首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ABSTRACT. Individuals and organizations concerned with the expansion of the facilities of a river basin (such as a river basin authority) need to determine optimal strategies of operation and capital investment. They also need to examine the sensitivity of whatever planning decisions are contemplated. This paper extends the applicability of an algorithm that had been previously applied to the deterministic river-basin expansion problem to include the feature of a sensitivity analysis. The algorithm, containing a partial enumeration search technique and a network analysis code, gave a construction sequence of reservoirs, canals, and treatment plants, and an operating policy that maximized the present value of net earnings consistent with certain underlying assumptions. A river basin was chosen that had an existing configuration of unregulated streams and rivers, reservoirs, canals and treatment plants, and sites for future additional facilities. A series of representative synthetic flow sequences, future demand profiles, interest rates and reservoir costs that served as inputs to or parameters in the system were each perturbed by various factors (for a total of 24 cases). The sensitivity studies showed that the immediate planning decision of what facility to construct next was insensitive to variations in future demands and costs and independent of later decisions. Thus, decision-making was adaptive in the sense that by always making the optimal proximate decision, the management of the river basin is optimized.  相似文献   

2.
ABSTRACT The Colorado River Basin faces the dilemma of an increasing demand for water while presently struggling with salinity concentrations approaching critical levels for some water uses. Based upon projected development salinity concentrations are predicted to exceed 1200 mg/1 at Imperial Dam by the year 2010. Annual losses to the basin economy associated with increased salinity will exceed $50 million by the year 2010. Although methods of controlling salt discharges are relatively unrefined, certain conclusions, based upon Bayesian statistical methods, can be reached. Five basic alternatives for coping with the problem are presented and evaluated in this paper: (1) do nothing; (2) adopt arbitrary salinity standards; (3) limit development; (4) control salt discharges at a cost equal to the cost of doing nothing, or (5) minimize total costs to the basin. Total costs associated with any given alternative, or the given salinity resulting, are the sum of salinity detriments (cost to users for water of increased salinity plus economic multiplier effects) plus the cost of constructing salt discharge control works. These impacts upon basin economy and Colorado River water quality for each alternative are presented and related to questions of equity which will play a role in arriving at any long-term solution to the Basin's problem.  相似文献   

3.
ABSTRACT: The potential withdrawal of water from the Mullica River-Great Bay Estuary is southern New Jersey prompted a joint study by biologists and engineers to determine the maximum supply of water that could be diverted from the basin without causing undue environmental impacts. The effect of removal of water from the basin over long periods of time was simulated by review of records of a severe drought. Based on analysis of streamflows and salinities during these drought conditions, minimum mean monthly streamflows were determined corresponding to the maximum salinities tolerable by the fish and shellfish communities, important sources of revenue and recreation in the region. A physically optimized, chance constrained linear programming model was developed for the conjunctive use of ground and surface waters. Adjusting water withdrawal from streamflow and groundwater sources according to physical and seasonal criteria would permit maximum use of the basin's resources, with no additional burden on the ecology of the estuary.  相似文献   

4.
ABSTRACT: The Thornthwaite water balance and combinations of temperature and precipitation changes representing climate change were used to estimate changes in seasonal soil-moisture and runoff in the Delaware River basin. Winter warming may cause a greater proportion of precipitation in the northern part of the basin to fall as rain, which may increase winter runoff and decrease spring and summer runoff. Estimates of total annual runoff indicate that a 5 percent increase in precipitation would be needed to counteract runoff decreases resulting from a warming of 2°C; a 15 percent increase for a warming of 4°C. A warming of 2° to 4°C, without precipitation increases, may cause a 9 to 25 percent decrease in runoff. The general circulation model derived changes in annual runoff ranged from ?39 to +9 percent. Results generally agree with those obtained in studies elsewhere. The changes in runoff agree in direction but differ in magnitude. In this humid temperate climate, where precipitation is evenly distributed over the year, decreases in snow accumulation in the northern part of the basin and increases in evapotranspiration throughout the basin could change the timing of runoff and significantly reduce total annual water availability unless precipitation were to increase concurrently.  相似文献   

5.
ABSTRACT: Rapid population growth in the metropolitan area of Denver, Colorado, is causing conflicts over water use. Two cities, Thomton and Westminster, have begun condemnation proceedings against three irrigation companies to secure agricultural water rights for municipal use. This is the first condemnation proceeding against irrigation water rights for municipal use. Should the suit succeed, over 30,000 acres of presently irrigated land will lose its water supply. There are about four hundred landowners in the area; two hundred of these are commercial farmers, including truck, dairy and specialty farms. Total agricultural production amounts to about $8 million per year. About 561 jobs related to agriculture will disappear along with about $4 million in not income. Only 6.4 percent of the farmland along the Front Range is irrigated. Continued urban growth will put pressure on the water supply of much of this land. The interested parties of the region should cooperate to lessen the impact of urban growth on agricultural lands and water by forming a metropolitan water district. Such a district could share costs of development of additional municipal water and develop systems where municipalities would recycle waste water back to the irrigated lands.  相似文献   

