首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Environmental concerns result in a progressive withdrawal of antifouling paints containing organotin derivatives. The nature of the binders is critical with regard to the erosion of the protecting film through factors such as bond cleavage, dissolution, and diffusion of the degradation products. The versatility of acrylic polymers, due to the possibility of varying their chemical structure had conducted, in the first stage, to combine different types of repeating units in the macromolecular backbone. Formulation and evaluation, in natural sites, of these binders, with a well-defined hydrophobic/hydrophilic balance and with hydrolyzable pendant groups, have shown the possibility to prepare new organotin free resins which can be formulated and which are erodible in seawater over a long period (more than 2 years). A further step has been engaged with the development of graft copolymers containing biocompatible and hydrolyzable oligomers of -hydroxyacids. Their preparation requires the synthesis of -methacryloyloxyoligo--hydroxyacid macromonomers. Copolymers prepared from a mixture of the macromonomer and of an alkyl ester of acrylic acid were formulated with a biocide and deposited on a plate. Their ability to release cuprous oxide, as a model molecule, has been checked and quantified by the inductively coupled plasma analytical method. The uptake of water in the paint, which is enhanced by the hydrolysis of -hydroxyacid oligomers, as determined by the enzymatic measurement of liberated L-lactic acid, conducts to the polymer erosion and to a protecting bioactive surface.  相似文献   

2.
The degradability of several degradable polymers was examined using three types of degradation environments. These include exposure in a laboratory-scale composting test system containing material representative of the organic fraction of municipal solid waste (MSW), exposure in a thermal hydrolytic environment consisting of water at 60‡C, and exposure in a thermal-oxidative, dry oven environment of 60‡C. The results of the investigation clearly indicate that, in addition to chemical and biological activity which can lead to polymer degradation, physical restructuring and reorganization of the macromolecular structure may also occur at temperatures typically found in a compost environment, resulting in changes in the mechanical properties of the polymer films. In the case of the polyethylene-modified polymers evaluated in this study, all behaved similarly, but differently from the other polymer types. The polyethylene-based films appeared to be susceptible to oxidative degradation and should degrade in a composting environment providing that there is sufficient air in contact with the film for a sufficient period of time. However, when exposed in a laboratory composter, it appears that although ideal temperature-time curves may be obtained, the test time period was insufficient in comparison to the induction period required to achieve the desired thermal oxidative degradation. Issued as NRCC No. 37620.  相似文献   

3.
The objective of this study was to investigate the properties of poly(vinyl alcohol)/chitosan nanocomposite films reinforced with different concentration of amorphous LCNFs. The properties analyzed were morphological, physical, chemical, thermal, biological, and mechanical characteristics. Oil palm empty fruit bunch LCNFs obtained from multi-mechanical stages were more dominated by amorphous region than crystalline part. Varied film thickness, swelling degree, and transparency of PVA/chitosan nanocomposite films reinforced with amorphous part were produced. Aggregated LCNFs, which reinforced PVA/chitosan polymer blends, resulted in irregular, rough, and uneven external surfaces as well as protrusions. Based on XRD analysis, there were two or three imperative peaks that indicated the presence of crystalline states. The increase in LCNFs concentration above 0.5% to PVA/chitosan polymer blends led to the decrease in crystallinity index of the films. A noticeable alteration of FTIR spectra, which included wavenumber and intensity, was obviously observed along with the inclusion of amorphous LCNFs. That indicated that a good miscibility between amorphous LCNFs and PVA/chitosan polymer blend generated chemical interaction of those polymers during physical blending. Reinforcement of PVA/chitosan polymer blends with amorphous LCNFs influenced the changes of Tg (glass transition temperature), Tm (melting point temperature), and Tmax (maximum degradation temperature). Three thermal phases of PVA/chitosan/LCNFs nanocomposite films were also observed, including absorbed moisture evaporation, PVA and chitosan polymer backbone structural degradation and LCNFs pyrolysis, and by-products degradation of these polymers. The addition of LCNFs 0.5% had the highest tensile strength and the addition of LCNFs above 0.5% decreased the strength. The incorporation of OPEFB LCNFs did not show anti-microbial and anti-fungal properties of the films. The addition of amorphous LCNFs 0.5% into PVA/chitosan polymer blends resulted in regular and smooth external surfaces, enhanced tensile strength, increased crystallinity index, and enhanced thermal stability of the films.  相似文献   

