首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

The microbial degradation of 14C-pyrene and 14C-benzo[a]pyrene by a bacterial mixed culture was studied within a mixture of the PAHs phenanthrene, anthracene, pyrene, fluoranthene, and benzo[a]pyrene as sole carbon source in the different culture systems: (i) liquid medium, (ii) soil slurry (surface and grinding influence), and (iii) soil. The fate of these two labeled compounds was followed in these systems with an emphasis on mineralization to carbon dioxide, extractability, and adsorption to humic materials and formation of unextractable residual. Mineralization showed the most obvious differences: soil slurries achieved the best results both concerning the extent of mineralization and the time required. The highest extent of pyrene mineralization (54% within 21 days) was observed in soil slurries; in liquid media, pyrene mineralization was slower, but reached approximately the same extent (54% in 150 days); in soils, mineralization reached only 36% of added pyrene after 160 days. Benzo[a]pyrene was mineralized in a mixture of PAHs in soil slurries to an extent of 34% within 70 days, whereas mineralization in liquid medium and soil occurred in the range of 5% (70 days). Mineralization of benzo[a]pyrene in sand slurries was lower compared to soil slurries (19% in sand slurries vs. 32% in soil slurries within 50 days).  相似文献   

2.
An innovative process that combines soil electrokinetic remediation and liquid electrochemical oxidation for the degradation of organic compounds present in a polluted soil was developed and evaluated by using benzo[a]pyrene spiked kaolin. In order to increase benzo[a]pyrene solubility during electrokinetic treatment, the addition of a co-solvent or surfactant, such as ethanol or Brij 35, as flushing solution was tested. The research carried out demonstrated the influence of the desorption agent employed on benzo[a]pyrene remediation from the kaolin matrix. Thus, if the flushing solution was ethanol at 40%, there was no presence of contaminant in either chamber. On the contrary, when a solution of surfactant Brij 35 was used, benzo[a]pyrene was transported towards the cathode chamber, where it was collected. Moreover, the extent of this recovery depends on the pH profile on the soil. When no pH control was used, around 17% of initial contaminant was detected in the cathode chamber; however, when pH control was applied, the recovery of benzo[a]pyrene could be higher than 76%, when the pH control in the anode chamber was set at 7.0.In order to obtain the total degradation of mobilised benzo[a]pyrene from the contaminated soil, the liquid collected by electrokinetic remediation was oxidised by electrochemical treatment. This oxidation was accomplished via an electrochemical cell with a working volume of 0.4 L, and graphite as electrode material. The benzo[a]pyrene was almost totally degraded in 1 d, reaching a degradation of about 73% in 16 h.  相似文献   

3.
The biodegradation of polycyclic aromatic hydrocarbons (PAHs) in aqueous deoxyribonucleic acid (DNA) solution from contaminated soil washing was investigated. Initial data with a model effluent consisting of anthracene, phenanthrene, pyrene and benzo[a]pyrene that were individually dissolved in 1% aqueous DNA solution confirmed their positive degradation by Sphingomonas sp. at around 10(8)CFU mL(-1) initial cell loading. For anthracene and phenanthrene, complete removal was achieved within 1h treatment. Degradation of pyrene and benzo[a]pyrene took a relatively longer time of a few days and weeks, respectively. DNA-dissolved PAHs were also degraded relatively faster than PAH crystals in aqueous medium to suggest that the binding of the PAHs in the polymer does not pose serious constraint to bacterial uptake. The DNA was stable against the PAH-degrading bacteria. Parallel experiments with actual DNA solutions obtained during pyrene extraction from an artificially spiked soil also showed similar results. Close to 100% pyrene degradation was achieved after 1d treatment. With its chemical stability, the cell-treated DNA was re-used up to four cycles without a considerable decline in extraction performance.  相似文献   

