首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Geographically‐related information is needed for several elements of an integrated ground water quality management programme, including ground water monitoring planning, prioritization of pollution sources, usage of permits and inspections for source control, and planning and completion of remedial actions. Geographic Information Systems (GISs) can be used to support these elements along with delineating wellhead protection areas (WHPAs), prioritizing existing contaminant sources and evaluating proposed changes in land usage in such areas. Eight case studies of the use of GISs in wellhead protection programmes are summarized, including examples from Rhode Island, Mississippi, New Jersey, New York, Pennsylvania, Kansas, Massachusetts and Texas. Six additional examples are mentioned relative to the use of GISs for evaluating ground water pollution potential, facilitating data analysis for environmental restoration of a large area with numerous waste sites, evaluating trends in ground water nitrate contamination, establishing a national database for ground water vulnerability to agricultural chemicals, simulating water table altitudes from stream and drainage basin locations, and selecting radioactive waste dump sites. The applicability of GISs and their associated advantages in wellhead protection and other ground water management studies are demonstrated via the case studies. The GIS technology provides a unique opportunity for analysing and visualizing spatial data. Contaminant and source prioritization within WHPAs is needed for both extant conditions and in the evaluation of proposed land use changes. The coupling of a GIS with contaminant/source prioritization would provide a strategic tool which could be used to plan targeted ground water monitoring programmes, to identify appropriate management or mitigation measures, minimize introduction of contaminants from existing sources into the subsurface environment, and to evaluate the potential of proposed land use activities for causing ground water contamination. GISs can be useful in providing current information for policy makers, planners and managers engaged in ground water quality decision making.  相似文献   

2.
ABSTRACT: The 1986 Amendments to the Safe Drinking Water Act mandate a multifaceted approach to wellhead protection. This approach includes: (1) delineating wellhead protection areas; (2) identifying and managing potential contaminants; (3) developing contingency plans in the event of weilfield contamination; (4) siting new wells; and (5) encouraging public participation. These elements encompass technical, administrative, and educational considerations. In functioning both as a research tool and as a decision support system, a geographic information system (GIS) is shown to have proven utility in addressing these issues. This article describes the application of common GIS functionality in facilitating a comprehensive wellhead protection scheme for an agricultural municipality in North Dakota.  相似文献   

3.
ABSTRACT: The Floridan Aquifer is the primary source of water in the coastal area of Santa Rosa County, Florida. In order to optimize well field design and analyze aquifer stress problems, the USGS MODFLOW code (McDonald and Harbaugh, 1988) is applied to develop a numerical computer model of the aquifer. The Geographical Information System (GIS) is the primary tool used in the development of the model grid, performance of the modeling procedure, and model analysis. The GIS is used in generating multiple grids in which to simulate both regional scale and local scale flow. The grid topology is recorded in geographic coordinates which facilitates geo-referencing and orientation of the grid to base maps and data coyerages. The GIS allows data transfer from various coverages to the nodes of the block centered grid where hydrogeologic information is stored as attributes to the grid coverage. From this grid coverage, pertinent information is queried within the GIS environment and used to generate the input files for the MODFLOW simulation. After MODFLOW execution, simulated heads and drawdown are imported into the grid coverage where residual error and recharge rates can be calculated. Contoured surfaces are then created for selected data sets including simulated heads, drawdown, residual error, and recharge rates. Model calibration is conducted utilizing the GIS to generate and process data sets associated with model simulations.  相似文献   

4.
ABSTRACT: ArcView Nonpoint Source Pollution Modeling (AVNPSM), an interface between ArcView GIS and AGNPS (Agricultural Nonpoint Source Pollution Model) is developed in support of agricultural watershed analysis and nonpoint source pollution management. The interface is PC‐based and operates in a Windows environment. It consists of seven modules: AGNPS utility, parameter generator, input file processor, model executor, output visualizer, statistical analyzer, and land use simulator. Basic input data to the interface include: soil, digital elevation model, land use/cover, water features, climate, and information on management practices. Application of the AVNPSM to a sample watershed indicates that it is user friendly, flexible, and robust, and it significantly improves the efficiency of the nonpoint source pollution modeling process.  相似文献   

