首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Varotsos (2002a,b), suggested that both the smaller-sized ozone hole over Antarctica and its splitting in two holes in September 2002 occurred due to an unprecedented major sudden stratospheric warming caused by very strong planetary waves propagated in the southern hemisphere. Subsequently, a NASA press release of December 6, 2002, also reported the prevalence of very strong planetary waves in Antarctica. The aim of this Letter is to further discuss the morphology of the Antarctic ozone hole, to detect the causes that allowed the Antarctic stratosphere to exhibit this exceptional warming and to examine what it denotes about its mechanisms. Concerning the morphology, among the principal findings is that the ozone hole split occurred not only in the stratosphere but extended in the lower altitudes (upper troposphere). As to the causes of the major sudden stratospheric warming of 2002, a comparison with the previous warmings in Antarctica since 1964 is made. The smaller-sized Antarctic ozone hole of 2002 is approximately equal to that of 1988 when a strong sudden stratospheric warming occurred. If only the destruction of ozone by chlorofluorocarbons resulted in the delayed sudden stratospheric warmings in Antarctica, then the early sudden stratospheric warmings of 1988 and 2002 would not have occurred, since chlorofluorocarbon loading of the stratosphere has remained relatively stable in recent years. Furthermore, it appears that the El Nino characteristics in 1988 and 2002 are not similar.  相似文献   

2.
This paper summarises the knowledge on the properties of the stratospheric ozone layer. Dynamic, chemical, and microphysical aspects are reviewed with emphasis on chemistry. The questions addressed are as follows. Do we have a quantitative understanding of the Antarctic ozone hole? What lies behind the trend of slowly decreasing ozone columns over northern mid-latitudes? To what degree was chemistry responsible for the extremely low ozone levels over northern Europe in January 1992? The discovery of the ozone hole in 1985 exposed scientific neglect of the category of fast heterogeneous reactions taking place on particulate matter in the stratosphere. But even now after the wide acceptance of some heterogeneous reactions it is difficult to fully account for the rate at which Antarctic ozone is depleted each year in August. After reviewing the known heterogeneous reactions, possible hitherto unrecognised mechanisms are briefly outlined. The paper also includes a discussion of the chemical reactions which can occur even under relatively warm conditions on the ubiquitous, stratospheric aerosol particles and which could contribute to the observed mid-latitudinal ozone depletion. Finally, the paper underlines the importance of dynamic processes, that is, horizontal transport and vertical adiabatic motion, which appear to be the main cause of the anomalously low northern hemispheric ozone values during the 1991/1992 winter.  相似文献   

3.
GOAL, SCOPE AND BACKGROUND: Great interest in the unprecedented events of the major, sudden stratospheric warming and the ozone hole split over Antarctica in September 25, 2002 motivates a necessity to analyze the current understanding on the dynamics, chemistry and climate impacts that are associated with both events. METHODS: Significant progress in the analysis of the observational data obtained, as well as successful development and application of dynamical modeling, which have been achieved very recently, create a basis for the first survey on the role of the major, sudden stratospheric warming observed in the southern hemisphere and its relationship to the diminutive Antarctic ozone hole and its break up into two parts. RESULTS AND DISCUSSION: Special attention has been paid to assessments of the causes of the major warming event and the future expectations concerning the stratospheric ozone depletion effect. Among the principal results is the fact that, as the polar vortex elongated, it became hydrodynamically unstable, and this insta-, bility affected the upper troposphere and stratosphere. During the major, sudden stratospheric warming, the middle stratospheric vortex split into two pieces; one piece rapidly mixed with extra vortex air, while the other returned to the pole as a much weaker and smaller vortex. The polar night jet was considerably weaker than normal, and was displaced more poleward than has been observed in previous winters, resulting from a series of wave events (propagated from the troposphere) that took place over the course of the winter. Finally, the relative ozone decrease (increase) in the eastern Antarctic is tightly associated with westerly (easterly) zonal wind anomalies near the southern tip of South America, and the unusual behavior of the ozone hole in 2002 therefore appears to be caused by great easterlies in this region. CONCLUSIONS: The main conclusion is that the southern polar vortex and the diminutive ozone hole split into two parts in September 2002, due to the prevalence of very strong planetary waves, led to the appearance of a major, sudden stratospheric warming. Although there is evidence that sea surface temperature anomalies contributed to the excitation of the quite strong planetary waves over Antarctica in 2002, there is not yet a widely approved mechanism supporting that. RECOMMENDATIONS AND OUTLOOK:The appearance of the near-record size of the 2003 ozone hole confirmed that the 'no-ozone-hole' episode observed in the year 2002 does not denote a recovery of the ozone layer. Despite the current successful attempts to get a sufficient understanding for the genesis of both extraordinary events, more observations and further modeling efforts are necessary to more reliably assess the contribution of various dynamic mechanisms to the recently observed tropo-stratospheric surprises.  相似文献   

