首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: River solute loads have seldom been measured in very large, complex drainage basins, nor have the methods of calculating loads been critically examined. For sites in the Saskatchewan River Basin, Canada, rating curves were poor predictors of solute loads because correlations between discharge and total solutes concentration were weak (R2 < 0.05 in most cases) and suffered from hysteresis. In contrast, the interval method produced reliable estimates in all seasons and sites tested, and was little affected by sampling schedule. The limit of precision (SE) for estimates of mean annual or seasonal solute load was 10–15 percent of the mean (5 percent in very small basins), reached with 10 years or more of data. Two-thirds or more of total annual solute load was transported during the open-water season, but the proportion carried during winter increased from 8 percent to 34 percent from the upstream to the downstream end of the basin, due to reservoirs retaining and mixing water. Annual loads of total solutes varied from 6.2 × 104 tonnes in foothills tributaries to almost 4.0 × 106 tonnes in the Saskatchewan River near the mouth. But, on an areal basis, the mountain and foothills region was the dominant solute source, producing 43–97 tonnes/km2/yr, compared with only 3–22 tonnes/km2/yr for prairie rivers. This difference is a consequence of greater rainfall and, hence, more rapid erosion in the mountains.  相似文献   

2.
ABSTRACT: Geochemistry of fine-fraction streambed sediments collected from the upper illinois River basin was surveyed in the fall of 1987 as part of the U.S. Geological Survey National Water-Quality Assessment pilot projects. The survey included 567 samples analyzed for 46 elements. Three distinctive distribution patterns were found for seven U.S. Environmental Protection Agency priority pollutants surveyed, as well as for boron and phosphorus: (1) enrichment of elements in the Chicago urban area and in streams draining the urban area relative to rural areas, (2) enrichment in main stems relative to tributaries, and (3) enrichment in low-order streams at high-population-density sites relative to low-population-density sites. Significant differences in background concentrations, as measured by samples from low-order streams, were observed among five subbasins in the study area. Uncertain geochemical correspondence between low-order, background sites and high-order, generally metal enriched sites prevented determination of background levels that would be appropriate for high-order sites. The within-sample ratio of enriched elements was variable within the Chicago area but was constant in the Illinois River downstream from Chicago. Element ratios imply a composite fine-fraction sediment in the Illinois River of 35–40 percent Des Plaines River origin and 60–65 percent Kankakee River origin.  相似文献   

3.
ABSTRACT Using water analyses from 67 gaging stations, discharge-frequency-weighted mean concentrations (QFC) and average annual yield (AAY) per unit area were determined for the total dissolved mineral content of Illinois streams. The resultant data indicates that total dissolved mineral contents are controlled by regional rather than local factors. In most cases plausible explanation for the magnitudes can be found in regional patterns of natural and demographic conditions. Although the data suggest that total dissolved minerals are increasing, the relative contributions of natural versus anthropogenic phenomena are difficult to delimit at this level of investigation.  相似文献   

4.
ABSTRACT: The meteorology flood hydroclimatolog and socioeconomic impacts of the Flood of January 1996 in the Susquehanna River Basin are explored. The analysis explains how an unusual storm system brought high humidities, high temperatures, strong winds, and heavy rain to the basin. The rapid melt of the deep snowpack, combined with the heavy rainfall, produced the sudden release of large volumes of water. Because the ground surface was frozen or saturated, this water moved primarily as overland flow. Thus, the flood waters were not restricted to areas immediately adjacent to stream channels and, consequently, some of the largest impacts were on people, property, and infrastructure in areas not normally prone to flooding. Socioeconomic patterns of flooding over time and space are investigated to put this flood into context and to highlight its impacts. The analysis concludes that if such overland flooding is a more common feature of climate change, then the current vulnerability to this form of flooding and its economic implications must be considered carefully.  相似文献   

