首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
A three-dimensional water quality model was developed for simulating temporal and spatial variations of phytoplankton, nutrients, and dissolved oxygen in freshwater bodies. Effects of suspended and bed sediment on the water quality processes were simulated. A formula was generated from field measurements to calculate the light attenuation coefficient by considering the effects of suspended sediment and chlorophyll. The processes of adsorption–desorption of nutrients by sediment were described using the Langmuir Equation. The release rates of nutrients from the bed were calculated based on the concentration gradient across the water–sediment interface and other variables including pH, temperature and dissolved oxygen concentration.The model was calibrated and validated by applying it to simulate the concentrations of chlorophyll and nutrients in a natural oxbow lake in Mississippi Delta. The simulated time series of phytoplankton (as chlorophyll) and nutrient concentrations were generally in agreement with field observations. Sensitivity analyses were conducted to demonstrate the impacts of varying suspended sediment concentration on lake chlorophyll levels.  相似文献   

2.
ABSTRACT: Forest management activities may substantially alter the quality of water draining forests, and are regulated as nonpoint sources of pollution. Important impacts have been documented, in some cases, for undesirable changes in stream temperature and concentrations of dissolved oxygen, nitrate-N, and suspended sediments. We present a comprehensive summary of North American studies that have examined the impacts of forest practices on each of these parameters of water quality. In most cases, retention of forested buffer strips along streams prevents unacceptable increases in stream temperatures. Current practices do not typically involve addition of large quantities of fine organic material to streams, and depletion of streamwater oxygen is not a problem; however, sedimentation of gravel streambeds may reduce oxygen diffusion into spawning beds in some cases. Concentrations of nitrate-N typically increase substantially after forest harvesting and fertilization, but only a few cases have resulted in concentrations approaching the drinking-water standard of 10 mg of nitrate-NIL. Road construction and harvesting increase suspended sediment concentrations in streamwater, with highly variable results among regions in North America. The use of best management practices usually prevents unacceptable increases in sediment concentrations, but exceptionally large responses (especially in relation to intense storms) are not unusual.  相似文献   

3.
4.
姜延雄  刘颖  邓翠 《四川环境》2012,31(2):7-10
本文主要研究模拟长江底泥对富营养化水体磷的吸附,分析环境因子对底泥吸附磷的影响。结果显示:(1)在25℃时,底泥对磷的吸附在碱性条件时的吸附速率小于酸性和中性条件,中性条件下的吸附速率最大;(2)在控制上覆水温度时,温度越高底泥对磷的吸附量越小,20℃时底泥的吸附量是30℃吸附量的1.5倍;(3)上覆水中溶解氧的浓度越高,吸附速率越高。  相似文献   

5.
为了揭示悬浮泥沙(SSC)对水库水质的影响规律,对汾河水库进行样品收集和长期水质监测,采用水动力模型与泥沙转移和富营养化模型相结合的方法,将这三者关联耦合,并通过实测数据对模型进行参数率定和验证,分析含沙水和不含沙水中总氮(TN)、总磷(TP)、叶绿素a(Chla)、溶解氧(DO)四项指标,得出两者对水质造成的影响。结果表明:SSC对TN、TP的去除作用明显,对Chla、DO浓度分布影响较小,并计算了污染物的释放量以及贡献率,得出TP的负荷仅为16.47t,而贡献率高达25.25%。因此在汾河的污染控制方面应侧重削减磷,进而改善汾河地区的污染现状。  相似文献   

6.
为了揭示悬浮泥沙(SSC)对水库水质的影响规律,对汾河水库进行样品收集和长期水质监测,采用水动力模型与泥沙转移和富营养化模型相结合的方法,将这三者关联耦合,并通过实测数据对模型进行参数率定和验证,分析含沙水和不含沙水中总氮(TN)、总磷(TP)、叶绿素a(Chla)、溶解氧(DO)四项指标,得出两者对水质造成的影响。结果表明:SSC对TN、TP的去除作用明显,对Chla、DO浓度分布影响较小,并计算了污染物的释放量以及贡献率,得出TP的负荷仅为16.47t,而贡献率高达25.25%。因此在汾河的污染控制方面应侧重削减磷,进而改善汾河地区的污染现状。  相似文献   

7.
ABSTRACT: Theoretical equations that establish the relationship between sediment oxygen demand (SOD) in a lake and the flow velocity and dissolved oxygen concentration in the bulk water already exist. These theoretical equations for oxygen consumption in the sediment express biological consumption with Michaelis-Menten kinetics, and chemical consumption by a first order reaction. Data from laboratory experiments that were conducted to validate the theoretical equations also exist. These experiments were performed in a laboratory channel with well defined flow characteristics for three types of sediments. Herein, the theoretical equations are used to model the experimental data for the three types of sediments. The values used for the parameters in the theoretical equations are determined by iteration until a best fit is obtained for the relationship of SOD to flow velocity from both the theoretical model and experimental data. The goodness of fit is measured by the standard error of prediction and the regression coefficient.  相似文献   

