共查询到15条相似文献,搜索用时 62 毫秒
1.
改性蜂窝陶瓷催化臭氧化降解水中微量硝基苯 总被引:5,自引:4,他引:5
以硝基苯为目标反应物,对改性蜂窝陶瓷、蜂窝陶瓷催化臭氧化和单独臭氧氧化去除水中微量有机污染物的效果进行了比较.发现与单独臭氧氧化相比,改性蜂窝陶瓷和蜂窝陶瓷催化臭氧化工艺可以提高水中硝基苯的去除率,分别为38.35%和15.46%.在本次实验条件下,随着改性蜂窝陶瓷催化剂的用量增加到5份,硝基苯的降解效率上升了30.55%;3种工艺对硝基苯的去除率都随着温度的升高而显著增加,随着pH值的升高越来越大,在pH=10.00左右时,臭氧/改性蜂窝陶瓷联用对硝基苯的去除优势消失;臭氧/改性蜂窝陶瓷催化氧化对硝基苯的去除遵循自由基机理;催化剂对硝基苯的吸附很小,对去除几乎没有影响;对于3个体系,将总量相同的O3多次投加可以获得明显优于一次性投加的去除效果;改性蜂窝陶瓷催化剂的使用寿命较长. 相似文献
2.
考察了有机物甲醛、甲醇、甲酸和邻苯二甲酸二丁酯对单独臭氧氧化和蜂窝陶瓷催化臭氧化工艺去除水中硝基苯降解效果的影响规律.单独臭氧氧化和蜂窝陶瓷催化臭氧化对硝基苯的去除率随着甲醛浓度的升高(0~12 mg·L-1)分别降低了11.6%和9.6%;2种工艺对硝基苯的去除率都随着甲醇浓度的增加(0~16mg·L-1,)先增高再降低,单独臭氧氧化和蜂窝陶瓷催化臭氧化分别在浓度为2 mg·L-1和4 mg·L-1时去除率达到最大值;随着甲酸浓度的增加(0~8 mg·L-1)去除率也都先增高再降低,单独臭氧氧化和蜂窝陶瓷催化臭氧化分别在浓度为0.5 mg·L-1和2 mg·L-1时去除率达到最大值;低浓度的甲醇和甲酸促进了硝基苯的降解,高浓度的甲醇和甲酸抑制了硝基苯的降解.单独臭氧氧化和蜂窝陶瓷催化臭氧化在邻苯二甲酸二丁酯浓度增加(0~10 mg·L-1)的情况下对硝基苯的去除率分别降低了19.7%和18.6%. 相似文献
3.
实验考察了HCO3-、CO32-、HPO42-、H2PO4-和叔丁醇等羟基自由基抑制剂存在条件下,单独臭氧氧化和臭氧/蜂窝陶瓷氧化对水中硝基苯降解效果的影响规律,初步推测了反应机理.结果表明,2种工艺对硝基苯的去除率都随着HCO3-浓度的增加(0~200 mg·L-1)先增高再降低,在浓度为50 mg·L-1时去除率达到最大值;单独臭氧氧化和臭氧/蜂窝陶瓷对硝基苯的去除率随着CO32-浓度的增加(0~20 mg·L-1)分别降低了16.57%和27.52%,随着HPO42-浓度的增加(0~12 mg·L-1)分别降低了13.61%和17.52%,随着H2PO4-浓度的增加(0~120 mg·L-1)分别降低了6.61%和12.52%,随着叔丁醇浓度的增加(0~10mg·L-1)硝基苯去除率降低了30.06%和46.09%.证明单独臭氧氧化和臭氧/蜂窝陶瓷氧化对硝基苯的降解遵循·OH氧化机理,叔丁醇更适合作为自由基抑制剂用来推断单独臭氧氧化和臭氧/蜂窝陶瓷氧化降解硝基苯的反应机理.单独臭氧氧化对硝基苯的去除率随着pH值的升高(3.02~10.96)而增大,臭氧/蜂窝陶瓷氧化对硝基苯的去除率在pH=9.23时达到最大值. 相似文献
4.
