首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ordered mesoporous carbon (OMC) with high specific surface area and large pore volume was synthesized and tested for use as an adsorbent for volatile organic compound (VOC) disposal. Benzene, cyclohexane and hexane were selected as typical adsorbates due to their different molecular sizes and extensive utilization in industrial processes. In spite of their structural differences, high adsorption amounts were achieved for all three adsorbates, as the pore size of OMC is large enough for the access of these VOCs. In addition, the unusual bimodal-like pore size distribution gives the adsorbates a higher diffusion rate compared with conventional adsorbents such as activated carbon and carbon molecular sieve. Kinetic analysis suggests that the adsorption barriers mainly originated from the difficulty of VOC vapor molecules entering the pore channels of adsorbents. Therefore, its superior adsorption ability toward VOCs, together with a high diffusion rate, makes the ordered mesoporous carbon a promising potential adsorbent for VOC disposal.  相似文献   

2.
Adsorption mechanisms and the role of different porous and crystalline structures on the removal of five haloacetonitriles (HANs) over hexagonal mesoporous silica (HMS), titanium substituted mesoporous silica (Ti-HMS), rod-shaped SBA-15 and microporous zeolite NaY were investigated. In addition, the effect of pH on adsorption mechanism and selective adsorption of five HANs individually and in an equimolar mixed solution were evaluated. The results indicated that the intraparticle diffusion rate constants of the mesoporous adsorbents were higher than that of the microporous NaY. In single solute, the order of adsorption preference (highest to lowest) was mono-HANs?>?di-HANs?>?tri-HAN. However, in mixed solute, the large molecular weight of the tri-HAN and di-HANs are more easily adsorbed than the smaller molecular weight mono-HANs. Except for SBA-15, the order of adsorption capacities in mixed HANs solute was not different compared to that observed for the single HAN solute, which might be caused by the higher accessibility to the active sites due to larger pore size. The ion-dipole electrostatic interaction was likely to be the main adsorption mechanism, and was favored at high pH values due to the high negative surface charge density of the adsorbent. The molecular structure of the HANs and hydrophilic/hydrophobic nature affected the adsorption capacities and their selective adsorption from mixed solutes.  相似文献   

3.
The amine-functionalized mesoporous silica materials were prepared via the co-condensation reaction of tetraethoxysilane and three types of organoalkoxysilanes: 3-aminopropyl-trimethoxysilane, n-(2-aminoethyl)-3-aminopropyltrimethoxysilane, and 3-(2-(2- aminoehtylamino)ethylamino) propyl-trimethoxysilane. Cetyltrimethylammonium bromide was used as a template for forming pores, Specific surface area and pore volume of the amine-functionalized mesoporous silica materials were determined using surface area and pore size analyzer. Fourier transform infrared (FTIR) spectroscope was employed for identifying the functional groups on pore surface. In addition, the amine-functionalized mesoporous silica materials were applied as adsorbents for adsorbing formaldehyde vapor. FTIR spectra showed the evidence of the reaction between formaldehyde molecules and amine groups on pore surface of adsorbents. The equilibrium data of formaldehyde adsorbed on the adsorbents were analyzed using the Langmuir, Freundlich and Temkin isotherm. The sample functionalized from n-(2-aminoethyl)-3-aminopropyltrimethoxysilane showed the highest adsorption capacity owing to its amine groups and the large pore diameter.  相似文献   

4.
目前对焚烧烟气中重金属的控制以活性炭烟气喷射技术为主,然而该吸附剂高温(>150℃)下性能较差,吸附温度窗口较窄,因此开发耐高温非碳基吸附剂对于焚烧烟气中重金属的控制意义较大.以硼酸及三聚氰胺作为前驱体原料,将硫脲作为硫源掺杂进前驱体,经高温扩散后制备得到一种新型硫掺杂改性氮化硼(S-BN)吸附剂,并进行气相重金属高温吸附试验研究.结果表明:①S-BN吸附剂表面呈棱状结构,内部孔隙结构明显,不同S掺杂摩尔比下的形貌结构有一定差异.S-BN吸附剂内部孔体积范围为0.17~0.39 cm3/g,孔径分布范围为0.85~284.39 nm,平均孔径为2.95~4.19 nm,属于典型的中介孔多孔吸附剂.②当S掺杂摩尔比为0.50且1 300℃下煅烧5 h时,获得的S-BN吸附剂比表面积最大,达524.17 m2/g.S-BN吸附剂对气相重金属的最佳吸附温度为150~200℃.吸附过程中前5 min的吸附速率较快,并且在10 min内基本达到吸附饱和状态.③吸附过程动力学拟合分析发现,低温下S-BN吸附剂对重金属的吸附过程以物理吸附为主导,随着温度的升高,吸附过程逐渐转变为以化学吸附为主导.研究显示,该试验制得的新型S-BN吸附剂拥有较高的比表面积,其对气相重金属的饱和吸附量可以达到54.15~74.13 mg/g,对于气相重金属锌的吸附能力是活性炭的1.9~10.0倍,并且在相对高温(300℃)的吸附条件下仍可以保持较好的吸附能力.   相似文献   

