首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: The rainfall‐runoff response of the Tygarts Creek Catchment in eastern Kentucky is studied using TOPMODEL, a hydrologic model that simulates runoff at the catchment outlet based on the concepts of saturation excess overland flow and subsurface flow. Unlike the traditional application of this model to continuous rainfall‐runoff data, the use of TOPMOEL in single event runoff modeling, specifically floods, is explored here. TOPMODEL utilizes a topographic index as an indicator of the likely spatial distribution of rainfall excess generation in the catchment. The topographic index values within the catchment are determined using the digital terrain analysis procedures in conjunction with digital elevation model (DEM) data. Select parameters in TOPMODEL are calibrated using an iterative procedure to obtain the best‐fit runoff hydrograph. The calibrated parameters are the surface transmissivity, TO, the transmissivity decay parameter, m, and the initial moisture deficit in the root zone, Sr0. These parameters are calibrated using three storm events and verified using three additional storm events. Overall, the calibration results obtained in this study are in general agreement with the results documented from previous studies using TOPMODEL. However, the parameter values did not perform well during the verification phase of this study.  相似文献   

2.
ABSTRACT: A large storm in December 1990 allowed the evaluation of flood predictions from a hydrologic model (TOPMODEL) that had been previously calibrated on the West Fork of Walker Branch Watershed, a gauged 37.5 ha catchment near Oak Ridge, Tennessee. The model predicts both hydrograph dynamics and the spatial distribution of overland flow using an index based on topography. Maximum extent of overland flow during the storm was determined from patterns of leaf litter removal from valley bottoms. Both the flood hydrograph and the extent of overland flow were accurately predicted using model parameters obtained from a three-month period of normal flow conditions during 1983.  相似文献   

3.
Mechanistic Simulation of Tree Effects in an Urban Water Balance Model1   总被引:1,自引:0,他引:1  
Abstract: A semidistributed, physical‐based Urban Forest Effects – Hydrology (UFORE‐Hydro) model was created to simulate and study tree effects on urban hydrology and guide management of urban runoff at the catchment scale. The model simulates hydrological processes of precipitation, interception, evaporation, infiltration, and runoff using data inputs of weather, elevation, and land cover along with nine channel, soil, and vegetation parameters. Weather data are pre‐processed by UFORE using Penman‐Monteith equations to provide potential evaporation terms for open water and vegetation. Canopy interception algorithms modified established routines to better account for variable density urban trees, short vegetation, and seasonal growth phenology. Actual evaporation algorithms allocate potential energy between leaf surface storage and transpiration from soil storage. Infiltration algorithms use a variable rain rate Green‐Ampt formulation and handle both infiltration excess and saturation excess ponding and runoff. Stream discharge is the sum of surface runoff and TOPMODEL‐based subsurface flow equations. Automated calibration routines that use observed discharge has been coupled to the model. Once calibrated, the model can examine how alternative tree management schemes impact urban runoff. UFORE‐Hydro model testing in the urban Dead Run catchment of Baltimore, Maryland, illustrated how trees significantly reduce runoff for low intensity and short duration precipitation events.  相似文献   

4.
ABSTRACT: An evaluation was conducted on three forested upland watersheds in the northeastern U.S. to test the suitability of TOPMODEL for predicting water yield over a wide range of climatic scenarios. The analysis provides insight of the usefulness of TOPMODEL as a predictive tool for future assessments of potential long-term changes in water yield as a result of changes in global climate. The evaluation was conducted by developing a calibration procedure to simulate a range of climatic extremes using historical temperature, precipitation, and streamfiow records for years having wet, average, and dry precipitation amounts from the Leading Ridge (Pennsylvania), Fernow (West Virginia), and Hubbard Brook (New Hampshire) Experimental Watersheds. This strategy was chosen to determine whether the model could be successfully calibrated over a broad range of soil moisture conditions with the assumption that this would be representative of the sensitivity necessary to predict changes in streamfiow under a variety of climate change scenarios. The model calibration was limited to a daily time step, yet performed reasonably well for each watershed. Model efficiency, a least squares measure of how well a model performs, averaged between 0.64 and 0.78. A simple test of the model whereby daily temperatures were increased by 1.7°C, resulted in annual water yield decreases of 4 to 15 percent on the three watersheds. Although these results makes the assumption that the model components adequately describe the system, this version of TOPMODEL is capable to predict water yield impacts given subtle changes in the temperature regime. This suggests that adequate representations of the effects of climate change on water yield for regional assessment purposes can be expected using the TOPMODEL concept.  相似文献   