5.
ABSTRACT: As part of a basinwide water-quality study, nitrogen and phosphorus data for the Upper Colorado River Basin from the Colorado-Utah State line to the Continental Divide were analyzed for spatial distributions, concentrations associated with various land uses, and temporal trends. Nitrogen and phosphorus concentrations generally increased in a downstream direction. Some nutrient concentrations were elevated at some sites in the upper parts of the basin in areas influenced by increasing urbanization. Sites were grouped according to land use and site type, and median nutrient concentrations were compared among groups. Sites within the agricultural areas of the basin generally had the highest concentrations of nitrogen and phosphorus; concentrations for main-stem, tributary, and urbanization sites were slightly lower than for the agricultural sites. Background sites, or sites with minimal land-use impacts, had very low median nutrient concentrations. Several sites with long-term data were analyzed for temporal trends in concentrations. Several statistically significant downward trends of low and moderate magnitude were observed for nitrogen and phosphorus species. No upward trends were observed in the data at any site.  相似文献   

6.
Suspended sediment data from a 154 ha watershed on northeast Chichagof Island, Alaska, were collected over three fall storm seasons from 1980 to 1982. Sediment rating curves for nine pooled storms explained less than 34 percent of the variation in total suspended solids (TSS). Significantly higher concentrations of suspended sediment occurred during the rising limb of storm hydrographs than for similar flows on the falling limb, accounting for hysteresis loops in TSS versus streamflow plots for individual storms. These hysteresis loops were wider during early season storms, indicating that easily transportable fine sediment may have been flushed from the upper portion of channel banks and from behind large organic debris during early season peak flows. Regression relationships (TSS versus Q) developed for the highest stormflows (> 1 m3/s) had steeper slopes than the lower stormflows (< 1 m3/s). Turbidity correlated well (r=0.94) with TSS for all storm-flow data combined. Organic matter constituted an average of 35 percent (by weight) of TSS for all water quality samples.  相似文献   

7.
ABSTRACT: Hydrological and geochemical spatial patterns and temporal trends were analyzed using U.S. Geological Survey (USGS) water quality data collected from 1975 to 1999 along the uppermost 600 km of the Rio Grande in Colorado and New Mexico. Data on discharge, specific conductivity (SC), total dissolved solids (TDS), pH, Ca2+, Na+, Mg2+, K+, HCO3?, SO42‐, Cl?, F?, and SiO2 came from six USGS stations ranging from the Colorado‐New Mexico border to below Albuquerque, New Mexico. Linear regression, Kendall's S, and Seasonal Kendall's S’ were used to detect trends, and ANOVA was used to analyze spatial differences between stations. Statistically significant increasing trends occurred in SC, TDS, Ca2+, Na+, Mg2+, K+, Cl?, and F?in the uppermost reaches, and significant decreasing trends of SC, TDS, Ca2+, Mg2+, K+, HCO3?, and SO42‐occurred at the lower stations around Albuquerque. Both fluoride concentrations and pH values increased at and below Albuquerque over the study period. Discharge data show an increasing trend across all stations. Spatially, data for dissolved substances show generally linear upstream to downstream increases in concentrations in the upper four stations, with several notable nonlinear increases at and below Albuquerque (SC, TDS, Na+, Cl?). Significant increases in pH appear at and below Albuquerque, relative to upstream stations, probably due to improved sewage treatment.  相似文献   

8.
ABSTRACT: The Thornthwaite water balance and combinations of temperature and precipitation changes representing climate change were used to estimate changes in seasonal soil-moisture and runoff in the Delaware River basin. Winter warming may cause a greater proportion of precipitation in the northern part of the basin to fall as rain, which may increase winter runoff and decrease spring and summer runoff. Estimates of total annual runoff indicate that a 5 percent increase in precipitation would be needed to counteract runoff decreases resulting from a warming of 2°C; a 15 percent increase for a warming of 4°C. A warming of 2° to 4°C, without precipitation increases, may cause a 9 to 25 percent decrease in runoff. The general circulation model derived changes in annual runoff ranged from ?39 to +9 percent. Results generally agree with those obtained in studies elsewhere. The changes in runoff agree in direction but differ in magnitude. In this humid temperate climate, where precipitation is evenly distributed over the year, decreases in snow accumulation in the northern part of the basin and increases in evapotranspiration throughout the basin could change the timing of runoff and significantly reduce total annual water availability unless precipitation were to increase concurrently.  相似文献   