5.
Four different types of adsorbents, SBA-15, MCM-41, NaY and SiO2, were used to study the dynamic adsorption/desorption of toluene. To further investigate the influence of pore structure on its adsorption performance, two SBA-15 samples with different microspores were also selected. It is shown that microporous material NaY has the largest adsorption capacity of 0.2873 mL/g, and the amorphous SiO2 exhibits the least capacity of 0.1003 mL/g. MCM-41 also shows a lower break through capacity in spite of the relatively small pore diameter, because it can not provide the necessary small geometric confinement for the tiny adsorbates. However, the mesoporous SBA-15 silica with certain micropore volume shows relatively higher adsorption capacity than that of MCM-41 silica. The presence of micropores directly leads to an increase in the dynamic adsorption capacity of toluene. Although NaY has the highest adsorption capacity for toluene, its complete desorption temperature for toluene is high (>350℃), which limits its wide application. On the contrary, mesoporous silica materials exhibits a good desorption performance for volatile organic compounds at lower temperatures. Among these materials mesoporous SBA-15 samples, with a larger amount micropores and a lower desorption temperature, are a potentially interesting adsorbent for the removal of volatile organic compounds. This behavior should been related with the best synergetic effect of mesopores and micropores.  相似文献   

6.
The study evaluated the adsorption of two antibiotics by four engineered adsorbents (hypercrosslinked resin MN-202, macroporous resin XAD-4, activated carbon F-400, and multi-walled carbon nanotubes (MWCNT)) from aqueous solutions. The dynamic results demonstrated the dominant influence of pore size in adsorption. The adsorption amounts of antibiotics on XAD-4 were attributed to the hydrophobic effect, whereas steric hindrance or micropore-filling played a main role in the adsorption of antibiotics by F-400 because of its high microporosity. Aside from F-400, similar patterns of pH-dependent adsorption were observed, implying the importance of antibiotic molecular forms to the adsorption process for adsorbents. Increasing the ionic concentration with CaCl2 produced particular adsorption characteristics on MWCNT at pH 2.0 and F-400 at pH 8.0, which were attributed to the highly available contact surfaces and molecular sieving, respectively. Its hybrid characteristics incorporating a considerable portion of mesopores and micropores made hypercross linked MN-202 a superior antibiotic adsorbent with high adsorption capacity. Furthermore, the adsorption capacity of MWCNT on the basis of surface area was more advantageous than that of the other adsorbents because MWCNT has a much more compact molecular arrangement.  相似文献   

7.
Mesoporous carbon adsorbents, having high nitrogen content, were synthesized via nanocasting technique with melamine–formaldehyde resin as precursor and mesoporous silica as template. A series of adsorbents were prepared by varying the carbonization temperature from 400 to 700°C. Adsorbents were characterized thoroughly by nitrogen sorption, X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM), thermogravimetric analysis(TGA), elemental(CHN) analysis, Fourier transform infrared(FTIR) spectroscopy and Boehm titration. Carbonization temperature controlled the properties of the synthesized adsorbents ranging from surface area to their nitrogen content, which play major role in their application as adsorbents for CO_2 capture.The nanostructure of these materials was confirmed by XRD and TEM. Their nitrogen content decreased with an increase in carbonization temperature while other properties like surface area, pore volume, thermal stability and surface basicity increased with the carbonization temperature. These materials were evaluated for CO_2 adsorption by fixed-bed column adsorption experiments. Adsorbent synthesized at 700°C was found to have the highest surface area and surface basicity along with maximum CO_2 adsorption capacity among the synthesized adsorbents. Breakthrough time and CO_2 equilibrium adsorption capacity were investigated from the breakthrough curves and were found to decrease with increase in adsorption temperature. Adsorption process for carbon adsorbent–CO_2 system was found to be reversible with stable adsorption capacity over four consecutive adsorption–desorption cycles. From three isotherm models used to analyze the equilibrium data, Temkin isotherm model presented a nearly perfect fit implying the heterogeneous adsorbent surface.  相似文献   