8.
ABSTRACT: A loading function methodology is presented for predicting runoff, sediment, and nutrient losses from complex watersheds. Separate models are defined for cropland, forest, urban and barnyard sources, and procedures for estimating baseflow nutrients are provided. The loading functions are designed for use as a preliminary screening tool to isolate the major contributors in a watershed. Input data sources are readily available and the functions do not require costly calibrations. Data requirements include watershed land use and soil information, daily precipitation and temperature records and rainfall erosivities. Comparison of predicted and measured water, sediment, and nutrient runoff fluxes for the West Branch Deleware River in New York, indicated that runoff was underpredicted by about 14 percent while dissolved nutrients were within 30 percent of observed values. Sediment and solid-phase nutrients were overpredicted by about 50 percent. An annual nutrient budget for the West Branch Delaware River showed that cornland was the major source of sediment, solid phase nutrients, and total phosphorus. Waste water treatment plants and ground water discharge contributed the most dissolved phosphorus and dissolved nitrogen, respectively.  相似文献   

9.
ABSTRACT: Ninety‐one sediment oxygen demand (SOD) samples from six designated sites along the stretch of Lower Rapid Creek, South Dakota, were conducted using an in‐situ SOD chamber. Inside the chamber, readings of dissolved oxygen (DO), water temperature, pH, and specific conductance were recorded every minute for more than one hour using the Datasonde 3 Hydrolab. Initial readings of such parameters were recorded for the overlaying water before the deployment of the SOD chamber. Characteristics of the stream conditions, air temperature, barometric pressure, average flow velocity of the stream, depth of the stream, and the flow velocity by the chamber were recorded. Single and multiple linear regression analyses on all parameters indicated that the velocity of the stream is the least critical parameter for SOD in shallow streams.  相似文献   

10.
ABSTRACT: The influence of sediment resuspension on the water quality of shallow lakes is well documented. However, a search of the literature reveals no deterministic mass-balance eutrophication models that explicitly include resuspension. We modified the Lake Okeechobee water quality model - which uses the Water Analysis Simulation Package (WASP) to simulate algal dynamics and phosphorus, nitrogen, and oxygen cycles - to include inorganic suspend. ed solids and algorithms that: (1) define changes in depth with changes in volume; (2) compute sediment resuspension based on bottom shear stress; (3) compute partition coefficients for ammonia and ortho-phosphorus to solids; and (4) relate light attenuation to solids concentrations. The model calibration and validation were successful with the exception of dissolved inorganic nitrogen species which did not correspond well to observed data in the validation phase. This could be attributed to an inaccurate formulation of algal nitrogen preference and/or the absence of nitrogen fixation in the model. The model correctly predicted that the lake is light-limited from resuspended solids, and algae are primarily nitrogen limited. The model simulation suggested that biological fluxes greatly exceed external loads of dissolved nutrients; and sediment-water interactions of organic nitrogen and phosphorus far exceed external loads. A sensitivity analysis demonstrated that parameters affecting resuspension, settling, sediment nutrient and solids concentrations, mineralization, algal productivity, and algal stoichiometry are factors requiring further study to improve our understanding of the Lake Okeechobee ecosystem.  相似文献   

11.
ABSTRACT: The presence of manganese in natural waters (>0.05 mg/L) degrades water-supply quality. A model was devised to predict the variation of manganese concentrations in river water released from an impoundment with the distance downstream. The model is one-dimensional and was calibrated using dissolved oxygen, biochemical oxygen demand, pH, manganese, and hydraulic data collected in the Duck River, Tennessee. The results indicated that the model can predict manganese levels under various conditions. The model was then applied to the Chattahoochee River, Georgia. Discrepancies between observed and predicted may be due to inadequate pH data, precipitation of sediment particles, unsteady flow conditions in the Chattahoochee River, inaccurate rate expressions for the low pH conditions, or their combinations.  相似文献   

12.
Abstract: Lakes are important water resources on the North Slope of Alaska. Freshwater is required for oilfield production as well as exploration, which occurs largely on ice roads and pads. Since most North Slope lakes are shallow, the quantity and quality of the water under ice at the end of winter are important environmental management issues. Currently, water‐use permits are a function of the presence of overwintering fish populations, and their sensitivity to low oxygen concentrations. Sampling of five North Slope lakes during the winter of 2004‐2005 shed some light on the winter chemistry of four lakes that were used as water supplies and one undisturbed lake. Field analysis was conducted for oxygen, conductivity, pH, and temperature throughout the lake depth, as well as ice thickness and water depth. Water samples were retrieved from the lakes and analyzed for Na, Ca, K, Mg, Fe, dissolved‐organic carbon, and alkalinity in the laboratory. Lake properties, rather than pumping, were the best predictors of oxygen depletion, with the highest dissolved‐oxygen levels maintained in the lake with the lowest concentration of constituents. Volume weighted mean dissolved‐oxygen concentrations ranged from 4 to 94% of saturation in March. Dissolved oxygen and specific conductance data suggested that the lakes began to refresh in May.  相似文献   