9.
ABSTRACT: The State of Texas has initiated the development of a Total Maximum Daily Load program in the Bosque River Watershed, where point and nonpoint sources of pollution are a concern. Soil Water Assessment Tool (SWAT) was validated for flow, sediment, and nutrients in the watershed to evaluate alternative management scenarios and estimate their effects in controlling pollution. This paper discusses the calibration and validation at two locations, Hico and Valley Mills, along the North Bosque River. Calibration for flow was performed from 1960 through 1998. Sediment and nutrient calibration was done from 1993 through 1997 at Hico and from 1996 through 1997 at Valley Mills. Model validation was performed for 1998. Time series plots and statistical measures were used to verify model predictions. Predicted values generally matched well with the observed values during calibration and validation (R2≥ 0.6 and Nash‐Suttcliffe Efficiency ≥ 0.5, in most instances) except for some underprediction of nitrogen during calibration at both locations and sediment and organic nutrients during validation at Valley Mills. This study showed that SWAT was able to predict flow, sediment, and nutrients successfully and can be used to study the effects of alternative management scenarios.  相似文献   

10.
ABSTRACT: In the San Joaquin River Basin, California, a realtime water quality forecasting model was developed to help improve the management of saline agricultural and wetland drainage to meet water quality objectives. Predicted salt loads from the water quality forecasting model, SJRIODAY, were consistently within ± 11 percent of actual, within ± 14 percent for seven-day forecasts, and within ± 26 percent for 14-day forecasts for the 16- month trial period. When the 48 days dominated by rainfall/runoff events were eliminated from the data set, the error bar decreased to ± 9 percent for the model and ± 11 percent and ± 17 percent for the seven-day and 14-day forecasts, respectively. Constraints on the use of the model for salinity management on the San Joaquin River include the number of entities that control or influence water quality and the lack of a centralized authority to direct their activities. The lack of real-time monitoring sensors for other primary constituents of concern, such as selenium and boron, limits the application of the model to salinity at the present time. A case study describes wetland drainage releases scheduled to coincide with high river flows and significant river assimilative capacity for salt loads.  相似文献   

11.
ABSTRACT: The effects of potential climate change on water resources in the Delaware River basin were determined. The study focused on two important water-resource components in the basin: (1) storage in the reservoirs that supply New York City, and (2) the position of the salt front in the Delaware River estuary. Current reservoir operating procedures provide for releases from the New York City reservoirs to maintain the position of the salt front in the estuary downstream from freshwater intakes and ground-water recharge zones in the Philadelphia metropolitan area. A hydrologic model of the basin was developed to simulate changes in New York City reservoir storage and the position of the salt front in the Delaware River estuary given changes in temperature and precipitation. Results of simulations indicated that storage depletion in the New York City reservoirs is a more likely effect of changes in temperature and precipitation than is the upstream movement of the salt front in the Delaware River estuary. In contrast, the results indicated that a rise in sea level would have a greater effect on movement of the salt front than on storage in the New York City reservoirs. The model simulations also projected that, by decreasing current mandated reservoir releases, a balance can be reached wherein the negative effects of climate change on storage in the New York City reservoirs and the position of the salt front in the Delaware River estuary are minimized. Finally, the results indicated that natural variability in climate is of such magnitude that its effects on water resources could overwhelm the effects of long-term trends in precipitation and temperature.  相似文献   

12.
This paper synthesizes information on the spatial and temporal dynamics of wood in small streams in the Pacific Northwest region of North America. The literature on this topic is somewhat confused due to a lack of an accepted definition of what constitutes “small” streams and what is the relative size of woody debris contained within the channel. This paper presents a matrix that defines woody debris relative to channel size and then discusses the components of a wood budget. Headwater streams are in close proximity to wood sources and, in steeplands, are often tightly constrained by steep hillslopes. Special consideration is given to ecosystem characteristics and to management practices that affect the wood dynamics in this context. Knowledge gaps and uncertainties that can be used to guide future research are identified. Very little is currently known about the role of mass wasting in wood recruitment and storage relative to other processes, such as bank erosion and mortality, in larger streams. Further, very little work has addressed the relative importance of different wood depletion processes, especially those associated with wood transport. The effect of other ecosystem variables on wood dynamics locally across a watershed (from valley bottom to mountaintop) and regionally across the landscape (from maritime to continental climates) is not addressed. Finally, the scientific community has only begun to deal with the effects of management practices on wood quantity, structure, and movement in small streams.  相似文献   