8.
Mesoporous carbon adsorbents, having high nitrogen content, were synthesized via nanocasting technique with melamine–formaldehyde resin as precursor and mesoporous silica as template. A series of adsorbents were prepared by varying the carbonization temperature from 400 to 700°C. Adsorbents were characterized thoroughly by nitrogen sorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), elemental (CHN) analysis, Fourier transform infrared (FTIR) spectroscopy and Boehm titration. Carbonization temperature controlled the properties of the synthesized adsorbents ranging from surface area to their nitrogen content, which play major role in their application as adsorbents for CO2 capture. The nanostructure of these materials was confirmed by XRD and TEM. Their nitrogen content decreased with an increase in carbonization temperature while other properties like surface area, pore volume, thermal stability and surface basicity increased with the carbonization temperature. These materials were evaluated for CO2 adsorption by fixed-bed column adsorption experiments. Adsorbent synthesized at 700°C was found to have the highest surface area and surface basicity along with maximum CO2 adsorption capacity among the synthesized adsorbents. Breakthrough time and CO2 equilibrium adsorption capacity were investigated from the breakthrough curves and were found to decrease with increase in adsorption temperature. Adsorption process for carbon adsorbent–CO2 system was found to be reversible with stable adsorption capacity over four consecutive adsorption–desorption cycles. From three isotherm models used to analyze the equilibrium data, Temkin isotherm model presented a nearly perfect fit implying the heterogeneous adsorbent surface.  相似文献   

9.
高分子树脂与介孔分子筛吸附-脱附VOCs性能对比   总被引:1,自引:0,他引:1       下载免费PDF全文
采用溶剂热法制备介孔聚二乙烯基苯(PDVB)树脂,并以介孔分子筛MCM-41、SBA-15为参照,从吸附-脱附甲苯、邻二甲苯、均三甲苯性能和高湿度下的疏水性能方面对其进行对比研究.结果表明,PDVB具有最大的比表面积1219.1m2/g,其对低浓度甲苯吸附量约为介孔分子筛的2倍,同时吸附性能几乎不受水汽影响.随着VOCs分子尺寸增加,3种吸附剂对VOCs的饱和吸附量均有所增加,但PDVB的穿透吸附量明显高于分子筛.热重分析表明,在200℃以下3种吸附剂上吸附的有机分子均能脱附完全,具有优良的脱附再生性能.  相似文献   

10.
两种介孔分子筛动态吸附VOCs的研究   总被引:8,自引:2,他引:6       下载免费PDF全文
采用模板剂法制备了孔道规整、大比表面积的2种介孔分子筛MCM-41和SBA-15,并以甲苯、二甲苯、三甲苯为吸附对象,考察了介孔分子筛动态吸附VOCs的性能.结果表明,增加VOCs分子尺寸和浓度,降低床层温度可大幅提高介孔分子筛吸附性能.SBA-15由于介孔壁上的微孔结构适合吸附低浓度、小分子VOCs;MCM-41更适合吸附高浓度、大分子VOCs.TPD脱附试验表明,VOCs在介孔材料表面150℃下就能基本脱附完全.  相似文献   

11.
选取工业涂装VOCs废气作为试验对象,以蜂窝活性炭和沸石分子筛为吸附剂,设计固定床小试装置进行VOCs吸脱附试验。结果表明:蜂窝活性炭的碘值、比表面积、总孔容及微孔孔容均大于沸石分子筛,分别是沸石分子筛的1.79,2.93,1.55,2.02倍;相同脱附温度、进气风速条件下,VOCs从蜂窝活性炭表面脱附更容易,其脱附时间远低于沸石分子筛;相同反应条件下,蜂窝活性炭对VOCs的饱和吸附量明显高于沸石分子筛,但沸石分子筛的饱和吸附量受反应温度和VOCs浓度的影响相对较小;循环吸脱附10次后,蜂窝活性炭和沸石分子筛对VOCs的吸附率分别下降为第1次时的71.35%和81.15%,沸石分子筛的吸脱附性能更为稳定;蜂窝活性炭饱和吸附量大、脱附时间快,适用于宽负荷、低风量、中高浓度VOCs废气处理;沸石分子筛空气动力学及循环吸脱附性能较好,适用于处理初始温度相对较高、中低浓度VOCs废气。  相似文献   