5.
Whether a waterway is temporary or permanent influences regulatory protection guidelines, however, classification can be subjective due to a combination of factors, including time of year, antecedent moisture conditions, and previous experience of the field investigator. Our objective was to develop a standardized protocol using publically available spatial information to classify ephemeral, intermittent, and perennial streams. Our hypothesis was that field observations of flow along the stream channel could be compared to results from a hydrologic model, providing an objective method of how these stream reaches can be identified. Flow‐state sensors were placed at ephemeral, intermittent, and perennial stream reaches from May to December 2011 in the Appalachian coal basin of eastern Kentucky. This observed flow record was then used to calibrate the simulated saturation deficit in each channel reach based on the topographic wetness index used by TOPMODEL. Saturation deficit values were categorized as flow or no‐flow days, and the simulated record of streamflow was compared to the observed record. The hydrologic model was more accurate for simulating flow during the spring and fall seasons. However, the model effectively identified stream reaches as intermittent and perennial in each of the two basins.  相似文献   

6.
The Watershed Flow and Allocation model (WaterFALL®) provides segment‐specific, daily streamflow at both gaged and ungaged locations to generate the hydrologic foundation for a variety of water resources management applications. The model is designed to apply across the spatially explicit and enhanced National Hydrography Dataset (NHDPlus) stream and catchment network. To facilitate modeling at the NHDPlus catchment scale, we use an intermediate‐level rainfall‐runoff model rather than a complex process‐based model. The hydrologic model within WaterFALL simulates rainfall‐runoff processes for each catchment within a watershed and routes streamflow between catchments, while accounting for withdrawals, discharges, and onstream reservoirs within the network. The model is therefore distributed among each NHDPlus catchment within the larger selected watershed. Input parameters including climate, land use, soils, and water withdrawals and discharges are georeferenced to each catchment. The WaterFALL system includes a centralized database and server‐based environment for storing all model code, input parameters, and results in a single instance for all simulations allowing for rapid comparison between multiple scenarios. We demonstrate and validate WaterFALL within North Carolina at a variety of scales using observed streamflows to inform quantitative and qualitative measures, including hydrologic flow metrics relevant to the study of ecological flow management decisions.  相似文献   

7.
Soils will behave differently when used for agriculture, forestry, and other purposes and must be managed differently. The difference is most evident in the Inverbrackie Creek catchment area in South Australia where the study reported in this article was conducted and where the soils are used extensively for grazing and dairy farming. This catchment covers an area of 8.38 km2, comprising an undulating upland plain with irregularly high hills and broad interfluves. Previous information-gathering methods used to model the catchment's hydrologic activity have been derived from the downstream pluviographic point-source technique. The model input samples obtained by this technique are not truly representative of the catchment. The potential for using remote sensing color infrared imagery to delineate the areas contributing to soil sediment flow is demonstrated as a better alternative to obtaining representative samples to model this activity. This article reports on part of the work supported by the University Research Grant, University of Adelaide.  相似文献   

8.
ABSTRACT: Improving the reliability of parametric hydrologic models (sometimes called cenceptual rainfall-runoff models) in the continuous simulation of runoff from ungaged catchments has been frustrated by difficulties in estimating model parameters from catchment characteristics. An underlying problem is that these models use parameters to represent catchments as a whole, whereas data on catchment characteristics are collected at multiple field locations and are difficult to transform into one measure of collective impact. Subdividing the catchment and calibrating a stochastic parametric model to estimate distributions for the parameters that covered the range of observed streamflow values was found to improve the simulations. This paper presents an optimization of the amount of subdivision to use in simulation with a version of the Stanford Watershed Model using available climatological data. The calibration process assumes that catchment heterogeneity introduces errors that can be reduced by calibrating parameters as spatial distributions rather than single values. Calibrations for three diverse small gaged catchments located in California and in Virginia found the optimal number of subdivisions to range from 4 to 25 and the optimal scale to range from 0.3 to 2.1 mi2.  相似文献   