4.
Mesua ferrea L. seed oil (MFLSO) modified polyurethanes blends with epoxy and melamine formaldehyde (MF) resins have been studied for biodegradation with two techniques, namely microbial degradation (broth culture technique) and natural soil burial degradation. In the former technique, rate of increase in bacterial growth in polymer matrix was monitored for 12 days via a visible spectrophotometer at the wavelength of 600 nm using McFarland turbidity as the standard. The soil burial method was performed using three different soils under ambient conditions over a period of 6 months to correlate with natural degradation. Microorganism attack after the soil burial biodegradation of 180 days was realized by the measurement of loss of weight and mechanical properties. Biodegradation of the films was also evidenced by SEM, TGA and FTIR spectroscopic studies. The loss in intensity of the bands at ca. 1735 cm−1 and ca. 1050 cm−1 for ester linkages indicates biodegradation of the blends through degradation of ester group. Both microbial and soil burial studies showed polyurethane/epoxy blends to be more biodegradable than polyurethane/MF blends. Further almost one step degradation in TG analysis suggests degradation for both the blends to occur by breakage of ester links. The biodegradation of the blends were further confirmed by SEM analyses. The study reveals that the modified MFLSO based polyurethane blends deserve the potential to be applicable as “green binders” for polymer composite and surface coating applications.  相似文献   

5.
In this study, the hydrolytic degradation of Poly(lactic acid) (PLA) and acetylated PLA (PLA-Ac)–clay nanocomposites were investigated. The organo clay was obtained by ion exchange reaction using cetyl tri methyl ammonium bromide (CTAB). Nanocomposites containing 2, 5 and 8% mass ratio of organo clay (CTAB-O) were prepared. PLA and its organo clay nanocomposites were characterized by scanning electron microscope (SEM), thermo gravimetric analysis (TGA) and X-ray diffraction (XRD) to determine the morphology before and after hydrolytic degradation. Fourier transform infrared (FTIR) analyses of PLA and PLA-Ac were also obtained. The hydrolytic degradation of polymers and their composites were investigated in the phosphate buffered saline solution (PBS). The results showed that controlled hydrolytic degradation was observed in the samples with end group modification of PLA. While weight loss of PLA films was 28%, that of PLA-Ac films was 18% after 60 days degradation time. The weight loss was obtained as 29.5 and 25.5% for PLA-5 wt% organo clay (PLA/5CTAB-O) and PLA-Ac-5 wt% organo clay (PLA-Ac/5CTAB-O) nanocomposites films, respectively. It was also observed that thermal degradation of PLA-Ac was much more than that of PLA. Hydrolytic degradation increased depending on organo clay content. The end group modificated PLA results in controlled hydrolytic degradation. While hydrolytic degradation in polymer films occurred as surface erosion, bulk erosion was observed in composite films.  相似文献   

6.
The present investigation was undertaken to characterize the biodegradation pattern of chemically modified starch films. Chemically modified starch films obtained by esterification of the hydroxyl groups of the polysaccharide have shown lower water sorption than native starch films, being therefore more attractive for a number of processing applications. However, no systematic study characterizing their biodegradation behavior and comparing it with the degradation pattern of native starch films has still been published. In the current contribution we characterized the enzymatic degradation pattern of three derivatized starch films by use of a commercial α-amylase from Bacillus licheniformis. Optimum degradation conditions were chosen upon assaying the effect of enzyme load and temperature on the reaction course of native starch films. Under the conditions selected, comparison of different derivatization procedures revealed that the starch film modified with octanoyl chloride was enzymatically hydrolyzed at a much higher rate than native starch film. Maleated starch films also showed higher susceptibility to α-amylolytic hydrolysis than native starch, whereas acetylated starch showed a hydrolysis pattern similar to that of native starch. Differences in degradation rates of chemically modified films were explained in terms of their amylose content which promotes dense networks that hinder the access of starch-degrading enzymes.  相似文献   