4.
Using the set of multivariate criteria described in a companion paper, ozone-rich layers detected in tropospheric soundings are clustered according to their stratospheric or boundary layer origin. An additional class for aged tropospheric air masses is also considered. This analysis is exclusively based on the measured physical properties of the layers. The database includes 27,000 ozone profiles collected above 11 European stations—two of which provide measurements since 1970. The seasonal cycle of the tropospheric ozone stratification exhibits a clear summer maximum. This increase is due to aged tropospheric air masses that are more frequently detected, suggesting an enhanced lifetime of layers in summer. In terms of ozone content, the relative impact of stratospheric ozone compared to the other sources is highest in winter while export from the boundary layer presents a uniform seasonal cycle. Altitude and thickness distributions of the layers are consistent with the dynamical processes involved in the layering. Northernmost and southernmost stations are more exposed to stratospheric air intrusions into the free troposphere. Long-term trends show that transport from the tropopause region has increased since the mid 1980s. This trend being concomitant with lower ozone content of such layers, a moderate trend of the transport efficiency from the stratosphere on total tropospheric ozone is observed. The increase of ozone detected in tropospheric layers since the mid 1980s cannot be attributed to any recent export process from either the stratosphere or the boundary layer but rather to enhanced photochemical production in aged air masses or to an increase in the lifetime of the layers.  相似文献   

5.
For the past 30 years, the stratospheric ozone layer has decreased in the Northern Hemisphere. The main effect of this ozone decrease was an expected increase in the UV radiation at the Earth's surface, but there has been no clear evidence of an increasing urban trend in surface UV. This study shows that specific air pollutants can reduce the increased surface levels of UV radiation and offers an explanation for why the expected surface UV increases have not been observed, especially in urban regions. A U.S. Environmental Protection Agency (EPA) UV monitoring site at the University of California at Riverside combined with air pollution data from a site operated by the California Air Resources Board in Rubidoux, CA, provided the basis of this study. The 1997 South Coast Ozone Study (SCOS-97) provided three key ingredients: black carbon, PM10 concentrations, and collocated radiometric measurements. The Total Ozone Mapping Spectrometer (TOMS) satellite data were used to provide the stratospheric ozone levels that were included in the statistical model. All of these input parameters would be used to test this study's hypothesis: the expected increase of surface UV radiation, caused by decreases in stratospheric ozone, can be masked by increases in anthropogenic emissions. The values for the pollutants were 7:00 a.m.-5:00 p.m. averages of the instrument's values taken during summer 1997. A statistical linear regression model was employed using the stratospheric ozone, black carbon, PM10, and surface ozone concentrations, and the sin (theta) and cos (theta). The angle theta is defined by theta = 2pi (Julian date/365). This model obtained a coefficient of determination of 0.94 with an uncertainty level (p value) of less than 0.3% for all of the variables in the model except ground-level ozone. The final model, regressed against a data set from a remote, western North Carolina site, resulted in a coefficient of determination of 0.92. The model shows that black carbon can reduce the Diffey-weighted UV levels that reach the surface by as much as 35%, depending on the season.  相似文献   