9.
ABSTRACT: A simulation analysis of contaminated sediment transport involves model selection, data collection, model calibration and verification, and evaluation of uncertainty in the results. Sensitivity analyses provide information to address these issues at several stages of the investigation. A sensitivity analysis of simulated contaminated sediment transport is used to identify the most sensitive output variables and the parameters most responsible for the output variable sensitivity. The output variables included are streamflow and the flux of sediment and Cs137. The sensitivities of these variables are measured at the field and intermediate scales, for flood and normal flow conditions, using the HSPF computer model. A sensitivity index was used to summarize and compare the results of a large number of output variables and parameters. An extensive database was developed to calibrate the model and conduct the sensitivity analysis on a 6.2 mi2 catchment in eastern Tennessee. The fluxes of sediment and Cs137 were more sensitive than streamflow to changes in parameters for both flood and normal flow conditions. The relative significance of specific parameters on output variable sensitivity varied according to the type of flow condition and the location in the catchment. An implications section illustrates how sensitivity analysis results can help with model selection, planning data collection, calibration, and uncertainty analysis.  相似文献   

10.
ABSTRACT: Hydrologic responses to logging with skidders and responses to logging with a cable yarder are compared. After a 23-year calibration with an undisturbed control catchment, mixed stands of shortleaf pine (Pinus echinata Mill.) and hardwoods were clearfelled on two small catchments in the hilly Coastal Plain of north Mississippi and observed for five years. Runoff increased 370 mm (skidded) and 116 mm (yarded) during the first year with 1876 mm of rainfall, and 234 mm (skidded) and 228 mm (yarded) during the second year when 1388 mm of precipitation equaled the calibration mean. Sediment concentrations for the yarded catchment during the first two years averaged 641 and 1,629 mg L?1, respectively, and yields were 6,502 and 12,086 kg ha?1. Compared to calibration means of 74 mg L?1 and 142 kg ha?1, these extreme values can be attributed largely to transport of sediment stored in the channel and to erosion of subsurface flow paths, which was exacerbated by high flow volumes. During the first year, the concentration (231 mg L?1) and yield (2,827 kg ha?1) for the control catchment also exceeded the calibration means. However, concentrations (134 mg L?1) and yields (1,806 kg ha?1) for the skidded catchment were about 40 percent lower than for the control catchment during the first year, and were higher than those for the control only during the second year. Because deep percolation was limited and because rainfall was unusually high, increases in flows and sediment concentrations and yields probably approximate maximum responses to clearcut harvesting in the uplands of the southern Coastal Plain.  相似文献   

11.
Extreme rainfalls in southern Ontario may increase significantly as a result of climate change. This study was designed to determine the impact of a 15% increase in design rainfall intensities on drainage of a typical urban catchment and to investigate adaptive measures. A calibrated model (PCSWMM 2000) was used to: (1) determine the system performance under current and climate-changed design rainfalls; and (2) calculate the magnitudes of various adaptive measures required to reduce the peak discharge to current levels. For this type of catchment, effective retrofit options that provide the required peak discharge reductions included downspout disconnection (50% of connected roofs), increased depression storage (by 45 m3/impervious hectare), and increased street detention storage (by 40m3/impervious hectare).  相似文献   

12.
Rowe, Mark P., 2011. Rain Water Harvesting in Bermuda. Journal of the American Water Resources Association (JAWRA) 47(6):1219–1227. DOI: 10.1111/j.1752‐1688.2011.00563.x Abstract: Roof‐top rain water harvesting is mandated by law for all buildings in Bermuda and is the primary source of water for domestic supply. The average rate at which rain water is harvested at the typical house with four occupants is, however, insufficient to meet average demand. While just over one‐third of households have access to supplementary water either from mains pipelines or private wells, the majority rely on deliveries from water “truckers” (tankers) to augment their rain water supply. Assuming a reasonably constant daily demand, there is a linear relationship between the “maximum optimum capacity” of a water storage tank and the size of the rain water catchment area, which depends on the characteristics of the rainfall at a given geographic location. A simple spreadsheet model was developed to simulate tank storage levels for various combinations of catchment area, tank capacity, and demand, with an input of actual daily rainfall data for a study period of nearly three years. It was found that for typical cycles of rainfall surpluses and deficits in Bermuda, the tank capacity which there is no benefit in exceeding — the “optimum maximum capacity”— is 0.37 m3 of storage capacity per 1 m2 of catchment area. Furthermore, it was concluded that many domestic water storage tanks in Bermuda are larger than necessary, especially so where there is a significant imbalance between rain water supply and demand.  相似文献   

