste types in the city to be able to estimate the potential for anaerobic treatment in existing digesters at the wastewater treatment plan (WWTP). The urban organic waste types that could have a significant potential for anaerobic digestion amount to about 50 000 tonnes year(-1) (sludge excluded). Some of the waste types were further evaluated by methane potential tests and continuous pilot-scale digestion. Single-substrate digestion and co-digestion of pre-treated, source-sorted organic fraction of municipal solid waste, wastewater sludge, sludge from grease traps and fruit and vegetable waste were carried out. The experiments showed that codigestion of grease sludge and WWTP sludge was a better way of making use of the methane potential in the grease trap sludge than single-substrate digestion. Another way of increasing the methane production in sludge digesters is to add source-sorted organic fraction of municipal solid waste (SSOFMSW). Adding SSOFMSW (20% of the total volatile solids) gave a 10-15% higher yield than could be expected by comparison with separate digestion of sludge respective SSOFMSW. Co-digestion of sludge and organic waste is beneficial not just for increasing gas production but also for stabilizing the digestion process. This was seen when co-digesting fruit and vegetable waste and sludge. When co-digested with sludge, this waste gave a better result than the separate digestion of fruit and vegetable waste. Considering single-substrate digestion, SSOFMSW is the only waste in the study which makes up a sufficient quantity to be suitable as the base substrate in a full-scale digester that is separated from the sludge digestion. The two types of SSOFMSW tested in the pilot-scale digestion were operated successfully at mesophilic temperature. By adding SSOFMSW, grease trap sludge and fruit and vegetables waste to sludge digesters at the wastewater treatment plant, the yearly energy production from methane could be expected to increase from 24 to 43 GWh.  相似文献   

18.
The main impact produced by landfills is represented by the release of leachate emissions. Waste washing treatment has been investigated to evaluate its efficiency in reducing the waste leaching fraction prior to landfilling. The results of laboratory-scale washing tests applied to several significant residues from integrated management of solid waste are presented in this study, specifically: non-recyclable plastics from source separation, mechanical-biological treated municipal solid waste and a special waste, automotive shredded residues. Results obtained demonstrate that washing treatment contributes towards combating the environmental impacts of raw wastes. Accordingly, a leachate production model was applied, leading to the consideration that the concentrations of chemical oxygen demand (COD) and total Kjeldahl nitrogen (TKN), parameters of fundamental importance in the characterization of landfill leachate, from a landfill containing washed wastes, are comparable to those that would only be reached between 90 and 220years later in the presence of raw wastes. The findings obtained demonstrated that washing of waste may represent an effective means of reducing the leachable fraction resulting in a consequent decrease in landfill emissions. Further studies on pilot scale are needed to assess the potential for full-scale application of this treatment.  相似文献   

19.
Investigating impacts of urban solid waste recycling on urban metabolism contributes to sustainable urban solid waste management and urban sustainability. Using a physical input-output model and scenario analysis, urban metabolism of Suzhou in 2015 is predicted and impacts of four categories of solid waste recycling on urban metabolism are illustrated: scrap tire recycling, food waste recycling, fly ash recycling and sludge recycling. Sludge recycling has positive effects on reducing all material flows. Thus, sludge recycling for biogas is regarded as an accepted method. Moreover, technical levels of scrap tire recycling and food waste recycling should be improved to produce positive effects on reducing more material flows. Fly ash recycling for cement production has negative effects on reducing all material flows except solid wastes. Thus, other fly ash utilization methods should be exploited. In addition, the utilization and treatment of secondary wastes from food waste recycling and sludge recycling should be concerned.  相似文献   

20.
The Bacillus subtilis rec-assay has been specially developed to detect genotoxicity in environmental water samples. The rationale of the B. subtilis rec-assay is based on the relative difference of survival of a DNA repair-recombination proficient strain and its deficient strain, which is interpreted as genotoxicity. This assay method can be very powerful in that it has higher sensitivity for the detection of mutagens in highly polluted waters than other bacterial mutation assays. Hydrophobic fractions from various environmental waters were fractionated by using XAD-2 resins and assayed, targeting the detection of organic genotoxic substances. Genotoxic response was detected in most of them, which revealed that many unknown micropollutants with genotoxicity occur in public water bodies. Positive response was also detected from a treated municipal solid waste (MSW) landfill leachate. Genotoxicity remaining in the treated effluent suggests that genotoxic micropollutants may pass through conventional water treatment processes such as activated sludge treatment process. Without proper control of waste quality and landfill facilities, waste landfill could be a heavy pollution source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号