6.
Sixteen years of ozone measurements (1992–2006) at Reunion Island (21°S, 55.5°E) have been processed to detect stratospheric signatures on each single ozone profile.The characterisation method consists in the advection of the potential vorticity (PV) over two to ten days of backtrajectory with the lagrangian trajectory code LACYTRAJ. LACYTRAJ is a Trajectory-Reverse Domain Filling code using the ERA40 ECMWF database and allowing the reconstruction of high resolution advected PV profiles. Correlation between high values of ozone mixing ratio and high PV is interpreted as a stratospheric signature.A climatology of STE events at Reunion has been derived and reveals that STE events occur more frequently during spring (SON) and summer (DJF). The method is tested for a set of PV threshold values (i.e. 1 PVU, 1.5 PVU and 2 PVU) and for a set of duration of backtrajectories (i.e. 2 days, 5 days and 10 days). The number of detected STE is sensitive to PV threshold values and duration criterions. For instance, the number of stratospheric intrusions detected in October with a 1.5 PVU criterion ranges between 25% (2 days of backtrajectories) and 56% (10 days of backtrajectories). The vertical distributions of STE show intrusions covering the whole free troposphere (between 7 and 15 km) and mainly located in the upper troposphere.Finally, results show that an important number of stratospheric intrusions are detected during spring and in the upper troposphere what points at the contribution of the stratospheric source to the tropospheric ozone spring maximum which is strongly influenced by the biomass burning emissions from South Africa and Madagascar.  相似文献   

7.
Enhanced ozone values observed in the upper troposphere near intense tropical cyclones have raised the question of the role of stratospheric–tropospheric exchange. The dynamical mechanisms involved in the enhanced ozone values of 6 April 1995 observed at Reunion and associated with the tropical cyclone Marlene could not be explained by ECMWF meteorological analysis with 1.125° horizontal resolution. A previous study based on the ECHAM model has demonstrated the impact of biomass burning, but of limited amplitude (<60–80 ppbv max). In this paper, the upper tropospheric ozone enhancement on the periphery of Marlene has been studied with a mesoscale model (MESO-NH). This model is able to reproduce a stratospheric PV filament into the troposphere, crossing the isentropes to the 350 K level. The ageostrophic circulation associated with divergence zones that have induced vertical movements has been shown. Further, the influence of vertical wind shear, evident in both the mesoscale analysis and in the idealized HURRICANE tropical cyclone model, also contributes to our understanding of this downward transport process.  相似文献   

8.
Closing Remarks     
Considerable attention has been paid in recent years to photochemical smog pollution close to the earth's surface and to stratospheric ozone depletion. There is reason to suspect that the next round of scientific concern will be devoted to the perturbations in the “free troposphere.” Tropospheric ozone has been building up in many regions of the northern hemisphere. Ozone changes in the upper troposphere will exert a considerable impact on global warming. This could affect moisture levels, cloud amount and distribution, precipitation, and atmospheric dynamics on different scales.

This paper analyzes: (1) the physical and chemical processes contributing to changes in tropospheric ozone concentration; (2) the observational evidence of previous ozone change; and (3) results drawn from computer modelling of past and future radiative forcing caused by rising ozone concentrations in the upper troposphere.