蜂窝陶瓷催化臭氧化降解水中微量硝基苯的动力学研究 总被引:2,自引:1,他引:2
实验表明单独臭氧氧化和臭氧/蜂窝陶瓷氧化在温度20℃、初始pH值6.87条件下对硝基苯的降解均遵循一级反应动力学模型,该条件下单独臭氧氧化和臭氧/蜂窝陶瓷氧化工艺对硝基苯的降解主要来源于高活性羟基自由基的氧化作用,同时证明了不同体系温度(10~40℃)和溶液初始pH值(3.00~10.96)下硝基苯的降解同样符合一级反应动力学.2种工艺对硝基苯的降解反应速率都随着温度的升高而增加,单独臭氧氧化的反应速率常数由0.37×10-3 s-1升高到1.49×10-3 s-1,臭氧/蜂窝陶瓷氧化的反应速率常数由0.56×10-3 s-1升高到2.46×10-3 s-1,温度越高反应速率提高的幅度却越小.随着pH的升高,单独臭氧氧化对硝基苯降解的反应速率常数从0.15×10-3 s-1增加到2.69×10-3 s-1,在pH值3.00~9.23范围内,臭氧/蜂窝陶瓷氧化工艺反应速率常数从0.17×10-3 s-1增加到1.90×10-3 s-1,在pH为10.96时反应速率常数下降到1.64×10-3 s-1. 相似文献
5.
无机离子对催化臭氧化降解水中痕量硝基苯效果的影响 总被引:3,自引:2,他引:3
考察了天然水体中常见的无机离子对单独臭氧氧化、臭氧/蜂窝陶瓷和臭氧/改性蜂窝陶瓷3种氧化工艺分解水中痕量硝基苯的影响.单独臭氧氧化和臭氧/改性蜂窝陶瓷对硝基苯的分解效率随着钙离子浓度的升高(0~4 mg·L-1)分别增加了5.0%和8.6%,在相同实验条件下,臭氧/蜂窝陶瓷对硝基苯的降解效率在钙离子浓度为0.5 mg·L-1时达到最大值;单独臭氧氧化、臭氧/蜂窝陶瓷和臭氧/改性蜂窝陶瓷在锰离子浓度增加(0~4 mg·L-1)的情况下对硝基苯的去除率分别增加了10.9%、11.6%和9.6%,随着重碳酸根离子浓度的增加(0~200 mg·L-1)分别降低了8.6%、11.5%和8.9%;硝酸根和硫酸根离子浓度对单独臭氧氧化降解水中硝基苯无明显影响,另2种氧化工艺对硝基苯的分解效率随着硝酸根和硫酸根离子浓度的增加而降低. 相似文献
6.
陶粒负载纳米TiO2催化臭氧化降解水中微量硝基苯 总被引:4,自引:0,他引:4
制备了以陶粒为载体的纳米二氧化钛催化剂,并以硝基苯为稳定性有机污染物的目标降解物,研究了其对臭氧化的催化性能,对影响催化效果因素及降解机理进行了探讨.实验对不同温度条件下烧结的催化剂催化臭氧化有机物能力进行了比较,使用SEM进行表征,确定最佳烧结温度.通过改变催化剂投量、硝基苯初始浓度、pH值、添加不同浓度自由基抑制剂和催化剂重复使用实验等,表明在700℃温度下烧结的催化剂具有最大催化活性;硝基苯臭氧化反应中主要氧化剂为羟基自由基,其降解反应为一级反应;硝基苯的去除率随催化剂投量增加而增大;在pH为10时催化剂具有最好的催化效果,对硝基苯的去除率为46.5%;催化剂连续3次重复使用性能良好. 相似文献
7.
实验比较了单独臭氧氧化、蜂窝陶瓷催化臭氧化和蜂窝陶瓷催化剂吸附3种工艺去除水中草酸的降解效果.结果表明,蜂窝陶瓷催化臭氧化、单独臭氧氧化和蜂窝陶瓷催化剂吸附对水中草酸的去除率分别为37 .6%、2 .2%和0 .4%,蜂窝陶瓷催化剂的存在显著提高了臭氧氧化降解水中草酸的去除效果.添加叔丁醇的浓度为5、10和15 mg·L-1时,催化臭氧化对草酸的去除率分别降低了24 .1%、29 .0%和30 .1%,证明蜂窝陶瓷催化臭氧化降解水中草酸遵循·OH氧化机理,即非均相的催化剂表面强化了·OH的引发.TOC测试结果显示,蜂窝陶瓷催化臭氧化工艺可以将草酸彻底矿化,无中间产物生成.反应温度与草酸的去除效果成正相关性,当水体温度为10、20、30和40℃时,蜂窝陶瓷催化臭氧化降解水中草酸的去除率分别为16 .4%、37 .6%、61 .3%和68 .2%. 相似文献
8.