6.
ABSTRACT: This study examined the disposition of streamflow increases that could be created by vegetation management on forest land along the upper reaches of the Colorado River. A network optimization model was used to simulate water flow, storage, consumptive use, and loss within the entire Colorado River Basin with and without the flow increases, according to various scenarios incorporating both current and future consumptive use levels as well as existing and potential institutional constraints. Results indicate that very little of the flow increases would be consumptively used at current use levels, or even at future use levels, if water allocation institutions remain unchanged. Given future use levels and economically based water allocation institutions, up to one-half of the flow increases could be consumptively used. The timing of streamflow increases, and the institutional constraints on water allocation, often limit the potential for consumptive use of flow increases.  相似文献   

7.
ABSTRACT: Ground water and surface water constitute a single dynamic system in most parts of the Suwannee River basin due to the presence of karst features that facilitate the interaction between the surface and subsurface. Low radon-222 concentrations (below background levels) and enriched amounts of oxygen-18 and deuterium in ground water indicate mixing with surface water in parts of the basin. Comparison of surface water and regional ground water flow patterns indicate that boundaries for ground water basins typically do not coincide with surface water drainage subbasins. There are several areas in the basin where ground water flow that originates outside of the Suwannee River basin crosses surface water basin boundaries during both low-flow and high-flow conditions. In a study area adjacent to the Suwannee River that consists predominantly of agricultural land use, 18 wells tapping the Upper Floridan aquifer and 7 springs were sampled three times during 1990 through 1994 for major dissolved inorganic constituents, trace elements, and nutrients. During a period of above normal rainfall that resulted in high river stage and high ground water levels in 1991, the combination of increased amounts of dissolved organic carbon and decreased levels of dissolved oxygen in ground water created conditions favorable for the natural reduction of nitrate by denitrification reactions in the aquifer. As a result, less nitrate was discharged by ground water to the Suwannee River.  相似文献   

8.
ABSTRACT: The dam impounding White Rock Lake was completed in 1910 to provide water for the City of Dallas. Since then, land use on the watershed has changed from entirely rural to over 77 percent urban. A model called SWRRB (Simulator for Water Resources in Rural Basins) was utilized to determine the effect of urbanization on water and sediment entering the lake. The simulation results show that, if urbanization had not occurred, then the annual surface runoff would be 135 mm rather than 151 mm and the annual sediment yield would be 4.4 t/ha rather than 4.1 t/ha. Also, the effect of urbanization on delivery ratios was shown and a positive linear correlation was found. Finally, the weather generator in SWRRB was utilized to estimate the loss of reservoir capacity until 2050 for three different land use management scenarios.  相似文献   

9.
ABSTRACT: Concentrations of atmospheric CO2 and other radiatively active trace gases have risen since the Industrial Revolution. Such atmospheric modifications can alter the global climate and hydrologic cycle, in turn affecting water resources. The clear physical and biological sensitivities of water resources to climate, the indication that climate change may be occurring, and the substantial social and economic dependencies on water resources have instigated considerable research activity in the area of potential water resource impacts. We discuss how the literature on climate change and water resources responds to three basic research needs: (1) a need for water managers to clearly describe the climatic and hydrologic statistics and characteristics needed to estimate climatic impacts on water resources, (2) a need to estimate the impacts of climate change on water resources, and (3) a need to evaluate standard water management and planning methods to determine if uncertainty regarding fundamental assumptions (e.g., hydrologic stationarity) implies that these methods should be revised. The climatic and hydrologic information needs for water resource managers can be found in a number of sources. A proliferation of impact assessments use a variety of methods for generating climate scenarios, and apply both modeling approaches and historical analyses of past responses to climate fluctuations for revealing resource or system sensitivities to climate changes. Traditional techniques of water resources planning and management have been examined, yielding, for example, suggestions for new methods for incorporating climate information in real-time water management.  相似文献   