7.
Degradation of Cellulose Acetate-Based Materials: A Review   总被引:1,自引:0,他引:1  
Cellulose acetate polymer is used to make a variety of consumer products including textiles, plastic films, and cigarette filters. A review of degradation mechanisms, and the possible approaches to diminish the environmental persistence of these materials, will clarify the current and potential degradation rates of these products after disposal. Various studies have been conducted on the biodegradability of cellulose acetate, but no review has been compiled which includes biological, chemical, and photo chemical degradation mechanisms. Cellulose acetate is prepared by acetylating cellulose, the most abundant natural polymer. Cellulose is readily biodegraded by organisms that utilize cellulase enzymes, but due to the additional acetyl groups cellulose acetate requires the presence of esterases for the first step in biodegradation. Once partial deacetylation has been accomplished either by enzymes, or by partial chemical hydrolysis, the polymer’s cellulose backbone is readily biodegraded. Cellulose acetate is photo chemically degraded by UV wavelengths shorter than 280 nm, but has limited photo degradability in sunlight due to the lack of chromophores for absorbing ultraviolet light. Photo degradability can be significantly enhanced by the addition of titanium dioxide, which is used as a whitening agent in many consumer products. Photo degradation with TiO2 causes surface pitting, thus increasing a material’s surface area which enhances biodegradation. The combination of both photo and biodegradation allows a synergy that enhances the overall degradation rate. The physical design of a consumer product can also facilitate enhanced degradation rate, since rates are highly influenced by the exposure to environmental conditions. The patent literature contains an abundance of ideas for designing consumer products that are less persistent in the outdoors environment, and this review will include insights into enhanced degradability designs.  相似文献   

8.

Polylactic acid (PLA) and thermoplastic starch (TPS) are biodegradable polymers of biological origin, and the mixture of these polymers has been studied due to the desirable mechanical properties of PLA and the low processing cost of TPS. However, the TPS/PLA combination is thermodynamically immiscible due to the poor interfacial interaction between the hydrophilic starch granules and the hydrophobic PLA. To overcome these limitations, researchers studied the modification, processing, and properties of the mixtures as a strategy to increase the compatibility between phases. This review highlights recent developments, current results, and trends in the field of TPS/PLA-based compounds during the last two decades, with the main focus of improving the adhesion between the two components. The TPS/PLA blends were classified as plasticized, compatible, reinforced and with nanocomposites. This article presents, based on published research, TPS/PLA combinations, considering different methods with significant improvements in mechanical properties, with promising developments for applications in food packaging and biomedicine.

  相似文献   

9.
As the polymer industry evolved, considerable effort was made to understand the degradation processes of high polymers during weathering and ways were found to inhibit or at least retard their chemical modification and loss of their physical and mechanical properties. Weathering is particularly severe for polymers because it combines the photophysical and photochemical effects of ultraviolet radiation with oxidative and hydrolytic effects of the outdoor environment. This article discusses photo-oxidation degradation (the behavior of polymers as a result of outdoor factors) and mainly concentrates on the photo-oxidative degradation of polyolefins and poly(vinyl) chloride. Polymer photostabilization with ultraviolet screeners, quenchers, hydroperoxide decomposers, and radical scavengers is also described.  相似文献   