4.
BACKGROUND: A climate-controlled pot experiment was conducted to investigate the effects of planting alfalfa and applying organic fertilizer on the dissipation of benzo[a]pyrene from an aged contaminated agricultural soil. RESULTS: Short-term planting of alfalfa inhibited the dissipation of benzo[a]pyrene from the soil by 8.9%, and organic fertilizer enhanced benzo[a]pyrene removal from the soil by 11.6% compared with the unplanted and unfertilized treatments, respectively. No significant interaction was observed between alfalfa and organic fertilizer on benzo[a]pyrene dissipation. Sterilization completely inhibited the removal of benzo[a]pyrene from the soil indicating that its degradation by indigenous microorganisms may have been the main mechanism of dissipation. Furthermore, significant positive relationships were observed between benzo[a]pyrene removal and the contents of soil ammonium nitrogen, nitrate nitrogen, and total mineral nitrogen at the end of the experiment, suggesting that competition between plants and microorganisms for nitrogen may have inhibited benzo[a]pyrene dissipation in the rhizosphere of alfalfa and the addition of organic fertilizer may facilitate microbial degradation of benzo[a]pyrene in the soil.  相似文献   

5.
The bioaccumulation of two isomeric non-alternant non-priority polycyclic aromatic hydrocarbons (PAHs), namely cyclopenta[cd]pyrene and benzo[ghi]fluoranthene, was investigated in caged mussels (Mytilus galloprovincialis) exposed for 30 days in three sites of a coastal lagoon (Pialassa Baiona, Ravenna, Italy) contaminated by pyrogenic PAHs. The concentration of cyclopenta[cd]pyrene and benzo[ghi]fluoranthene increased from undetectable levels in reference mussels withdrawn from the Adriatic sea to 10-30 ng g(-1) dry weight in transplanted mussels. Other contaminants bioaccumulated by caged mussels included pyrene, fluoranthene and mercury. Whilst the isomer concentration ratio pyrene/fluoranthene in biota was comparable to that observed in sediments, the cyclopenta[cd]pyrene/benzo[ghi]fluoranthene ratio was much lower in mussels than in sediments. The lower sediment biota accumulation factor of cyclopenta[cd]pyrene with respect to that of benzo[ghi]fluoranthene was tentatively attributed to the greater biological activity of the former compound, which contains a reactive olefinic bond in the cyclopenta fused ring moiety. Given the higher mutagenic activity of cyclopenta[cd]pyrene with respect to other priority PAHs, its bioaccumulation from contaminated sediments may rise considerably the overall toxicity of PAH residues in exposed biota.  相似文献   

6.
Benzo[a]pyrene degradation by Sphingomonas yanoikuyae JAR02   总被引:1,自引:0,他引:1  
Batch experiments were conducted to characterize the degradation of benzo[a]pyrene, a representative high molecular weight (HMW) polycyclic aromatic hydrocarbon (PAH), by Sphingomonas yanoikuyae JAR02. Concentrations up to the solubility limit (1.2 microg l(-1)) of benzo[a]pyrene were completely removed from solution within 20 h when the bacterium was grown on salicylate. Additional experiments with [(14)C]7-benzo[a]pyrene demonstrated 3.8% mineralization over 7 days when salicylate was present is solution, and one major radio-labeled metabolite was observed that accounted for approximately 10% of the initial radio-label. Further characterization of the radio-labeled metabolite using HPLC/MS and HPLC/MS/MS identified radio-labeled pyrene-8-hydroxy-7-carboxylic acid and unlabeled pyrene-7-hydroxy-8-carboxylic acid as novel ring-cleavage metabolites, and a benzo[a]pyrene degradation pathway was proposed. Results indicate that biostimulation of HMW PAH degradation by salicylate, a water-soluble, non-toxic substrate, has significant potential for in situ bioremediation.  相似文献   

7.
Synchronous fluorescence spectroscopy (SFS) was directly applied to rapidly quantify selected polycyclic aromatic hydrocarbons (PAHs: benzo[a]pyrene and pyrene) in aqueous hydroxypropyl-beta-cyclodextrin (HPCD) soil extract solutions from a variety of aged contaminated soils containing four different PAHs. The method was optimized and validated. The results show that SFS can be used to analyse benzo[a]pyrene and pyrene in HPCD based soil extracts with high sensitivity and selectivity. The linear calibration ranges were 4.0x10(-6)-1.0x10(-3)mM for benzo[a]pyrene and 6.0x10(-6)-1.2x10(-3)mM for pyrene in 10mM HPCD aqueous solution alone. The detection limits according to the error propagation theory for benzo[a]pyrene and pyrene were 3.9x10(-6) and 5.4x10(-6)mM, respectively. A good agreement between SFS and HPLC was reached for both determinations of PAHs in HPCD alone and in soil HPCD extracts. Hence, SFS is a potential means to simplify the present non-exhaustive hydroxypropyl-beta-cyclodextrin (HPCD)-based extraction technique for the evaluation of PAH bioavailability in soil.  相似文献   