10.
ABSTRACT: Simulation models constructed to estimate the physical and economic performance of alternative river basin development configurations have been widely used since the start of the Harvard Water Program in the early 1960's. These models have proved useful in choosing from among several potential river basin configurations, since they can rapidly evaluate each configuration's expected performance. However, when dealing with large scale river basin development projects, in which over 50 or 100 alternative reservoirs, irrigation areas, and other components must be considered, it is sometimes quite difficult to effectively use a simulation model to rapidly identify those combinations of projects which best satisfy the development objectives. The purpose of this paper is to describe how a simulation model was used in the analysis of a complex river basin development project in Eastern Europe, and how the problems of scale were confronted and solved. The author's experience on this projet is used to derive a set of general guidelines which may be helpful in other simulation studies.  相似文献   

11.
ABSTRACT: As part of a larger model to identify lands suitable for acquisition, a water supply protection model was developed using the Southwest Florida Water Management District's GIS. Several hydrologic and hydrogeologic data layers were overlaid to develop maps showing ground-water supply suitability, protection areas for surface-water supply, protection areas for major public supply wells, susceptibility to ground-water contamination, and recharge to the Floridan aquifer. These intermediate layers were combined into a final map to prioritize protection areas for water supply.  相似文献   

12.
ABSTRACT: The sensitivity of streamflow to climate change was investigated in the American, Carson, and Truckee River Basins, California and Nevada. Nine gaging stations were used to represent streamflow in the basins. Annual models were developed by regressing 1961–1991 streamflow data on temperature and precipitation. Climate-change scenarios were used as inputs to the models to determine streamflow sensitivities. Climate-change scenarios were generated from historical time series by modifying mean temperatures by a range of +4°C to—4°C and total precipitation by a range of +25 percent to -25 percent. Results show that streamflow on the warmer, lower west side of the Sierra Nevada generally is more sensitive to temperature and precipitation changes than is streamflow on the colder, higher east side. A 2°C rise in temperature and a 25-percent decrease in precipitation results in stream-flow decreases of 56 percent on the American River and 25 percent on the Carson River. A 2°C decline in temperature and a 25-percent increase in precipitation results in streamflow increases of 102 percent on the American River and 22 percent on the Carson River.  相似文献   

13.
ABSTRACT The 60's drought (1961 1966) which hit the Northeastern United States, had its center over the Delaware River Basin and caused water supply shortages to New York City, Philadelphia, and many other towns and industries in the Basin. Until this event occurred, the existing water supply sources and those planned for the future had been considered adequate, as they were designed for the worst drought of record (usually the 1930-31 drought). In view of this “change in hydrology,” the Delaware River Basin Commission authorized a study (DRBC Resolution 67-4) to re-evaluate the adequacy of existing and planned water supply sources of the Delaware River Basin and its Service Area (New York City and northern New Jersey). Synthetic hydrology is a tool which can be used to overcome many of the limitations of the traditional approach. By analyzing generated streamflow traces in this study, it has been determined that there is a definite relationship between the accumulated rainfall deficiency during the drought and the return periods associated with various durations of runoff in the drought. This indicated that generated traces can be used to standardize the hydrology over an area where the intensity of drought varied. This represented an important facet in the study, because it provided a means to equalize the effects of this drought over the study area, and gave the Delaware River Basin Commission more information so that it could better plan and manage its water resources equitably, not only for the people within the Basin, but for the New York City and northern New Jersey areas as well. Synthetic hydrology was used to determine yield-probability relationships for 50-year periods, and storage-yield-frequency relationships for existing and planned water-supply reservoirs. It was also used to determine yield-probability relationships for reservoir systems within the Basin. In the study, it was determined that monthly streamflow traces and uniform draft rates could be used in yield analysis because of the magnitude of the reservoirs and because seasonal variations of draft rate are small in the study area. Although it was found that with the streamflow generating models (first order Markov) in common use today, it is not possible to definitely determine the actual frequency of a very severe historic drought, it is possible to place a drought in perspective by using synthetic hydrology. The study showed that it is a useful tool in determining water availability over a basin and is useful in studying water management problems such as interbasin transfers, and reservoir systems operations.  相似文献   

14.
ABSTRACT: The Chowan River system consists of three rivers in southeast Virginia that form two confluences before flowing into Albermarle Sound in North Carolina. A computer program was written to simulate flows through the river system to determine flow rates, velocities, and depths. The output of the flow program was input into a second program that calculated the concentrations of BOD5, COD, DO, and four nitrogen parameters (organic, ammonia, nitrite-nitrate and algal-N). Measured field data were used to calibrate the model. The effect of reducing the concentration of nutrients from overland runoff on algal concentrations at the mouth of the river was studied. The program was also run to simulate the water quality of the watershed in a primitive condition, in which the watershed was assumed to consist only of forests. The results of the computer program indicate that the major changes in the water quality of the river are simulated satisfactorily. The program can be used to assess the impact of any management scheme to improve water quality.  相似文献   