12.
Adsorption of the hydrophobic organic compounds (HOCs) trichloroethylene (TCE), 1,3-dichlorobenzene (DCB), 1,3-dinitrobenzene (DNB) and γ-hexachlorocyclohexane (HCH) on five different carbonaceous materials was compared. The adsorbents included three polymer-based activated carbons, one coal-based activated carbon (F400) and multiwalled carbon nanotubes (MWNT). The polymerbased activated carbons were prepared using KOH activation from waste polymers: polyvinyl chloride (PVC), polyethyleneterephthalate (PET) and tire rubber (TR). Compared with F400 and MWNT, activated carbons derived from PVC and PET exhibited fast adsorption kinetics and high adsorption capacity toward the HOCs, attributed to their extremely large hydrophobic surface area (2700 m2/g) and highly mesoporous structures. Adsorption of small-sized TCE was stronger on the tire-rubber-based carbon and F400 resulting from the pore-filling effect. In contrast, due to the molecular sieving effect, their adsorption on HCH was lower. MWNT exhibited the lowest adsorption capacity toward HOCs because of its low surface area and characteristic of aggregating in aqueous solution.  相似文献   

13.
目前,我国面临严重的挥发性有机物(VOCs)污染问题。吸附法是研究与应用最为广泛的VOCs治理技术。主要介绍了吸附净化VOCs原理和几种常见的VOCs吸附材料,包括活性炭、新型多孔炭材料、沸石分子筛、黏土基吸附剂、金属有机框架和介孔硅。详述了各吸附材料的VOCs吸附能力和优缺点,判断了其应用价值,并指出了为提升大规模工业化应用潜力,后续研发的VOCs吸附材料应满足高吸附量、高疏水性、高热稳定性和再生能力强4个特征。  相似文献   

14.
随着人们对水环境污染严重性的高度关注,人们越来越重视良好吸附材料的开发。活性炭是一种最有效的吸附剂,拥有较大比表面积,但再生过程中有大量的损失,因此人们开始开发新的可循环使用的无机吸附材料。本文介绍了三种介孔硅吸附材料的合成方法,以及介孔硅吸附材料的化学改性应用,并且提出对吸附材料应用前景的建议。  相似文献   

15.
Sewage sludge with the additive corn cob was used as prescusor to prepare sludge-based carbon adsorbents by pyrolysis method. And then, the carbonizated products were activated with potassium hydroxide. The mixing ratio of the corn cob to sewage sludge was investigated. The surface area and pore size distribution, elemental composition, surface chemistry structure and the surface physical morphology were determined and compared. The results demonstrated that the addition of corn cob into the sewage sludge sample could effectively improve the surface area (from 287 to 591 m 2 /g) and the microporosity (from 5% to 48%) of the carbon based adsorbent, thus enhancing the adsorption behavior. The sulfur dioxide adsorption capacity was measured according to breakthrough test. It was found that the sulfur dioxide adsorption capacity of the adsorbents was obviously enhanced after the addition of the corn cob. It is presumed that not only highly porous adsorbents, but also a high metallic content of these materials are required to achieve good performances.  相似文献   

16.
为提高分子筛吸附氨氮的能力,采用碱蚀法对4种不同硅铝比ZSM5型分子筛进行脱硅处理,对比了脱硅前后吸附氨氮性能的差异;结合X射线衍射、扫描电镜等分析手段观察了其孔隙与晶体结构、表面形貌的变化,同时借助X射线荧光光谱、傅里叶红外光谱等表征手段分析了其内部元素组成与骨架基团的变化;考察了分子筛脱硅处理对改善其吸附氨氮性能的影响机制.结果表明,分子筛经脱硅后氨氮吸附量大幅提高,硅铝比越大吸附氨氮性能改善越显著,其中,硅铝比最小的ZSM5-27型分子筛脱硅后的氨氮平衡吸附量由5.81mg/g上升至10.44mg/g,上升幅度亦达79.7%;碱蚀脱硅处理有效降低了ZSM5型分子筛的硅铝比,分子筛硅铝比越大降低越显著.分子筛脱硅后,其介孔比表面积与比孔容增加、孔径分布变得宽泛;晶体结构仍保持完整、晶粒形态变得更加清晰规整;离子交换容量增加、硅/铝氧四面体结构单元作用增强.碱蚀法对ZSM5型分子筛具有骨架脱硅补铝、疏通孔道等多重作用,脱硅后分子筛活性位点增加、氨离子扩散阻力下降,吸附性能得到改善.  相似文献   