13.
ABSTRACT: The model bankfull discharge recurrence interval (annual series) (Ta) in streams has been approximated at a 1.5‐year flow event. This study tests the linkage between regional factors (climate, physiography, and ecoregion) and the frequency of bank‐full discharge events in the Pacific Northwest (PNW). Patterns of Ta were found to be significant when stratified by EPA Ecoregion. The mean value for Ta in the PNW is 1.4 years; however, when the data is stratified by ecoregion, the humid areas of western Oregon and Washington have a mean value of 1.2 years, while the dryer areas of Idaho and eastern Oregon and Washington have a mean value of 1.4 to 1.5 years. Among the four factors evaluated, vegetation association and average annual precipitation are the primary factors related to channel form and Ta. Based on the results of the Ta analyses, regional hydraulic geometry relationships of streams were developed for the PNW, which relate variables, such as bank‐full cross‐sectional area, width, depth, and velocity, to bankfull discharge and drainage area. The verification of Ta values, combined with the development of regional hydraulic geometry relationships, provides geographically relevant information that will result in more accurate estimates of hydraulic geometry variables in the PNW.  相似文献   

14.
ABSTRACT: Changes in irrigation and land use may impact discharge of the Snake River Plain aquifer, which is a major contributor to flow of the Snake River in southern Idaho. The Snake River Basin planning and management model (SRBM) has been expanded to include the spatial distribution and temporal attenuation that occurs as aquifer stresses propagate through the aquifer to the river. The SRBM is a network flow model in which aquifer characteristics have been introduced through a matrix of response functions. The response functions were determined by independently simulating the effect of a unit stress in each cell of a finite difference groundwater flow model on six reaches of the Snake River. Cells were aggregated into 20 aquifer zones and average response functions for each river reach were included in the SRBM. This approach links many of the capabilities of surface and ground water flow models. Evaluation of an artificial recharge scenario approximately reproduced estimates made by direct simulation in a ground water flow model. The example demonstrated that the method can produce reasonable results but interpretation of the results can be biased if the simulation period is not of adequate duration.  相似文献   

15.
Summer lake survey measurements of total phosphorus (TP) and chlorophyll a (CHLa) from 188 reserviors and natural lakes in the midwest were analyzed to determine the magnitude of major sources of variability. Median variance among replicate samples collected at the same location and time was about 7-8 percent of the mean for both TP and CHLa. Median observed temporal variability within summers was 27 percent of the mean for TP and 45 percent of the mean for CHLa. Median values of year-to-year variance in average TP and CHLa were 22 percent and 31 percent of the mean, respectively. A range of approximately two orders of magnitude was observed among individual estimates of variance in each of these categories. The magnitude of observed temporal variability was affected only slightly by variance among replicate samples on individual days and was weakly correlated with the length of time during which samples were collected from individual lakes. Observed temporal variation was similar between reservoirs and natural lakes when variances were calculated with logtransformed data. The magnitude of temporal and year-to-year variance can severely limit the power of statistical comparisons of TP and CHLa means, but has less effect on establishing relative rankings of lake means, Sources and relative magnitude of variability are important in the use of TP and CHLa data in regression models and in the planning of lake surveys and subsequent data analysis.  相似文献   