8.
The removal of phenanthrene, anthracene and benzo(a)pyrene added at three different concentrations was investigated with or without earthworms (Eisenia fetida) within 11 weeks. Average anthracene removal by the autochthonous micro-organisms was 23%, 77% for phenanthrene and 13% for benzo(a)pyrene, while it was 51% for anthracene, 47% for benzo(a)pyrene and 100% for phenanthrene in soil with earthworms. At 50 and 100mg phenanthrene kg(-1)E. fetida survival was 91% and 83%, but at 150 mg kg(-1) all died within 15 days. Survival of E. fetida in soil amended with anthracene < or = 1000 mg kg(-1) and benzo(a)pyrene < or = 150 mg kg(-1) was higher than 80% and without weight loss compared to the untreated soil. Only small amounts of PAHs were detected in the earthworms. It was concluded that E. fetida has the potential to remove large amounts of PAHs from soil, but more work is necessary to elucidate the mechanisms involved.  相似文献   

9.
The biotransformation and mineralization of a mixture of two polycyclic aromatic hydrocarbons (PAHs), anthracene and pyrene, which are known contaminants of soil and groundwater, by an enrichment culture in the presence or absence of 100 mg l(-1) Tergitol NP-10, a non-ionic surfactant, and at temperatures of 10 degrees C and 25 degrees C were investigated. The overall biotransformation of 2 mg l(-1) total PAHs with free cell suspensions in batch culture was greater than 97.2% at both examined temperatures. At 25 degrees C, the overall mineralization of anthracene was 48.8% and that of pyrene was 66.1%. However, the decrease of temperature to 10 degrees C had a negative effect on the mineralization of PAHs and reduced it to 18.5% and 61.5% for anthracene and pyrene, respectively. Using a higher PAHs concentration of 20 mg l(-1) at 25 degrees C, the overall biotransformation of anthracene was 80.7% and that of pyrene was 100%, where only 17.3% anthracene and 7.6% pyrene were mineralized to carbon dioxide and water. The addition of surfactant at 25 degrees C increased the overall mineralization of anthracene and pyrene to 33.0% and 27.6%, respectively. However, the addition of surfactant at 10 degrees C had a negative impact on the overall biotransformation of anthracene and pyrene, reducing them to 20.6% and 14.0%, respectively. These results have significant implications in the bioremediation of PAHs-contaminated sites.  相似文献   

10.
The fate of spiked anthracene, pyrene and benzo[a]pyrene in soil with or without sewage sludge compost was assessed during a 6-month bioremediation process simulating landfarming. Bioassays and physico-chemical analyses were employed to monitor toxicity change in soil samples and elutriates through ten sampling campaigns. Pearson product-moment correlation coefficient was determined to measure the strength of relationship between bioassays and physico-chemical analyses. The PAH dissipation in soil was enhanced after the first water addition, and the remaining amounts at the end of the experiment were positively correlated to the number of benzene rings and the presence of sewage sludge compost. Toxicity of soil elutriates to Daphnia magna was evident at early stages, originating exclusively from sewage sludge compost amendment. The lettuce root elongation was continuously inhibited by elutriates for all the treatments including control soil, probably due to high salinity or to unaddressed leachable phytotoxic compounds that were present in the experimental soil. The newly developed direct solid-phase chronic toxicity test using ostracod (Heterocypris incongruens) succeeded in evaluating the soil-bound PAH toxicity, as PAHs could not be detected in elutriates.  相似文献   