臭氧/纳米TiO2催化氧化去除水中微量硝基苯的研究 总被引:6,自引:1,他引:6
在悬浮颗粒搅拌混合反应器中,研究了臭氧/纳米TiO2催化氧化去除水中微量硝基苯的性能,结果表明,纳米TiO2催化臭氧化去除硝基苯较单独臭氧氧化有明显的提高,反应20min硝基苯的去除率提高了44%.实验中分别考察了纳米TiO2热处理温度、催化剂投量、臭氧投量、硝基苯初始浓度、pH值对臭氧/纳米TiO2催化氧化去除硝基苯的影响.发现550℃烧结得到的纳米TiO2表现出最好的催化臭氧化活性,在较低的臭氧投量与催化剂用量条件下,硝基苯的去除率可达到56.57%;增大臭氧或者硝基苯的初始浓度,硝基苯的去除率随之提高;但是改变催化剂投量,硝基苯的去除效果几乎不受影响;中性或碱性pH环境利于纳米TiO2催化臭氧化反应的进行.通过研究叔丁醇对纳米TiO2催化臭氧化反应的影响,证明反应遵循羟基自由基(·OH)反应机理. 相似文献
9.
硅胶负载纳米TiO2催化臭氧化降解水中微量硝基苯的研究 总被引:11,自引:0,他引:11
研究了纳米TiO2负载于硅胶表面作为臭氧氧化硝基苯过程中的催化剂时,热处理温度对催化活性的影响.结果表明,在700℃条件下烧结的纳米TiO2/硅胶表现出了最佳活性,反应10min硝基苯去除率相比于单独臭氧氧化提高了约25%.在一定范围内催化剂投量越大,硝基苯去除率越高.碱性pH环境有利于催化臭氧化反应的进行,但当pH值高于10时,硝基苯去除率有所降低.催化臭氧化反应遵循一级反应,反应速率常数与硝基苯的初始浓度无关.典型的自由基捕获剂叔丁醇与碳酸根离子对硝基苯的降解有强烈的抑制作用,间接地证明催化臭氧化反应遵循自由基作用机理.反应温度为10~40℃之间时,硝基苯去除率随着温度升高而提高.催化剂重复使用实验证明TiO2在硅胶表面负载牢固,催化剂具有较好的稳定性与耐用性. 相似文献
10.
将臭氧(O3)体系与压电(PE)体系相结合提出了压电臭氧化(PE-O3)体系,探究了该体系对难降解有机污染物硝基苯(NB)的降解效果,考察了转速、O3浓度、钛酸钡(BT)投加量和初始pH值对NB去除的影响.此外,探讨了PE-O3体系降解NB过程中存在的活性物质,并分析了反应机理.结果表明:PE-O3体系对NB的降解体现出明显的协同效应(协同系数高达5.04),在15min内对NB的去除率高达85.37%,反应符合一级反应动力学规律,k为0.1256min-1.此外,PE-O3体系在120min内对NB实现了74.06%的矿化.随着磁力转子转速的增加,体系反应速率提升,当转速提高到1500r/min时,反应速率常数可达到0.1446min-1.反应速率随体系中BT浓度和O3浓度的增加而增加,但一定程度后,增长趋势变缓.NB降解速率随pH值的增加而增大,当pH值为9.0时,在15min后体系中的NB降解率达85.69%.反应过程中产生的是降解NB的主要活性物质. 相似文献
11.
水合氧化铁催化臭氧氧化去除水中痕量硝基苯 总被引:14,自引:13,他引:14
以实验室制备的水合氧化铁(IHO)为催化剂,研究了其催化臭氧氧化去除水中痕量难氧化有机物--硝基苯的效能,通过研究叔丁醇对催化反应的影响以及氧化物催化性能之间的对比,间接推断了催化反应的机理.探讨了催化剂投量、水质因素和催化剂重复使用对催化氧化硝基苯的影响.发现IHO对臭氧氧化水中的痕量硝基苯有明显的催化活性,在本实验条件下,以蒸馏水为本底,反应20min时催化氧化硝基苯的去除率比单独臭氧氧化高出44.8%.这种催化作用遵循羟基自由基的途径,氧化物羟基含量多对催化反应有利.本实验条件下催化剂投量最佳为100mg/L,水溶液的pH值接近氧化物零电荷pH值(pHzpc)时催化作用最明显,水中重碳酸根浓度为2.38mmol/L时催化作用受到显著抑制.催化剂重复使用了5次,其催化活性基本没有变化,没有发现铁离子溶出. 相似文献
12.