16.
ABSTRACT: The shape of a river channel is linked to surrounding land use through interacting hydrologic and geologic processes. This study analyzes the relationship between the change in near‐stream land use and the shape of the adjacent river channel over time. Three watersheds in the foothills of the Venezuelan Andes that have experienced differing degrees of development were studied to determine river channel width, sinuosity, and position relative to surrounding land use. Change in land use over time was obtained from multiple‐date aerial photographs (1946 and 1980) referenced to 1996 Landsat Thematic Mapper (TM) satellite imagery, and verified by field inspection. Measurements of land‐use type and amount and river channel morphology from the two dates were made using geographic information system (GIS) methods. The three watersheds differed in the extent of deforestation, the location of remaining forested land, and how much land‐use change had already occurred by 1946. Change in river channel morphology was greatest at the most deforested sites. Valley shape and channel constraint also had a discernible effect on change in channel morphology. This study introduces a method for analyzing change in coupled terrestrial‐aquatic systems based on multiple‐date, remotely sensed data and GIS analysis of spatial properties. The results document human impacts on river channels through a comparison of multiple watersheds over a 35‐year time interval.  相似文献   

17.
ABSTRACT: Water is, and most likely will continue to be, one of the main concerns and potential causes of instability in the Middle East (ME). The contribution of the existing renewable water resources is limited and can not fulfill the long-term projected gap between water supply and demand for most of the countries in the ME. An integrated regional approach for fulfilling this gap was preferred. A regional institutional framework was proposed for the implementation of this integrated regional approach and consists of a regional water board operating through three units for technical, implementation, and management aspects of project and activities. An analysis of the regional water supply and demand development, the design and policy making of the proposed institution, technology and water markets, cooperation, actors and beneficiaries, finances, and expected obstacles and constraints to the establishment and sustainable operation of the proposed institution are included.  相似文献   

18.
ABSTRACT: The spatial and temporal variability of dissolved oxygen (DO), biochemical oxygen demand (BOD), nitrate concentration and total coliform (TC) were investigated at nine sampling stations distributed along the main rivers of the Piracicaba River Basin, a 12,400 km2 catchment located in São Paulo State, one of the most developed regions of Brazil. Spatially, a downstream impoverishment of water quality conditions was observed, as seen by the decrease of DO, and increase of BOD, nitrate, and TC. These changes were probably caused by accumulating downstream discharge of domestic and industrial sewage. Temporal evaluation of 18 years of data showed that DO decreased with time for the majority of the sampling stations, while BOD, nitrate, and TC increased. A law, approved at the end of 1991, proposed a new water tax for river water extraction for industrial and agricultural use. The amount of this tax is determined according to the water quality of the extracted water. Therefore, the evaluation of the water quality status in this basin is a first step to help resources managers to determine the values for this tax.  相似文献   

19.
ABSTRACT: During the fall of 2000, the occurrence was examined of 16 herbicides and 13 herbicide degradates in samples from 55 wells in shallow aquifers underlying grain producing regions of Illinois. Herbicide compounds with concentrations above 0.05 μg/L were detected in 56 percent of the samples. No concentrations exceeded regulatory drinking water standards. The six most frequently detected compounds were degradates. Water age was an important factor in determining vulnerability of ground water to transport of herbicide compounds. Unconsolidated aquifers, which were indicated to generally contain younger ground water than bedrock aquifers, had a higher occurrence of herbicides (73 percent of samples) than bedrock aquifers (22 percent). Temporal analysis to determine if changes in concentrations of selected herbicides and degradates could be observed over a near decadal period indicated a decrease in detection frequency (25 to 18 percent) between samplings in 1991 and 2000. Over this period, significant differences in concentrations were observed for atrazine (decrease) and total acetochlor (increase). The increase in acetochlor compound concentrations corresponds to an increase in acetochlor use during the study period, while the decrease in atrazine concentrations corresponds to relatively consistent use of atrazine. Changes in frequency of herbicide detection and concentration do not appear related to changes in land use near sampled wells.  相似文献   

20.
ABSTRACT: Annual exports of total phosphorus, soluble reactive phosphorus, and total nitrogen are presented for the period 1965–1974, for five rivers draining into the Bay of Quinte, Lake Ontario. The export values are typical for the physiography and land use though the results indicate that soluble reactive phosphorus exports for the four largest rivers have been declining. Also the variation in export of total phosphorus and total nitrogen is highly correlated with variation in annual runoff. This is noted as being a factor deserving more attention in future efforts to classify nutrient export values in relation to land use and geology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号