11.
The biodegradation of polycyclic aromatic hydrocarbons in microecosystems containing long-term contaminated soil was investigated. Soil was contaminated by different chemicals, including PAHs since World War II. Aging of the soil was expected to act as a principal factor limiting biodegradation. Half of the microecosystems contained ryegrass (Lolium perenne) and long-term selected natural soil microflora originally present in contaminated soil. The others contained contaminated soil with natural microflora only. Half of the microecosystems in each parallel experiment was fertilised with N-P-K fertiliser. Cultivation was carried out at 12 and 18 months in a greenhouse with a natural photoperiod and the ability to degrade 15 chosen PAH was investigated. For analysis, the soil from each pot was divided into three horizontal layers for mutual comparison among layers and each layer was further divided into four equal samples. Soil extracts were analysed using HPLC. After a one-year-cultivation period the content of the monitored PAHs declined to 50%. Mostly, there were no significant differences between the microecosystems. Best degraded were fluoranthene and pyrene, which were the major contaminants present in original soil. Also, other compounds were successfully degraded, even benzo[a]pyrene and benzo[ghi]perylene. Dibenz[a,h]anthracene and indeno[1,2,3-cd]pyrene were the only PAHs, examined that showed no significant degradation. Although some differences between the soil layers were detected, no conclusive trends could be found. However, significantly lower concentrations of PAHs were determined mostly in the bottom layer of the analysed profiles. In vegetated microecosystems the decline of PAHs concentrations was more remarkable after 18 months cultivation.  相似文献   

12.
Shen G  Lu Y  Zhou Q  Hong J 《Chemosphere》2005,61(8):1175-1182
Actions and interactions of heavy metals (cadmium, zinc and plumbum) and polycyclic aromatic hydrocarbons (PAHs) [phenanthrene, fluoranthene, benzo(a)pyrene] on the soil urease and dehydrogenase activity were studied after 49 days exposure. The experimental approach was based on the uniform design which can cut the experiment time and improve the efficiency of experiments. Data treatment was essentially based on the multiple regression technique. The results showed that the action and interaction between heavy metals and PAHs were strongly dependent on the time of pollution. The dehydrogenase exhibits more sensitive to the combined pollution than urease. The negative interaction between Zn and Cd to hydrogenase activity and the combined stimulatory activity of Phenanthrene and Benzo(a)pyrene (or fluoranthene) to soil enzyme were observed. The interactions between Zn (Cd) and phenanthrene towards urease (dehydrogenase) were positive, and the interaction between Zn and benzo(a)pyrene to urease activity was negative. This study corresponds to exploratory phase in order to reveal interaction effects of heavy metals and PAHs on the soil enzyme and then to set up more in-depth analysis to increase progressively the understanding of the ecotoxicological mechanisms involved.  相似文献   

13.
Surface soil (0-20 cm) samples from nine representative vegetable fields located in Guangzhou, Shenzhen, Zengcheng and Huadu within the Pearl River Delta, South China were collected and analyzed for 16 USEPA priority polycyclic aromatic hydrocarbons (PAHs) using gas chromatography coupled to mass spectrometry (GC-MS). Total concentrations of 16 PAHs (Sigma(PAHs)) ranged from 160 to 3700 microg kg(-1). Large variations were observed also between concentrations of individual PAHs from different vegetable fields and within the site as well. Acenapthylene, benzo[b]fluoranthene, fluoranthene, benzo[a]pyrene and benzo[k]fluoranthene were consistently the most prevalent individual PAHs. The values of PAH isomer ratios [anthracene/(anthracene+phenanthrene) and fluoranthene/(fluoranthene+pyrene)] indicate that combustion processes are the major sources of PAHs. Concentrations of PAHs were poorly correlated with organic carbon concentrations of soils, suggesting different sources and also indicating that the PAH pollution of this area is recent. The same outcome is confirmed by the predominance of PAHs with fewer rings (相似文献   