13.
ABSTRACT: A growing concern for environmental quality paralleled with increasing demands on our forest resources has prompted the Washington State Department of Natural Resources to evaluate simulation modeling as a technique for analyzing management decisions in terms of their environmental effects. The evaluation focused on a system of integrated models developed at the University of Washington which simulate processes and activities within the forest ecosystem. A major part of the system is a hydrologic model which predicts changes in discharge, stream temperature, and concentrations of suspended sediment and dissolved oxygen based on information generated by other models representing intensive management practices. The evaluation consisted of applying the system to a 72,000 acre tract of forest land, validating the models with two years of discharge and water quality data from a 93,000 acre watershed, and determining the pertinence of hydrologic modeling for management purposes. Results show several potential uses of hydrologic modeling for forest management planning, especially for analyzing the effects of timber harvesting strategies on water quality.  相似文献   

14.
Abstract: Many arctic lakes freeze completely in winter. The few that retain unfrozen water for the entire winter period serve as overwintering fish habitat. In addition to serving as fish habitat, water in arctic lakes is needed for industrial and domestic use. Permits for water extraction seek to maximize water use without impacting dissolved oxygen (DO) levels and endangering fish habitat. The relationship between lake volume, winter DO budget, and extraction of water through pumping has historically not been well understood. A management model that could estimate end‐of‐winter DO would improve our understanding of the potential impacts of different management strategies. Using under‐ice DO measurements (November to April) taken from two natural lakes and one flooded gravel mine on the North Slope of Alaska, a physically based model was developed to predict end‐of‐winter DO concentration, water‐column DO profiles, and winter oxygen depletion rate in arctic lakes during periods of ice cover. Comparisons between the measured and model‐predicted oxygen profiles in the three study lakes suggest that the depth‐based DO modeling tool presented herein can be used to adequately predict the amount of DO available in arctic lakes throughout winter.  相似文献   

15.
ABSTRACT: Evaporative heat loss is an essential component of any heat budget used for the modeling of lake water temperatures. Seven evaporative heat loss equations were tested in a year-round, physically-based temperature and dissolved oxygen model for lakes. Deciding which equation to choose for use in the year-round model was based on the goodness of fit of the simulated vs. measured surface temperatures, which were taken at a depth of 1 m below the water surface. An equation which includes free and forced convection components and which was previously used for cooling ponds gave the best fit between temperature simulations and measurements.  相似文献   

16.
The Salton Sea is the largest inland water body in California, covering an area of 980 km(2). Inflow to the Salton Sea (1.6 km(3) yr(-1)) is predominately nutrient-rich agricultural wastewater, which has led to eutrophication. Because internal phosphorus release from the bottom sediments is comparatively low and external phosphorus loading to the Salton Sea is high, reduction of tributary phosphorus is expected to reduce algal blooms, increase dissolved oxygen, and reduce odors. Removing both dissolved phosphorus and phosphorus-laden sediment from agricultural drainage water (ADW) should decrease eutrophication. Both alum and polyacrylamide (PAM) are commonly used in wastewater treatment to remove phosphorus and sediment and were tested for use in tributary waters. Laboratory jar tests determined PAM effectiveness (2 mg L(-1)) for turbidity reduction as cationic > anionic = nonionic. Although cationic PAM was the most effective at reducing turbidity at higher speeds, there was no observed difference between the neutral and anionic PAMs at velocity gradients of 18 to 45 s(-1). Alum (4 mg L(-1) Al) reduced turbidity in low energy systems (velocity gradients < 10 s(-1)) by 95% and was necessary to reduce soluble phosphorus, which comprises 47 to 100% of the total P concentration in the tributaries. When PAM was added with alum, the anionic PAM became ineffective in aiding flocculation. The nonionic PAM (2 mg L(-1)) + alum (4 mg L(-1) Al) is recommended to reduce suspended solids in higher energy systems and reduce soluble P by 93%.  相似文献   