5.
ABSTRACT: The New Castle County Resource Protection Area Technical Advisory Committee (RPATAC) requested that the University of Delaware utilize impervious cover estimates to evaluate the performance of the Water Resource Protection Area (WRPA) ordinance. This 1991 ordinance was the first in Delaware to protect the quantity and quality of drinking water supplies by limiting new development in WRPAs ‐ such as areas of ground water recharge, wellhead protection, drainage above reservoirs (reservoir watersheds), and limestone aquifers ‐ to a maximum 20 percent impervious cover. The research used geographic information system (GIS) techniques to evaluate the effectiveness of the ordinance in attaining its objective. The analysis indicated that 138 new developments were proposed in WRPAs since the ordinance was approved in 1991. The composite impervious cover of the 231 square kilometers of WRPAs in New Castle County is 15 percent, less than the 20 percent code requirement, ranging from 7 percent in recharge areas to 41 percent in several wellhead protection areas. To further protect drinking water supplies, the study results indicate, New Castle County should discourage code variances for applications in the more developed WRPAs, those where impervious cover already exceeds 20 percent, and should acquire parks and open space to protect the healthier WRPAs where impervious cover is currently less than 20 percent.  相似文献   

6.
中国环境保护法制建设经历了不断强化与完善的过程,已形成具有中国特色的环境保护法律体系,对档案工作起到了指导、支持与促进作用,使环境保护档案工作更加具有法制性、科学性、实用性、规范性和多样性。  相似文献   

7.
ABSTRACT: Non-point source pollution cuntinues to be an important environmental and water quality management problem. For the moat part, analysis of non-point source pollution in watersheds has depended on the use of distributed models to identify potential problem areas and to assess the effectiveness of alternative management practices. To effectively use these models for watershed water quality management, users depend on integrated geographic information systems (GIS)-based interfaces for input/output data management. However, existing interfaces are ad-hoc and the utility of GIS is limited to organization of input data and display of output data. A highly interactive water quality modeling interface that utilizes the functional components and analytical capability of GIS is highly desirable. This paper describes the tight coupling of the Agricultural Non-point Source (AGNPS) water quality model and ARC/INFO GIS software to provide an interactive hybrid modeling environment for evaluation of non-point source pollution in a watershed. The modeling environment is designed to generate AGNPS input parameters from user-specified GIS coverages, create AGNPS input data files, control AGNPS model simulations, and extract and organize AGNPS model output data for display. An example application involving the estimation of pesticide loading in a southern Iowa agricultural watershed demonstrates the capability of the modeling environment. Compared with traditional methods of watershed water quality modeling using the AGNPS model or other ad-hoc interfaces between a distributed model and GIS, the interactive modeling environment system is efficient and significantly reduces the task of watershed analysis using tightly coupled GIS databases and distributed models.  相似文献   

8.
ABSTRACT: A micro computer based Watershed Information System (W.LS.) is developed to assist in the preparation of input files for the hydrologic simulation model HEC-1. This system consists of three phases. Phase I utilizes the capabilities of AutoCAD version 9 and three programs, BASINS, PLANES, and CHANNELS, to extract, organize, and display watershed data. Phase II uses the program CN to calculate some HEC-1 parameter values. Phase II utilizes the program HECUPDATE to create HEC-1 input files. The system input includes topographic, soils, land use, watershed geometry data, and a skeletal HEC-1 input file. Output from the system includes a summary User Reference File, a Soils File, a Land Use File, a Watershed Geometry File, a Curve Number File, and a HEC-1 input file, which is ready to run. The W.I.S. has been applied to Macks Creek Watershed in southwest Idaho.  相似文献   