14.
先利用C-18固相萃取小柱富集大港油田港东联合处理站污水处理站的采油废水中16种多环芳烃(PAHs,即萘、苊烯、苊、芴、菲、蒽、荧蒽、芘、、苯并[a]蒽、苯并[b]荧蒽、苯并[k]荧蒽、苯并[a]芘、茚并[1,2,3-cd]芘、二苯并[a,h]蒽和苯并[g,h,i]苝),再用气相色谱/质谱(GC/MS)分析测定其浓度,以评价PAHs的去除率和生态风险。结果表明:(1)采油废水经处理后,COD、石油类去除率分别达到82.27%、91.06%;外排水COD、石油类达到《污水综合排放标准》(GB 8978—1996)一级标准要求,优于中国采油废水处理的一般水平。(2)采油废水主要以2、3环的PAHs为主,约占总量的93%以上。(3)苯并[a]芘超过《地表水环境质量标准》(GB 3838—2002)中限值。(4)处理前的采油废水中蒽、菲和苯并[a]芘具有一定的生态风险;处理后的外排水中萘、蒽、菲、荧蒽、苯并[a]芘的暴露浓度(PEC)/预测无效应浓度(PNEC)均小于1,目前尚未对环境造成威胁。但是8种PAHs(苊烯和苯并类PAHs除外)总和表现出较大的毒性,需要引起重视。  相似文献   

15.
Benzo[a]pyrene, a high molecular weight (HMW) polycyclic aromatic hydrocarbon (PAH) was removed from solution by Sphingomonas yanoikuyae JAR02 while growing on root products as a primary carbon and energy source. Plant root extracts of osage orange (Maclura pomifera), hybrid willow (Salix albaxmatsudana), or kou (Cordia subcordata), or plant root exudates of white mulberry (Morus alba) supported 15-20% benzo[a]pyrene removal over 24 h that was similar to a succinate grown culture and an unfed acetonitrile control. No differences were observed between the different root products tested. Mineralization of (14)C-7-benzo[a]pyrene by S. yanoikuyae JAR02 yielded 0.2 to 0.3% (14)CO(2) when grown with plant root products. Collectively, these observations were consistent with field observations of enhanced phytoremediation of HMW PAH and corroborated the hypothesis that co-metabolism may be a plant/microbe interaction important to rhizoremediation. However, degradation and mineralization was much less for root product-exposed cultures than salicylate-induced cultures, and suggested the rhizosphere may not be an optimal environment for HMW PAH degradation by Sphingomonas yanoikuyae JAR02.  相似文献   

16.
Polycyclic aromatic hydrocarbons (PAHs) and dioxins are lipophilic organic pollutants occurring widely in the terrestrial environment. In order to study the PAHs and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) transfer in the food chain, pigs have been fed with milk mixed either with 14C-phenanthrene, with 14C-benzo[a]pyrene or with 14C-TCDD. The analysis of portal and arterial blood radioactivity showed that both PAHs and TCDD were absorbed with a maximum concentration at 4-6 h after milk ingestion. Then, the blood radioactivity decreased to reach background levels 24 h after milk ingestion. Furthermore, the portal and arterial blood radioactivities were higher for phenanthrene (even if the injected load was the lowest) than these of benzo[a]pyrene or these of TCDD, in agreement with their lipophilicity and water solubility difference. Main 14C absorption occurred during the 1-3 h time period after ingestion for 14C-phenanthrene and during the 3-6 h time period for 14C-benzo[a]pyrene and for 14C-TCDD. 14C portal absorption rate was high for 14C-phenanthrene (95%), it was close to 33% for 14C-benzo[a]pyrene and very low for 14C-TCDD (9%). These results indicate that the three studied molecules have a quite different behaviour during digestion and absorption. Phenanthrene is greatly absorbed and its absorption occurs via the blood system, whereas benzo[a]pyrene and TCDD are partly and weakly absorbed respectively. However these two molecules are mainly absorbed via the portal vein.  相似文献   

17.
Flotron V  Delteil C  Padellec Y  Camel V 《Chemosphere》2005,59(10):1427-1437
The use of the Fenton's reagent process has been investigated for the remediation of environmental matrices contaminated by polycyclic aromatic hydrocarbons (PAHs). Laboratory experiments were first conducted in aqueous solutions, to study the kinetics of oxidation and adsorption of PAHs. Benzo[a]pyrene was more rapidly degraded than adsorbed, while only partial oxidation of fluoranthene occurred. In the case of benzo[b]fluoranthene, its adsorption prevented its oxidation. Besides competition effects between PAHs were found, with slower oxidation of mixtures as compared to single PAH solutions. Apparition of some by-products was observed, and a di-hydroxylated derivative of benzo[a]pyrene could be identified under our conditions. Consequently, application to solid environmental matrices (soil, sludge and sediment samples) was performed using large amounts of reagents. The efficiency of the Fenton treatment was dependent on the matrix characteristics (such as its organic carbon content) and the PAH availability (correlated to the date and level of contamination). However, no pH adjustment was required, as well as no iron addition due to the presence of iron oxides in the solid matrices, suggesting the potential application of Fenton-like treatment for the remediation of PAH-contaminated environmental solids.  相似文献   