13.
ABSTRACT: A complex watershed-scale water quality simulation model, the Hydrological Simulation Program-FORTRAN (HSPF) model, was calibrated for a 16 km2 catchment. The simulation step size was 0.33 hours with predicted and recorded hydrologic flows compared on an annual and monthly basis during a total calibration period of four years. Unguided numerical optimization when applied alone did not yield a model parameter set with acceptable predictive capability; instead, it was necessary to apply a critical process that included sensitivity analysis, numerical optimization, and testing of derived model parameter sets to evaluate their performance for periods other than those for which they were determined. Using this critical calibration process, the model was proven to have significant predictive capability. Numerical optimization is an aid for model calibration, but it must not be used blindly.  相似文献   

14.
In this study, an analysis of bathymetric surveys of the Latrobe River delta conducted in 1879 and 1992 is combined with pollen analysis of cores from the delta sediments to assist in setting management priorities for the Latrobe River catchment, a 5000 km2catchment in the south-east of Australia. Reconstructed delta surfaces from 1879 (not long after European settlement of the area) and 1992 were compared to quantify areas of net erosion and deposition. These were compared to post-European deposition depths determined by the presence of exotic pollen species in the sediment. The results indicated that: (1) average sedimentation rates in the receiving lake for the Latrobe River are less than 1 mm yr−1; (2) the deposited material is fine with no material considered as bedload; and (3) the fine nature of the deposited material makes it suitable for carrying a large load of nutrients. These results created a shift in management focus from concern over sedimentation and erosion in general to a greater emphasis on nutrients. While the integrated management of catchments is implicitly contemporary, it should always be performed within a historical context. Failure to do this can lead to management priorities that do not concur with the facts of catchment response and can therefore result in inefficient resource allocation. The use of studies which provide a historical perspective on the problem are therefore critical.  相似文献   

15.
Abstract: Apparent ground‐water ages as determined by the noble gas isotope 85Kr and the water isotope 3H are compared. Refined gas extraction methodology at the wellhead permits efficient collection of Kr for 85Kr isotope enrichment. 85Kr isochrones elucidate areas of much younger ground‐water ages than 3H. Declining 3H activities in the catchment prevent its correlation with the youngest measured 85Kr ages. Source water for most drinking water supplies in the Collyer River catchment is recharged within 40 years BP (2004). Mean‐age (τ) transport modeling suggests uncertainty of ground‐water ages is greatest in the central basin area.  相似文献   

16.
ABSTRACT: Soil water potentials, slope throughflow, runoff chemistry, and isotopic composition were monitored in a 97 m2 zero-order basin within the Maimai 8 watershed on the South Island of New Zealand, for a natural rain storm and two artificial water applications. Contrary to results previously reported for other portions of the Maimai catchment, much of the runoff occurred as a shallow subsurface organic layer flow. For the 47 mm natural rain event, pre-storm soil matric potential ranged from ?60 to ?150 cm H2O. No saturation was produced within the profile, and the majority of storm runoff emanated from flow within the organic horizon perched on the mineral soil surface. Hillslope applications corroborated this interpretation by showing >90 percent new water flushing with negligible mineral soil moisture response. Although the mechanisms cited in the text are not representative of the entire catchment, the study demonstrates: (1) the value of a combined physical-chemical-isotopic approach in quantifying slope processes, and (2) the heterogeneous nature and diversity of slope runoff pathways in a relatively homogeneous catchment.  相似文献   

17.
Can we develop land use policy that balances the conflicting views of stakeholders in a catchment while moving toward long term sustainability? Adaptive management provides a strategy for this whereby measures of catchment performance are compared against performance goals in order to progressively improve policy. However, the feedback loop of adaptive management is often slow and irreversible impacts may result before policy has been adapted. In contrast, integrated modelling of future land use policy provides rapid feedback and potentially improves the chance of avoiding unwanted collapse events. Replacing measures of catchment performance with modelled catchment performance has usually required the dynamic linking of many models, both biophysical and socio-economic—and this requires much effort in software development. As an alternative, we propose the use of variable environmental intensity (defined as the ratio of environmental impact over economic output) in a loose coupling of models to provide a sufficient level of integration while avoiding significant effort required for software development. This model construct was applied to the Motueka Catchment of New Zealand where several biophysical (riverine water quantity, sediment, E. coli faecal bacteria, trout numbers, nitrogen transport, marine productivity) models, a socio-economic (gross output, gross margin, job numbers) model, and an agent-based model were linked. An extreme set of land use scenarios (historic, present, and intensive) were applied to this modelling framework. Results suggest that the catchment is presently in a near optimal land use configuration that is unlikely to benefit from further intensification. This would quickly put stress on water quantity (at low flow) and water quality (E. coli). To date, this model evaluation is based on a theoretical test that explores the logical implications of intensification at an unlikely extreme in order to assess the implications of likely growth trajectories from present use. While this has largely been a desktop exercise, it would also be possible to use this framework to model and explore the biophysical and economic impacts of individual or collective catchment visions. We are currently investigating the use of the model in this type of application.  相似文献   