臭氧/纳米TiO2催化氧化去除水中微量硝基苯的研究 总被引:3,自引:2,他引:3
在悬浮颗粒搅拌混合反应器中,研究了臭氧/纳米TiO2催化氧化去除水中微量硝基苯的性能,结果表明,纳米TiO2催化臭氧化去除硝基苯较单独臭氧氧化有明显的提高,反应20min硝基苯的去除率提高了44%.实验中分别考察了纳米TiO2热处理温度、催化剂投量、臭氧投量、硝基苯初始浓度、pH值对臭氧/纳米TiO2催化氧化去除硝基苯的影响.发现550℃烧结得到的纳米TiO2表现出最好的催化臭氧化活性,在较低的臭氧投量与催化剂用量条件下,硝基苯的去除率可达到56.57%;增大臭氧或者硝基苯的初始浓度,硝基苯的去除率随之提高;但是改变催化剂投量,硝基苯的去除效果几乎不受影响;中性或碱性pH环境利于纳米TiO2催化臭氧化反应的进行.通过研究叔丁醇对纳米TiO2催化臭氧化反应的影响,证明反应遵循羟基自由基(·OH)反应机理. 相似文献
13.
纳米TiO2/沸石/UV催化臭氧化水中硝基苯的研究 总被引:1,自引:0,他引:1
设计了O3/纳米TiO2/沸石(体系A)和O3/纳米TiO2/沸石/UV(体系B)2种催化臭氧化体系并将其用于处理水中的硝基苯,研究了影响处理效果的主要因素,并对2种方法进行了比较。结果表明,2种催化臭氧化体系都能产生大量的羟自由基,加速硝基苯的降解,其中体系B对硝基苯的降解效果最好。随着进气流量的增加、温度的升高硝基苯的降解速率都会加快。催化臭氧化反应速率遵循一级反应规律,与苯酚的初始浓度和催化剂的用量关系不大。pH值对苯酚去除率有重要的影响,随pH值的升高,苯酚去除率显著提高。叔丁醇对硝基苯的降解有很强的抑制作用。 相似文献
14.
酸活化赤泥催化臭氧氧化降解水中硝基苯的效能研究 总被引:4,自引:1,他引:4
以铝工业废物赤泥为原料,采用酸化的方法活化赤泥,提高其在多相催化臭氧氧化除污染体系中的催化活性,并对其催化臭氧除污染效能及机制进行探讨.研究发现,和赤泥原矿相比,酸化赤泥表现出十分显著的催化能力;酸化赤泥(RM6.0)催化臭氧氧化硝基苯的去除率随臭氧浓度的增加而增加;当臭氧浓度由0.4 mg.L-1增加至1.7 mg.L-1时,硝基苯的去除率由45%提高到92%.溶液pH对RM6.0催化体系利用臭氧能力的影响与其催化臭氧氧化降解NB的影响表现出一致的结果.初始pH变化所带来的RM6.0催化活性的变化,主要是由于体系中氢氧根浓度的变化,导致臭氧分解形成羟基自由基所致;过高pH值导致的羟基自由基的猝灭显促使RM6.0催化臭氧氧化NB活性的降低.通过RM6.0对臭氧的利用能力及羟基自由基抑制实验结果发现,RM6.0催化臭氧降解NB的主要作用机制是催化剂表面吸附臭氧,实现臭氧在催化剂表面的富集,进而实现对NB有机污染物的氧化降解.在这个过程中羟基自由基是存在的,主要是在臭氧与硝基苯在界面氧化过程中分解而成,并进一步氧化NB. 相似文献
15.
水中羟基氧化铁催化臭氧分解和氧化痕量硝基苯的机理探讨 总被引:19,自引:12,他引:19
测定了木质颗粒活性炭(GAC)和负载在GAC上的羟基氧化铁(FeOOH)催化水中臭氧分解的速率常数并探讨了催化臭氧分解的途径.以水中几种氧化物表面羟基密度和表面零电荷pH值(pHzpc)为表征氧化物表面性质的参数,考察了2个参数对催化臭氧氧化水中硝基苯的影响.GAC和负载在GAC上的FeOOH使水中臭氧一级分解速率常数分别提高了68%和108%,用叔丁醇捕获掉生成的羟基自由基后,前者的分解速率常数降低了9%,后者降低了20%.GAC在催化臭氧分解时主要起到吸附剂和还原剂的作用,FeOOH催化臭氧分解过程中促进了羟基自由基生成.氧化物表面羟基密度和催化臭氧氧化水中硝基苯的效果之间没有直接的关系,由氧化物的pHzpc决定的表面电荷状态与催化氧化效果有关,表面接近电中性时对催化氧化硝基苯有利.高密度的表面羟基会使表面羟基之间形成较强的氢键,使催化作用减弱. 相似文献