18.
The dissipation of three PAHs, i.e., 500 mg phenanthrene kg(-1) soil, 350 mg anthracene kg(-1) soil and 150 mg benzo(a)pyrene kg(-1) soil, was investigated in soil from Acolman (México) added with cow manure or vermicompost while production of CO(2) and inorganic N was monitored. At day 0, recovery of added phenanthrene was 95%, anthracene 96% and benzo(a)pyrene 100% in sterilized soil and concentrations did not change significantly in sterilized soil over time. Application of organic material did not affect the concentration of phenanthrene and anthracene, which decreased sharply in the unsterilized soil in the first weeks of the incubation. Less than 3% of the added phenanthrene was detected after 100 days and less than 8.5% of the added anthracene (mean of the two experiments). The decrease in concentration of benzo(a)pyrene (BaP) was not fast as that of phenathrene and anthracene, and 22% was extractable from soil still after 100days. It was concluded that addition of farm yard manure (FYM) and vermicompost only had an effect on the initial dissipation of phenanthrene, anthracene and benzo(a)pyrene in soil of Acolman.  相似文献   

19.
Russo L  Rizzo L  Belgiorno V 《Chemosphere》2012,87(6):595-601
The combination of ozonation and spent mushroom compost (SMC)-mediated aerobic biological treatment was investigated in the removal of benzo(a)pyrene from contaminated soil. The performances of the process alone and combined were evaluated in terms of benzo(a)pyrene removal efficiency, mineralization efficiency (as total organic carbon removal), and soil residual toxicity (phytotoxicity to Lepidium Sativum and toxicity to Vibrio fischeri). In spite of the removal efficiency (35%) obtained by SMC-mediated biological process as a stand-alone treatment, the combined process showed a benzo(a)pyrene concentration reduction higher than 75%; the best removal (82%) was observed after 10 min pre-ozonation treatment. In particular, ozonation improved the biodegradability of the contaminant, as confirmed by the increase of CO(2) production (close to 70% compared to the control), mineralization (greater than 60%) and bacterial density (which increased by two orders of magnitude). Moreover, according to phytotoxicity tests on L. Sativum, the aerobic biological process of pre-ozonated soil decreased toxicity. According to the results achieved in the present study, ozonation pre-treatment showed an high potential to overcome the limitation of bioremediation of recalcitrant compound, but it should be carefully operated in order to maximize PAH removal efficiency as well as to minimize soil residual toxicity which can result from the formation of the oxidation intermediates.  相似文献   

20.
In this study a column leaching method for investigation of hydrophobic organic contaminants (HOCs) leaching from soil was developed. The method set-up is based on a recycled flow of sterile water through a soil column with a sedimentation chamber mounted on top of the column, in connection with on-line filtration. The combination of a sedimentation chamber and an on-line filtration enables the measurement of leaching concentrations from contaminated materials consisting of very fine particle fractions. In addition, by using on-line solid phase extraction, minute amounts of leaching HOCs may be captured and quantified with high accuracy and reproducibility. The method was applied successfully on a contaminated aged soil sample and the leaching behavior of seven PAHs, with three to six aromatic rings, was monitored for more than 1600 h under saturated conditions. The tested PAHs were fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)pyrene and benzo(ghi)perylene. The method proved to be reliable and capable of providing data on leachable amounts of the PAHs under field-like conditions and over a longer period of time. The results indicated low availability of the studied contaminants since only a minor fraction (0.3%) of the initial amount of PAHs in the soil was removed during the experiment (liquid/solid-ratio of 700 l/kg). Thus PAHs in aged contaminated soil are not to be expected to be released to any great extent only by leaching with water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号