10.
The biodegradability (mineralization to carbon dioxide) of acrylic acid oligomers and polymers was studied in activated sludge obtained from continuous-flow activated sludge (CAS) systems exposed to mixtures of low molecular weight (Mw < 8000) poly(acrylic acid)s and other watesoluble polymers [poly(ethylene glycol)s] in influent wastewater. Dilute preparations of activated sludge from the CAS units were tested for their ability to mineralize acrylic acid monomer and dimer, as well as a series of model acrylic acid oligomers and polymers (Mw 500, 700, 1000, 2000, and 4500), as sole carbon and energy sources. Complete mineralization of acrylic acid monomer and dimer was observed in low-biomass sludge preparations previously exposed to the polymer mixture, based on carbon dioxide production and residual dissolved organic carbon analyses. Extensive (though incomplete) degradation was also observed for the low molecular weight acrylic acid oligomers (Mw 500 and 700), but degradation dropped off sharply for the 1000, 2000, and 4500 Mw polymers. Radiochemical (14C) data also confirmed the low degradation potential of the 1000, 2000, and 4500 Mw materials. Degradation of two commercial poly(ethylene glycol)s at 1000 and 3400 Mw was complete and comparable to that of the acrylic acid monomer and dimer. Our results indicate that mixed populations of activated sludge microorganisms can extensively metabolize acrylic acid oligomers of seven units or less. Complete mineralization, however, could be confirmed only for the monomer and dimer material, and carbon mass balance data suggested that the true molecular weight cutoff for complete biodegradation was significantly less than the 500–700 Mw range tested.  相似文献   

11.
Polylactic acid (PLA) is a hydrolytically degradable aliphatic polyester, and water vapor permeability may have a significant influence on the rate of degradation. A method is devised to use bags prepared from PLA films and filled with molecular sieves to determine the water vapor permeability in the polymer, its copolymers with caprolactone, and blends with polyethylene glycol. The “solution-diffusion” model is used to determine the permeability parameters. These include the solubility coefficient,S, a measure of the equilibrium water concentration available for hydrolysis and the diffusion coefficient,D, which characterizes the rate of water vapor diffusion into the film under specific conditions. Values ofS andD at 50‡C and 90% relative humidity ranged from 400 × 10-6 to 1000 × 10-6 cm3 (STP)/(cm3 Pa) and 0.20 × 10-6 to 1.0 × 10-6 cm2/s, respectively. TheS andD coefficients were also measured at 20 and 40‡C and compared to those of other polymers. The degree of crystallinity was found to have little influence on the measured permeability parameters. The heat of sorption, δHS, and the activation energy of diffusion, ED, were used to show that the permeability process is best described by the “water cluster” model for hydrophobic polymers. Finally, the diffusion coefficient is used to compare the rate of water diffusion to the rate of water consumption by ester hydrolysis. Results indicate that hydrolytic degradation of PLA is reaction-controlled.  相似文献   

12.
Natural cellulosic fibers are one of the smartest materials for use as reinforcement in polymers possessing a number of applications. Keeping in mind the immense advantages of the natural fibers, in present work synthesis of natural cellulosic fibers reinforced polymer composites through compression molding technique have been reported. Scanning Electron microscopy (SEM), Thermo gravimetric/Differential thermal/Derivative Thermogravimetry (TGA/DTA/DTG), absorption in different solvents, moisture absorbance, water uptake and chemical resistance measurements were used as characterization techniques for evaluating the different behaviour of cellulosic natural fibers reinforced polymer composites. Effect of fiber loading on mechanical properties like tensile strength, flexural strength, compressive strength and wear resistances has also been determined. Reinforcing of the polymer matrix with natural fibers was done in the form of short fiber. Present work indicates that green composites can be successfully fabricated with useful mechanical properties. These composites may be used in secondary structural applications in automotive, housing etc.  相似文献   