The solar and longwave radiative model developed by Wang et al. (1991) was used for calculating the change in radiative forcing to the troposphere-surface system that can be ascribed to changing concentrations in ozone and other greenhouse gases. Nitric oxide emission from aircraft are a prime suspect for the observed increases in upper tropospheric ozone. The inference can be drawn that a radiative forcing of 0.2 to 0.35 Wm-2 will result from a doubling of aircraft emissions over the next two decades. This will amount to 10 to 25 percent of the radiative forcing attributable to CO2 alone for the same period. The effect of doubling aircraft emissions will increase as stratospheric ozone concentrations recover from the recent buildup of harmful chlorofluorocarbons. A large fraction of the radiative forcing that occurred during the 1970 to 1990 period can be attributed to increases in tropospheric ozone as opposed to increases in other greenhouse gases.  相似文献   

9.
The seasonal decline in ozone in the Antarctic atmosphere has been termed the ‘Antarctic ozone hole’. Possibly this hole is caused by upper atmospheric wind, due to resumption of high solar activity after the polar night which produces large amounts of ozone-destroying nitric oxide or due to unusual chlorine chemistry at extreme cold temperatures and associated polar stratospheric clouds. Of particular concern is that the observed changes in ozone could be linked to the observed increases in the gases that affect ozone such as methane, nitrous oxide, etc. All these gases affect the climate of the Earth through their so-called ‘greenhouse’ action. We have examined the nature of the greenhouse effect on polar climate due to observed changes in atmospheric trace gases in Antarctica which are reported here.  相似文献   

10.
Causes for the unusually high and seasonally anomalous ozone concentrations at Summit, Greenland were investigated. Surface data from continuous monitoring, ozone sonde data, tethered balloon vertical profiling data, correlation of ozone with the radionuclide tracers 7Be and 210Pb, and synoptic transport analysis were used to identify processes that contribute to sources and sinks of ozone at Summit. Northern Hemisphere (NH) lower free troposphere ozone mixing ratios in the polar regions are ∼20 ppbv higher than in Antarctica. Ozone at Summit, which is at 3212 m above sea level, reflects its altitude location in the lower free troposphere. Transport events that bring high ozone and dry air, likely from lower stratospheric/higher tropospheric origin, were observed ∼40% of time during June 2000. Comparison of ozone enhancements with radionuclide tracer records shows a year-round correlation of ozone with the stratospheric tracer 7Be. Summit lacks the episodic, sunrise ozone depletion events, which were found to reduce the annual, median ozone at NH coastal sites by up to ∼3 ppbv. Synoptic trajectory analyses indicated that, under selected conditions, Summit encounters polluted continental air with increased ozone from central and western Europe. Low ozone surface deposition fluxes over long distances upwind of Summit reduce ozone deposition losses in comparison to other NH sites, particularly during the summer months. Surface-layer photochemical ozone production does not appear to have a noticeable influence on Summit's ozone levels.  相似文献   

11.
Stenke A  Grewe V 《Chemosphere》2003,50(2):177-190
A comprehensive study of ozone mini-holes over the mid-latitudes of both hemispheres is presented, based on model simulations with the coupled climate-chemistry model ECHAM4.L39(DLR)/CHEM representing atmospheric conditions in 1960, 1980, 1990 and 2015. Ozone mini-holes are synoptic-scale regions of strongly reduced total ozone, directly associated with tropospheric weather systems. Mini-holes are supposed to have chemical and dynamical impacts on ozone levels. Since ozone levels over northern mid-latitudes show a negative trend of approximately -4%/decade and since it exists a negative correlation between total column ozone and erythemally active solar UV-radiation reaching the surface it is important to understand and assess the processes leading to the observed ozone decline. The simulated mini-hole events are validated with a mini-hole climatology based on daily ozone measurements with the TOMS (total ozone mapping spectrometer) instrument on the satellite Nimbus-7 between 1979 and 1993. Furthermore, possible trends in the event frequency and intensity over the simulation period are assessed. In the northern hemisphere the number of mini-hole events in early winter decreases between 1960 and 1990 and increases towards 2015. In the southern hemisphere a positive trend in mini-hole event frequency is detected between 1960 and 2015 in spring associated with the increasing Antarctic Ozone Hole. Finally, the impact of mini-holes on the stratospheric heterogeneous ozone chemistry is investigated. For this purpose, a computer-based detection routine for mini-holes was developed for the use in ECHAM4.L39(DLR)/CHEM. This method prevents polar stratospheric cloud formation and therefore heterogeneous ozone depletion inside mini-holes. Heterogeneous processes inside mini-holes amount to one third of heterogeneous ozone destruction in general over northern mid- and high-latitudes during winter (January-April) in the simulation.  相似文献   