9.
ABSTRACT: Geographic Information Systems (GIS) have been successfully integrated with distributed parameter, single-event, water quality models such as AGNPS (AGricultural NonPoint Source) and ANSWERS (Areal Nonpoint Source Watershed Environmental Response Simulation). These linkages proved to be an effective way to collect, manipulate, visualize, and analyze the input and output date of water quality models. However, for continuous-time, basin large-scale water quality models, collecting and manipulating the input data are more time-consuming and cumbersome due to the method of disaggregation (subdivisions are based on topographic boundaries). SWAT (Soil and Water Assessment Tool), a basin-scale water quality model, was integrated with a GIS to extract input data for modeling a basin. This paper discusses the detailed development of the integration of the SWAT water quality model with GRASS (Geographic Resources Analysis Support System) GIS, along with an application and advantages. The integrated system was applied to simulated a 114 sq. km upper portion of the Seco Creek Basin by subdividing it into 37 subbasins. The average monthly predicted streamflw is in agreement with measured monthly streamflw values.  相似文献   

10.
In Hawaii, trace concentrations of pesticides used in the production of pineapple were found in the groundwater supplies of Mililani Town in the Pearl Harbor Basin on the island of Oahu. Groundwater serves as the major source of drinking water and residents pay for wellhead treatment of the contaminated water, via their monthly water bill. The agricultural chemical users within the Pearl Harbor Basin do not include these wellhead treatment costs in their production costs. The agricultural industry benefits from using pesticides but does not pay the entire societal cost of using these chemicals. In this study we evaluate the specific financial cost of wellhead treatment, and not the economic value of groundwater. While wellhead treatment costs could conceivably be shared by several parties, this study focuses on the financial impact of the pineapple industry alone. This study factors annual wellhead treatment costs into annual pineapple production costs to measure the effect on annual financial return from pineapple production. Wellhead treatment costs are calculated from the existing granulated activated carbon (GAC) water treatment facility for Millilani Wells I and II. Pineapple production costs are estimated from previous cost of production studies. The inclusion of wellhead treatment costs produces different production-cost results, depending on the scale of analysis. At the local scale, the Mililani wellhead treatment costs can be factored into the production costs of the pineapple fields, which were probably responsible for contamination of the Mililani Wells, without causing a deficit in economic return. At the larger regional scale, however, the return from all of the pineapple grown in the Pearl Harbor Basin can not sustain the cost of wellhead treatmentfor the entire water supply of the basin. Recommendations point to the prevention of groundwater contamination as more cost-effective measure than wellhead treatment.  相似文献   

11.
ABSTRACT: The U.S. Geological Survey modular, three-dimensional, finite-difference, ground-water flow model, commonly called MODFLOW, has been modified so that it can read and write files used by a geographic information system (GIS). The modified model program is called MODFLOWARC. The design of MODFLOWARC parallels the design of the ground-water flow model program MODFLOW. The names of the variables, modules, and submodules used to explain the operations of MODFLOWARC were derived from the names used in MODFLOW. During the data input phase, MODFLOWARC reads array control records similar to the original control records of MODFLOW, except an additional variable is added. This additional variable is the name of the computer files containing array data in GIS format. Data output is achieved by setting record/input flags and by supplying a variable that is the name of the directory where the output data will be recorded. The modifications to MODFLOW were minimized so that MODFLOWARC will operate on an existing ground-water flow model without modifying array control records.  相似文献   

12.
Volatile organic compounds (VOCs) are an important source of contamination of groundwater supplies in Massachusetts and many parts of the United States. One local response is to require sewering in wellhead protection areas as an easily enforceable policy designed to reduce the probability of VOC contamination of groundwater. Data were collected for 238 wellhead protection areas in Massachusetts on VOC contamination levels and the sewered and unsewered land uses in those aquifer recharge areas. Logistic regression procedures were used to see whether sewering had any statistical effect on likelihood of contamination of well water. The results provided limited, but not overpowering, support for the idea that requiring commercial and industrial land uses to use sewers would reduce the chance of VOC contamination.  相似文献   