18.
The Swift Creek catchment, the first catchment to be affected should any impact occur as a result of mining of the Jabiluka uranium ore deposit, is located partly within the World Heritage Kakadu National Park (KNP), and partly within the Jabiluka Mineral Lease (JML) that has been excised from KNP. Preliminary linking of a landform evolution model with a Geographic Information System (GIS) has been completed and tested on a catchment-wide basis for long-term total catchment management. This project represents the first attempt to apply the model on a catchment-wide basis in the region. Linking the model with a GIS enhances the modelling process, as the GIS assists in the derivation, storage, manipulation, processing and visualisation of geo-referenced data on a catchment-wide scale. This preliminary assessment of landform evolution in the Swift Creek catchment demonstrates the complex process associated with the parameterisation of the SIBERIA model, and illustrates the benefits of integrating GIS with landform evolution modelling techniques. Additional research is required to develop a more integrated GIS and landform evolution modelling approach to assessing the possible impacts of mining on catchment sedimentary and hydrological processes.  相似文献   

19.
Abstract: Although total impervious area (TIA) is often used as an indicator of urban disturbance, recent studies suggest that the subset of impervious surfaces that route stormwater runoff directly to streams via stormwater pipes, called directly connected impervious area (DCIA), may be a better predictor of stream ecosystem alteration. We evaluated the differences between TIA and DCIA in the Shepherd Creek catchment, a small (1.85‐km2), suburban basin in Cincinnati, Ohio. Imperviousness determinations were calculated based on publicly available geographic information system (GIS) data and parcel‐scale field assessments, and these direct assessments were compared to DCIA calculated from published, empirical relationships. Impervious and semi‐impervious area comprised 13.1% of the catchment area, with 56.3% of the impervious area connected. When summarized by subcatchments (0.26‐1.85 km2), TIA measured in the field (11‐23%) was considerably higher than that calculated from the National Land Cover Data Imperviousness Layer (7‐18%). In contrast, TIA calculated based on aerial photos was similar to TIA calculated from field assessments, thus indicating that photo interpretation may be adequate for catchment‐scale (>25 ha) TIA determinations. While these GIS data sources can be used to calculate TIA, on‐site assessments were necessary to accurately determine DCIA within residential parcels. There was a wide variation in percent connectivity across parcels, and, subsequently, DCIA was not accurately predicted from empirical relationships with TIA. We discuss applications of DCIA data that highlight the importance of parcel‐scale field assessments for managing suburban watersheds.  相似文献   

20.
Mittman, Tamara, Lawrence E. Band, Taehee Hwang, and Monica Lipscomb Smith, 2012. Distributed Hydrologic Modeling in the Suburban Landscape: Assessing Parameter Transferability from Gauged Reference Catchments. Journal of the American Water Resources Association (JAWRA) 48(3): 546-557. DOI: 10.1111/j.1752-1688.2011.00636.x Abstract: Distributed, process-based models of catchment hydrologic response are potentially useful tools for the assessment of Low Impact Development (LID) techniques in urbanized catchments. Their application is often limited, however, by the lack of continuous streamflow records to calibrate poorly constrained parameters. This article examines the transferability of soil and groundwater parameters from a forested reference catchment to a nearby suburban catchment. We use the Regional Hydro-Ecologic Simulation System (RHESSys) to develop hydrologic models of one gauged forested and one ungauged suburban catchment within the Baltimore Ecosystem Study (BES) study area. We use a parameter uncertainty framework to calibrate soil and groundwater parameters for the forested catchment, and discrete measurements of streamflow from the suburban catchment to assess parameter transferability. Results indicate that the transfer of soil and groundwater parameters from forested reference to nearby suburban catchments is viable, with performance measures for the suburban catchment often exceeding those for the forested catchment. We propose that the simplification of hydrologic processes in urbanized catchments may account for the increase in model performance in the suburban catchment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号