12.
Observations of vertical profiles of ozone, humidity, static stability and VHF radar vertical power at Aberystwyth (52°N, 4°W) on 21 June 1996 revealed a pronounced layered structure at the western edge of a stratospheric intrusion, in a location where one would expect to see a tropopause fold. Despite the 3 km depth of the observed ozone anomaly, it was not represented as a fold in the ECMWF potential vorticity analyses; nor was it evident as a layer of enhanced wind shear. Ozone lidar measurements suggest that the fine-scale layering gave way to a single layer as the day progressed. Weak sporadic turbulence observed by the radar at the edge of the fold showed some mixing between stratospheric and tropospheric air.  相似文献   

13.
It has been recognized for several years that ozone in rural areas can exceed the National Ambient Air Quality Standard (NAAQS) for photochemical oxidant whirh was 0.08 ppm for one hour, not to be exceeded more than once per year. During the summer of 1973, the NAAQS was exceeded from 15 to 37% of the time at four rural monitoring sites in Maryland, Pennsylvania, Ohio, and West Virginia.1 This is a greater violation rate than is found in many urban areas. Dimitriades and Altshuller2 have enumerated four possible sources for this rural ozone: (a) transport from urban areas, (b) local photochemical generation from urban ozone precursors, (c) local photochemical generation from precursors of rural origin which may be man-made or natural, and (d) injection of stratospheric ozone into the rural area. This paper considers the chemistry pertinent to the first two of these possible sources of rural ozone, namely the long distance (overnight) transport of ozone and ozone precursors.  相似文献   

14.
Stratospheric ozone depletion, UV-B radiation and crop disease   总被引:9,自引:0,他引:9  
Ultraviolet-B radiation (UV-B: 290-315 nm) is expected to increase as the result of stratospheric ozone depletion. Within the environmental range, UV-B effects on host plants appear to be largely a function of photomorphogenic responses, while effects on fungal pathogens may include both photomorphogenesis and damage. The effects of increased UV-B on plant-pathogen interactions has been studied in only a few pathosystems, and have used a wide range of techniques, making generalisations difficult. Increased UV-B after inoculation tends to reduce disease, perhaps due to direct damage to the pathogen, although responses vary markedly between and within pathogen species. Using Septoria tritici infection of wheat as a model system, it is suggested that even in a species that is inherently sensitive to UV-B, the effects of ozone depletion in the field are likely to be small compared with the effects of variation in UV-B due to season and varying cloud. Increased UV-B before inoculation causes a range of effects in different systems, but an increase in subsequent disease is a common response, perhaps due to changes in host surface properties or chemical composition. Although it seems unlikely that most crop diseases will be greatly affected by stratospheric ozone depletion within the limits currently expected, the lack of a detailed understanding of the mechanisms by which UV-B influences plant-pathogen interactions in most pathosystems is a significant limit to such predictions.  相似文献   

15.
Climate change is likely to act as a multiple stressor, leading to cumulative and/or synergistic impacts on aquatic systems. Projected increases in temperature and corresponding alterations in precipitation regimes will enhance contaminant influxes to aquatic systems, and independently increase the susceptibility of aquatic organisms to contaminant exposure and effects. The consequences for the biota will in most cases be additive (cumulative) and multiplicative (synergistic). The overall result will be higher contaminant loads and biomagnification in aquatic ecosystems. Changes in stratospheric ozone and corresponding ultraviolet radiation regimes are also expected to produce cumulative and/or synergistic effects on aquatic ecosystem structure and function. Reduced ice cover is likely to have a much greater effect on underwater UV radiation exposure than the projected levels of stratospheric ozone depletion. A major increase in UV radiation levels will cause enhanced damage to organisms (biomolecular, cellular, and physiological damage, and alterations in species composition). Allocations of energy and resources by aquatic biota to UV radiation protection will increase, probably decreasing trophic-level productivity. Elemental fluxes will increase via photochemical pathways.  相似文献   