13.
ABSTRACT: In the environmental and agricultural conservation planning process, more efficient and effective tools are needed for planners to assist private landowners with making wiser land use decisions. Current methods are slow, inefficient, and costly. Scientific techniques have not been fully implemented within the planning process, yet such plans are increasingly needed to meet water quality and Total Maximum Daily Load (TMDL) requirements. The objectives of this study are to (a) utilize the web for accessing an integrated science‐based land use decision support system; (b) link decision tools, models, and databases to the user via the web; (c) link distributed models and databases for enhanced planning efficiency; and (d) integrate the above into an easily usable and readily accessible system. The procedures resulting in the initial design involved planning expertise and focus groups' input. The system was developed in partnership with the Natural Resources Conservation Service of the U.S. Department of Agriculture and several state agencies. A survey of 150 certified conservation planners, the end users, was conducted to identify the data sets and planning tools needed. Data, tools, and models then were selected and integrated into a web accessible system. Specifically, the first generation used a web interactive Geographic Information System (GIS) that overlaid onto digital orthoquads and/or soils polygons field boundaries, transportation, hydrologic features (such as drains, rivers, lakes, etc.), and high pesticide risk runoff or infiltration areas. Conservation planners found they could save time with the system. Clients could access the system quickly to help them prepare for meeting with their planner. Previously acquiring GIS maps in some cases had been a lengthy process that limited use of the information in land use decisions.  相似文献   

14.
ABSTRACT: The National Oceanic and Atmospheric Administration is developing a river forecast system for the Nile River in Egypt. The river forecast system operates on scientific work stations using hydrometeorological models and software to predict inflows into the high Aswan Dam and forecast flow hydrographs at selected gaging locations above the dam The Nile Forecasting System (NFS) utilizes satellite imagery from the METEOSAT satellite as the input to the forecast system. Satellite imagery is used to estimate precipitation over the Blue Nile Basin using five different techniques. Observed precipitation data and climatic statistics are used to improve precipitation estimation. Precipitation data for grid locations are input to a distributed water balance model, a hill slope routing model, and a channel routing model. A customized Geographic Information System (GIS) was developed to show political boundaries, rivers, terrain elevation, and gaging network. The GIS was used to develop hydrologic parameters for the basin and is used for multiple display features.  相似文献   

15.
ABSTRACT: The visualization of water quality data in lakes was achieved by integrating the U.S. Environmental Protection Agency's (EPA) STORET water quality database, lake shoreline polygons from EPA's Reach File (version 3), and the UNIMAP 2-D and 3-D interactive mapping and modeling software. Based on lake name (and state abbreviation), a lake shoreline polygon can be accessed from the Reach File. The coordinates of the polygon are portrayed by the U.S. Geological Survey (USGS) 1:100,000 scale Digital Line Graph (DLG) hydrography layer. This polygon is passed, in turn, to the STORET water quality file. Monitoring stations located within the polygon boundary are extracted along with the complete sampling survey. Specific parameters, such as total phosphorus, pH, ammonia, and optional time and depth restrictions can be selected to build a file of x, y, z1, z1…, zn data which is imported to UNIMAP. Up to four parameters, including depth, can be selected at a time. Within UNIMAP, the data is gridded and then displayed as a 2-D color contour map, 3-D perspective contour map, or 2-D projected time or depth slices. This system operates on the EPA ES9000 mainframe computer located in Research Triangle Park (RIP), North Carolina. LAKEMAP is the culmination of an effort to bridge the gap between the vast array of environmental data collected by the EPA and the complex analytical and display software resident on the mainframe.  相似文献   

16.
ABSTRACT: A pilot study undertaken to develop and test analytical methodologies for application in comprehensive flood plain information studies is described. The methodology permits and encourages comprehensive, systematic, practical assessments of present and alternative future basin-wide development patterns as reflected by alternative land use patterns and physical works in terms of flood hazard, economic damage potential and selected environmental consequences. The analysis methodologies are centered about integrated use of computerized spatial, gridded geographic and resource data files. A family of special purpose utility computer programs access the data file and extract appropriate variables and interpret and format the data into specific analytical parameters that are subsequently formatted for input to traditional modeling computer programs. An example application to Trail Creek in Clarke County, Georgia, is described.  相似文献   