13.
Here, the influence of graphene as a coating on the biodegradation process for two different polymers is investigated, poly(butylene adipate-co-terephthalate) (PBAT) (biodegradable) and low-density polyethylene (LDPE) (non-biodegradable). Chemical vapor deposition graphene was transferred to the surface of two types of polymers using the Direct Dry Transfer technique. Polymer films, coated and uncoated with graphene, were buried in a maturated soil for up to 180 days. The films were analyzed before and after exposure to microorganisms in order to obtain information about the integrity of the graphene (Raman Spectroscopy), the biodegradation mechanism of the polymer (molecular weight and loss of weight), and surface changes of the films (atomic force microscopy and contact angle). The results prove that the graphene coating acted as a material to control the biodegradation process the PBAT underwent, while the LDPE covered by graphene only had changes in the surface properties of the film due to the accumulation of solid particles. Polymer films coated with graphene may allow the production of a material that can control the microbiological degradation, opening new possibilities in biodegradable polymer packaging. Regarding the possibility of graphene functionalization, the coating can also be selective for specific microorganisms attached to the surface.  相似文献   

14.
Currently, cellulose microfibrils are being investigated as nanofillers for polymers to increase their biodegradability. However, until now there has been no report on their degradability by microorganisms. In this work the anaerobic degradation of cellulose microfibril films extracted from banana and plantain plant rachis residues has been studied. Samples were exposed to burial tests in nature compost during 14?days. Changes due to the degradation process were investigated by techniques as optical microscopy, tensile tests, viscosity measurements, ATR-FTIR spectroscopy, X-ray diffraction and thermogravimetric analysis. Biodegradability was higher for cellulose microfibril films extracted from banana (BCMF) than plantain films (PCMF). Growth of microorganism colonies on BCMF films and just yellowing on PCMF films was observed by microscopic analysis. New bands characteristic of aldehyde functional groups due to the breaking of ??-(1,4)-glycosidic bonds were observed in infrared spectra. This breakage was also responsible for the fall-down of mechanical properties and polymerization degree. X-ray diffraction and thermogravimetric analysis showed that BCMF films were at the first stage of degradation for the used burial test times because the microorganisms only attacked the amorphous cellulose leading to a slight increase in crystallinity. In the case of PCMF films this variation remained practically invariant.  相似文献   

15.
The chemical modification of Acrylamidomethyl Cellulose Acetate Propionate (AMCAP) was carried out by radical addition of acrylic acid. The structural modification was confirmed with the aid of FTIR, MS and NMR techniques. Thermal properties of hydrophilic cellulose derivative (AMCAP–H2O2) such as glass transition (Tg 153 °C) and thermal stability (372.7 °C) were determined by DSC and TGA techniques, respectively. These thermal properties confirmed the introduction of carboxylic groups into AMCAP structure, which causes an impact in their properties. The AMCAP–H2O2 shows minor contact angle compared to AMCAP, giving a more hydrophilic characteristic, due to acrylic acid addition into the side chains of AMCAP polymer.  相似文献   

16.
Water-soluble synthetic polymers are extensively used in cosmetics, detergents and paints. Many end up in wastewater and, later on, in wastewater-treatment plants. In order to gain an insight into their fate in such plants, fluorescence and radioactivity labelings were compared using a lab-scale reactor designed to mimic industrial conditions. Two fermentation media were considered, namely a mixture of E402 and E204 micro-organisms and an activated sludge collected from a water-treatment plant located in the south of France. A sample of low molar mass commercial poly(acrylic acid) (PAA) was labeled by radioactivity with tritium and by coupling the 6-aminofluorescein fluorescent dye. Labeled PAA-containing sludges were allowed to ferment. To monitor the fate of the polymers, aliquots of the fermented mixtures were withdrawn at selected times and centrifuged. Liquid and solid phases were analyzed by scintigraphy or UV spectrometry, depending of the labeling techniques. Both techniques led to similar distributions, c.a. 75% in the supernatant and 25% in the solid phase. Distributions remained constant during the biological tests. There was no degradation of the commercial PAA after aqueous size exclusion chromatography (SEC), in agreement with literature. These features showed that fluorescence-labeling can be used instead of the complex and expensive radiolabeling. The validated fluorescence-based method was then applied to a linear poly(acrylic acid) synthesized by ATRP and labeled with 6-aminofluorescein. There was no significant difference between the commercial and the linear poly(acrylic acid)s. In contrast, a linear PAA with 5% of tert-butyl ester repeating units was predominantly found in the solid phase although adsorption or absorption by micro-organisms could not be demonstrated. The method based on fluorescence labeling should be applicable to other water soluble polymers provided that the dye remains attached to the polymer as it was the case for the studied poly(acrylic acid)s.  相似文献   