16.
17.
Several studies in modeling atmospheric processes have suggested that heterogeneous chemistry on soot emitted from high altitude aircraft could affect stratospheric ozone depletion. However, these modeling studies were limited because they did not adequately consider the decrease in reaction probability with time as the surface of the soot becomes “poisoned” by its interactions with various gases. Here we extend UIUC's two-dimensional chemical-transport model to investigate possible effects of heterogeneous reactions of ozone on aircraft-generated carbon particles, including a treatment of soot poisoning in the model. We generally follow literature recommendations for ozone uptake probabilities and determine the available active sites on soot given partial pressures of the reactants, temperature, and time since soot emission in order to investigate ozone decrease. The regeneration of soot active sites is also taken into account in this study. We find that, even if active sites on soot surfaces are regenerated, upper troposphere and lower stratosphere ozone losses on aircraft emitted soot occurring through heterogeneous reactions are insignificant once poisoning effects are considered.  相似文献   

18.
In the mid 1980s the study of ozone reactivity gained a significant interest with the discoveries of the stratospheric ozone hole (Farman et al., 1985) and of the ozone depletion events in the polar boundary layer (Oltmans et al., 1989). In the stratosphere, the mechanism involves heterogeneous reactions on polar stratospheric clouds that lead to chlorine activation (Solomon et al., 1986). In contrast, tropospheric ozone depletion occurring during polar springtime rather involves reactive bromine species. They are released during a series of photochemical and heterogeneous reactions often called the bromine explosion (see the review of Simpson et al., 2007). In this reaction sequence, an essential step is the generation of photolyzable Br2, the precursor of two Br atoms, via the multiphasic reaction (1):
(1)
HOBr + Br + H+ → H2O + Br2
The production of reactive HOBr could occur with the oxidation of BrO by HO2.  相似文献   

19.
Depletion of stratospheric ozone over the Antarctic has been re-occurring yearly since 1974, leading to enhanced UV-B radiation. Arctic ozone depletion has been observed since 1990. Ozone recovery has been predicted by 2050, but no signs of recovery occur. Here we review responses of polar plants to experimentally varied UV-B through supplementation or exclusion. In supplementation studies comparing ambient and above ambient UV-B, no effect on growth occurred. UV-B-induced DNA damage, as measured in polar bryophytes, is repaired overnight by photoreactivation. With UV exclusion, growth at near ambient may be less than at below ambient UV-B levels, which relates to the UV response curve of polar plants. UV-B screening foils also alter PAR, humidity, and temperature and interactions of UV with environmental factors may occur. Plant phenolics induced by solar UV-B, as in pollen, spores and lignin, may serve as a climate proxy for past UV. Since the Antarctic and Arctic terrestrial ecosystems differ essentially, (e.g. higher species diversity and more trophic interactions in the Arctic), generalization of polar plant responses to UV-B needs caution.  相似文献   

20.
Ozone concentration data measured in 1977–1979 and 1981–1983 at rural sites in north-west England have been analysed in relation to elevated concentrations. Overall, concentrations exceed 60 ppb on 11.2% of days, 80 ppb on 4.2% of days and reach levels in excess of 100 ppb on 1.5% of days monitored. It is concluded that photochemical pollution is the most frequent cause of elevated concentrations, and that both long-range (continental) and middle-distance (U.K. urban) sources contribute. On a smaller percentage of days, elevated ozone levels arise from enhanced intrusions of stratospheric air associated with vigorous frontal activity. The meteorological situations associated with tropospheric photochemical ozone formation are summer anticyclonic conditions, in common with other observations in the U.K. and other parts of the world.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号