17.
This paper describes the application of a continuous daily water balance model called SWAT (Soil and Water Assessment Tool) for the conterminous U.S. The local water balance is represented by four control volumes; (1) snow, (2) soil profile, (3) shallow aquifer, and (4) deep aquifer. The components of the water balance are simulated using “storage” models and readily available input parameters. All the required databases (soils, landuse, and topography) were assembled for the conterminous U.S. at 1:250,000 scale. A GIS interface was utilized to automate the assembly of the model input files from map layers and relational databases. The hydrologic balance for each soil association polygon (78,863 nationwide) was simulated without calibration for 20 years using dominant soil and land use properties. The model was validated by comparing simulated average annual runoff with long term average annual runoff from USGS stream gage records. Results indicate over 45 percent of the modeled U.S. are within 50 mm of measured, and 18 percent are within 10 mm without calibration. The model tended to under predict runoff in mountain areas due to lack of climate stations at high elevations. Given the limitations of the study, (i.e., spatial resolution of the data bases and model simplicity), the results show that the large scale hydrologic balance can be realistically simulated using a continuous water balance model.  相似文献   

18.
To analyse trends in toxic chemical releases, an empirical study was conducted on Connecticut's and New Jersey's drug industry. It was the purpose of this study to investigatethese trends based on the following three questions: first, what is the trend of toxic chemical releases in the drug industry?; second, does the drug industry show patterns of qualitative growth?;and third, does the drug industry show substantial release reductionsof chemicalsknown to be highly toxic to public health and ecosystems? This analysis used the Toxics Release Inventory TRI data from 1988 to 1993. Given the trends, plausible driving forces for the observed changes in toxic chemical releases in the drug industry over the past five years are discussed. The study contends that the following four driving forces are most important in the illustrated development:the TRI, a publicly available database, can be used to reveal severe polluters; the TRI increased corporations' awareness of effective toxic chemical releases and may be used to reflect corporations' communicated commitment to sustainable development; federal and state environmental protection agencies enhance pollution prevention activities in a co-operative manner; and finally, since the late 1980s, the awareness of the business benefits of pollution prevention continuously increases.  相似文献   

19.
ABSTRACT: Geographic Information Systems (GIS) are being used increasingly as a method of preparing, analyzing, and displaying data for watershed analysis and modeling. Although GIS technology is a powerful tool for integrating and analyzing watershed characteristics, the initial preparation of the necessary database is often a time consuming and costly endeavor. This demonstration project assesses the viability of creating a cost-effective spatial database for urban stormwater modeling from existing digital and hard-copy data sources. The GIS was used to provide input parameters to the Source Loading and Management Model (SLANM), an empirical urban stormwater quality model. Land use characteristics, drainage boundaries, and soils information were geocoded and referenced to a base data layer consisting of transportation features. GIS overlay and data manipulation capabilities were utilized to preprocess the input data for the model. Model output was analyzed through postprocessing by GIS, and results were compared to a similar recent modeling study of the same watershed. The project, undertaken for a small urban watershed located in Plymouth, Minnesota, successfully demonstrates that the use of GIS in stormwater management can allow even small communities to reap the benefits of stormwater quality modeling.  相似文献   

20.
ABSTRACT: Public awareness of the importance of protecting the nation's water supplies is growing. Recent studies have shown a substantial increase in the perceived value of protecting water supplies for future use. In the Northeast, much of the water supply comes from ground water. This paper examines three test cases, each with different approaches for using geographic information systems (GIS) for ground water protection planning. In Wellfleet, Massachusetts, build-out scenarios were used to support regulatory and land acquisition decisions for siting a public water supply well. In Hadley, Massachusetts, the focus was on a decision support model for septic suitability assessment in support of regulatory efforts and infrastructure expansion. For Cortland County, New York, an interactive graphic user interface was created to facilitate the manipulation and recombination of a large volume of data by county officials to target ground water pollution prevention efforts. As personal computers become more powerful and inexpensive, and GIS data become more readily available, community and county governments are turning to GIS as a tool for developing comprehensive resource protection plans. Once appropriate data are input, a GIS can effectively and efficiently be used to derive outcomes of various land use plans and regulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号