17.
Effect of reservoir flushing on downstream river water quality   总被引:1,自引:0,他引:1  
The effect of short-term reservoir flushing on downstream water quality in the Geum River, Korea was studied using field experiments and computer simulations. The reservoir release was increased from 30 to 200 m(3)/s within 6 h for the purpose of this experiment. The flushing discharge decreased the concentrations of soluble nitrogen and phosphorus species considerably, but the experimental results revealed a negative impact on organic forms of nutrients and biochemical oxygen demand (BOD). A dynamic river water quality model was applied to simulate the river hydraulics and water quality variations during the event. The model showed very good performance in predicting the travel time of flushing flow and the variations of dissolved forms of nitrogen and phosphorus constituents. However, it revealed a limited capability in simulating organic forms of nutrients and BOD because it does not consider the re-suspension mechanism of these constituents from sediment during the wave front passage.  相似文献   

18.
ABSTRACT: A previous modeling study used the Generalized Watershed Loading Functions (GWLF) model to simulate stream‐flow, and nutrient and sediment loads to Cannonsville Reservoir from the West Branch Delaware River (WBDR). We made several model revisions, calibrated key parameters, and tested the original GWLF model and a revised GWLF model using more recent data. Model revisions included: addition of unsaturated leakage between unsaturated and saturated subsurface reservoirs; revised timing of sediment export; inclusion of urban sediments and dissolved nutrients; tracking of particulate nutrients from point sources; and revised timing of septic system loads. The revision of sediment yield timing resulted in significant improvements in monthly sediment and particulate phosphorus predictions as compared to the original model. Addition of unsaturated leakage improved hydrologic predictions during low flow months. The other model changes improve realism without adding significant model complexity or data requirements. Goodness of fit of revised model predictions versus stream measurements, as measured by the Nash‐Sutcliff coefficient of model efficiency, exceeded 0.8 for streamflow‐0.7 for sediment yield and dissolved nitrogen (N) and 0.6 for particulate and dissolved phosphorus (P). The revised GWLF model, with limited calibration, provides reasonable estimates of monthly streamflow, and nutrient and sediment loads in the Cannonsville watershed.  相似文献   

19.
Fish, habitat, and water chemistry data were collected from 98 streams in the midwestern United States, an area dominated by intense cultivation of row crops, in order to identify important water‐quality stressors to fish communities. We focused on 10 stressors including riparian disturbance, riparian vegetative cover, instream fish cover, streambed sedimentation, streamflow variability, total nitrogen, total phosphorus, minimum dissolved oxygen, pesticides, and bed sediment contaminants. Fish community response variables included a measure of observed/expected taxonomic completeness; species‐specific tolerances to nitrogen, phosphorus, dissolved oxygen, and water temperature; the percent of species classified as macrohabitat generalists; and an index of pesticide toxicity to fish. Multivariate analysis indicated that total nitrogen was the most important stressor, signifying that fish communities were responding to total nitrogen despite relatively high levels common to an agricultural setting. Individually, fish taxonomic completeness decreased with increasing streambed sedimentation, whereas fish community tolerance to total phosphorus increased with increasing streambed sedimentation, riparian disturbance, and total nitrogen. These findings underscore the importance of multiple biological response metrics to better understand the effects of water‐quality stressors on fish communities and highlight the complex relations between total phosphorus and fish communities.  相似文献   

20.
ABSTRACT: A dynamic, compartmental, simulation model (WETLAND) was developed for the design and evaluation of constructed wetlands to optimize nonpoint source (NPS) pollution control. The model simulates the hydrologic, nitrogen, carbon, dissolved oxygen (DO), bacteria, vegetative, phosphorous, and sediment cycles of a wetland system. Written in Fortran 77, the WETLAND models both free‐water surface (FWS) and subsurface flow (SSF) wetlands, and is designed in a modular manner that gives the user the flexibility to decide which cycles and processes to model. WETLAND differs from many existing wetland models in that the interactions between the different nutrient cycles are modeled, minimizing the number of assumptions concerning wetland processes. It also directly links microbial growth and death to the consumption and transformations of nutrients in the wetland system. The WETLAND model is intended to be utilized with an existing NPS hydro‐logic simulation model, such as ANSWERS or BASINS, but also may be used in situations where measured input data to the wetland are available. The model was calibrated and validated using limited data from a FWS wetland located at Benton, Kentucky. The WETLAND predictions were not statistically different from measured values for of five‐day biochemical oxygen demand (BOD5), suspended sediment, nitrogen, and phosphorous. Effluent DO predictions were not always consistent with measured concentrations. A sensitivity analysis indicated the most significant input parameters to the model were those that directly affected bacterial growth and DO uptake and movement. The model was used to design a hypothetical constructed wetland in a subwatershed of the Nomini Creek watershed, located in Virginia. Two‐year simulations were completed for five separate wetland designs. Predicted percent reductions in BOD5 (4 to 45 percent), total suspended solids (85 to 100 percent), total nitrogen (42 to 56 percent), and total phosphorous (38 to 57 percent) were similar to levels reported by previous research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号