17.
Many polymers such as polyolefins (polyethylene, polypropylene), poly(vinyl chloride), aliphatic polyamides, poly(ethylene terephthalate), polycarbonate, and others are used as protective barrier films against the mass transport of small molecules of gases, vapors, and liquids (known as diffusates, permeants) in different applications. The barrier properties depend on the polymer characteristics such as solubility, diffusion, permeability, and others, the nature of the fluid, temperature, and other factors. Mainly polymer barrier film application in packaging, construction, and agriculture are discussed.  相似文献   

18.
To develop an environmentally degradable polymer material, a masterbatch pro-oxidant system was blended into low-density polyethylene. The polymer film samples were prepared by compression molding. The prepared films were placed under the natural environment of Tehran for weathering studies and accelerated conditions were also performed for UV aging in UV chamber. At different time intervals, the changes in chemical structure of photosensitized polyethylene samples were studied by FTIR and compared to that of the control polyethylene films. Also the mechanical properties of photosensitized polyethylene films were determined in comparison with the control films by measuring the tensile strength and elongation at break after exposure to the natural environment and UV radiation. Results showed that the overall rate of degradation process is clearly dependent on the polyethylene composition, test conditions (natural or accelerated), season of the year, and the duration of the weathering of the samples.  相似文献   

19.
Soybean Oil-Based Photo-Crosslinked Polymer Networks   总被引:1,自引:0,他引:1  
Novel soybean oil-based crosslinked polymer networks were prepared by UV photopolymerization and their mechanical properties were evaluated. Poly(ethylene glycol) diacrylate (PEGDA) and biodegradable poly(ε-caprolactone) diacrylate (PCLDA) were synthesized and used as crosslinking agent to form crosslinked polymer networks by UV-initiated free-radical polymerization with acrylated epoxidized soybean oil (AESO). The synthesis of acrylate end-capped macromers was confirmed using FT-IR and 1H NMR spectroscopic techniques. Photopolymerization time, the composition of reaction mixture, and the type and length of crosslinking agent were changed to obtain crosslinked polymer networks with various mechanical properties. Polymers prepared from AESO and PCL degraded 6% of the initial weight in 24 days in phosphate buffer solution (pH 7.2) containing lipase enzyme. These potentially biodegradable and biocompatible polymers can be used as ecofriendly materials for biomedical and other applications to replace the existing petroleum-based polymers currently used.  相似文献   

20.
Traditional superabsorbent polymers have wide application potential as an adsorbent, but the poor physical and mechanical properties limit their further applications. To tentatively overcome this dilemma, a novel poly(acrylic acid)/poly(vinyl alcohol)/yeast superabsorbent polymers (PAA/PVA/yeast SAPs) with interpenetrating polymer networks (IPNs) were fabricated herein via solution polymerization. The mechanical stability tests showed that the resulting products could desirably resist the destruction of shear flow (<5000 rpm) and load pressure (<3 kg). The effects of yeast content, pH, contact time, initial dye concentration and temperature were systematically studied to evaluate their adsorption properties. Consecutive five cycles of adsorption–desorption indicated that their easy regeneration and reusability. More importantly, the PVA/PAA/yeast SAPs displayed brilliant pH-dependent selective adsorption for dyes in dye mixtures. It is believed hereby that the PAA/PVA/yeast SAPs can be expected to be economically and technically feasible for the scalable treatment of dyes wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号