15.
A study was made to determine the impact on water quality due to water resource development in a large river basin in a semi-arid region of West Africa. Mathematical modeling and the examination of case histories were used to project impacts. The impacts associated with changes in water quality were shown to be slight assuming that modern basin and agricultural management practices are adopted. Analytical techniques normally implemented in studies of more highly developed basins are useful for analysis of water quality impacts in relatively undeveloped basins.  相似文献   

16.
ABSTRACT: This paper examines the critical interaction between existing Texas water law and the state's water resources. Conjunctive use and management of interrelated water resources, though seldom practiced, is generally considered desirable. However, a significant barrier to the coordinated, efficient use and management of water resources is the legal division of water in the various phases of the hydrologic cycle into different classes and recognition of well-defined water rights in the separate phases. Several examples of the problems which relate to, or result from, present Texas water law and which prevent correlated water resource management are discussed. Any substantive revision of Texas law, particularly ground water law, will apparently be difficult to achieve in the immediate future, primarily because of the large number of recognized private water rights and the political power inherent in them. Data necessary for operation of conjunctive management systems are gradually being acquired, and perhaps someday other hydrologic phases can be integrated with surface and ground water. Nevertheless, Texas courts and the legislature have sufficient information on the interrelated hydrologic cycle so that prospective water conflicts should be anticipated and avoided. Great care must be exercised in the recognition of new types of private water rights or extension of existing rights, because this institutional structure, once established, presents a formidable obstacle to desirable revisions of the law.  相似文献   

17.
ABSTRACT: Competition for water, concerns for maintaining ground water quality, and compliance with legislative action require quantification of the water resource for high elevation watersheds in the Sierra Nevada. However, meager hydroclimatic data frequently hinder runoff assessments needed for formulating water development policies, and the selection of watershed models for estimating the water resource is limited to those requiring a minimum of observational data. A climatic water budget model and an energy slope and aspect model are employed to estimate the water resource for a small watershed in Sierra Valley north of Lake Tahoe. The models employ different assumptions and computational procedures, but the total water available estimated by both models is very similar. Measured runoff is estimated satisfactorily by the models, but streamflow is not representative of the total water resource because a substantial portion of the available water enters the regional ground water system. This conclusion is supported by hydrologic and geochemical evidence, and ground water recharge is estimated to be at least as great as measured runoff during dry years and nearly twice as large during wet years.  相似文献   

18.
ABSTRACT: There is mounting evidence that increasing amounts of atmospheric carbon dioxide may lead to significant changes in global climate during the next century. The possible effects of such climatic changes on surface runoff in the Great Basin Region of the western United States has been investigated by applying water balance models to four watersheds in Nevada and Utah. The most probable change, a 2°C increase in average annual temperature coupled with a 10 percent decrease in precipitation, would reduce runoff from 17 to 28 percent of the present mean, with drier basins showing the greatest change. Decreasing precipitation by 25 percent causes runoff reductions of 33 to 51 percent. Equivalent changes to a cooler and wetter climate show corresponding increases in runoff of approximately the same magnitude, but such a shift is not considered likely. Based on projected water requirements for the year 2000, a change to a warmer and drier climate would cause severe water shortages in many parts of the Great Basin.  相似文献   

19.
ABSTRACT: Geographic Information Systems (GIS) are being used increasingly as a method of preparing, analyzing, and displaying data for watershed analysis and modeling. Although GIS technology is a powerful tool for integrating and analyzing watershed characteristics, the initial preparation of the necessary database is often a time consuming and costly endeavor. This demonstration project assesses the viability of creating a cost-effective spatial database for urban stormwater modeling from existing digital and hard-copy data sources. The GIS was used to provide input parameters to the Source Loading and Management Model (SLANM), an empirical urban stormwater quality model. Land use characteristics, drainage boundaries, and soils information were geocoded and referenced to a base data layer consisting of transportation features. GIS overlay and data manipulation capabilities were utilized to preprocess the input data for the model. Model output was analyzed through postprocessing by GIS, and results were compared to a similar recent modeling study of the same watershed. The project, undertaken for a small urban watershed located in Plymouth, Minnesota, successfully demonstrates that the use of GIS in stormwater management can allow even small communities to reap the benefits of stormwater quality modeling.  相似文献   

20.
Abstract: Foliage and litter leachate from selected natural vegetation in the Price River Basin (within the Upper Colorado River basin) was studied to determine the probable impact of plants on the amount of diffuse salt movement from rangeland watersheds. Calculations using concentrations of various leachates and characteristics of range sites expected to be high salt annual salt load to the Price River. It was therefore concluded that plants are not a significant source of diffuse salt within the Colorado River Basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号