17.
孔径调变对MCM-41分子筛吸附VOCs性能的影响   总被引:1,自引:1,他引:0  
采用3种不同碳链长度的季铵盐表面活性剂CnTAB(n=8,12,16)为模板剂,分别合成8-MCM-41、12-MCM-41和16-MCM-41介孔分子筛,并以甲苯、邻二甲苯、均三甲苯为吸附对象,考察了介孔分子筛动态吸附VOCs的性能.结果表明,通过减少表面活性剂的碳链长度,可以成功地把MCM-41分子筛的孔径调变为4.1、3.2和2.4 nm.吸附实验结果表明,当MCM-41孔径减小时,其对低浓度甲苯、邻二甲苯的吸附量大幅上升,均三甲苯存在孔道扩散效应,其吸附量增加不明显.吸附等温线表明,在2.4 nm孔道内,3种芳烃分子均属于典型的Langmuir单分子层吸附;当孔径大于2.4 nm时,芳烃分子出现明显的多层吸附和毛细凝聚现象.  相似文献   

18.
采用新的固态胺吸附材料研究其对SO2的吸附性能.针对几种不同种类及孔径的分子筛嫁接胺基合成固态胺吸附材料,研究了其对SO2吸附规律,特别是研究了固态胺解吸再生的特性.研究结果表明固态胺具有较高的SO2吸附量,经20次吸附-解吸循环,留在固态胺中的残余量较低.结果还表明,分子筛结构的种类和孔径对固态胺吸附SO2的效果有重大影响,通常孔径较小的分子筛,吸附效果较差.但分子筛中SiO2/Al2O3的提高可降低解吸后的残余量.研究CO2,NOx对固态胺吸附剂的影响规律,结果表明,CO2对固态胺SO2吸附基本无影响,NOx则会干扰SO2的吸附.通过对解吸残余量化学成分的研究表明,解吸残余量具有与液态胺热稳定物类似的组分.由于固态胺可以有较高的工作温度,因此固态胺将更易于循环再生.  相似文献   

19.
对乙酰氨基酚修饰的后交联树脂对双酚A的吸附性能   总被引:1,自引:0,他引:1       下载免费PDF全文
用二氯乙烷为溶剂,用FeCl3为催化剂,使氯球和对乙酰氨基酚发生Friedel-Crafts反应制得了对乙酰氨基酚修饰的后交联树脂,对其结构进行了表征,研究乙酰氨基和酚羟基二类氢键作用位点修饰的后交联树脂对双酚A的吸附性能.结果表明,红外光谱显示对乙酰氨基酚已被成功地修饰在后交联树脂上.对乙酰氨基酚修饰的后交联树脂与氯球相比,BET比表面积、孔容明显增大,孔径明显变小.对乙酰氨基酚修饰的后交联树脂对双酚A的吸附量明显高于75%活性炭的聚砜微球对双酚A的吸附量.对乙酰氨基酚修饰的后交联树脂对双酚A的吸附为放热、自发的过程;树脂可以用100%酒精解吸,解吸率为99.92%;吸附动力学数据符合一级吸附速率方程,颗粒内扩散是吸附速率的主要控制步骤,吸附速率同时还受液膜扩散的影响.  相似文献   

20.
毕薇薇  陈娅  马晓雁  邓靖 《中国环境科学》2020,40(11):4762-4769
采用水热法成功制备了磁性有序介孔碳(Fe-OMC),用于吸附水中双酚A (BPA).采用高倍投射电镜、X射线衍射仪、傅里叶红外光谱仪、比表面积分析仪和振动样品磁强计对Fe-OMC进行表征.结果表明,该吸附剂具备较大的比表面积、独特的有序介孔孔道结构、丰富的含氧官能团以及较强的超顺磁性.Fe-OMC能够高效地吸附去除水中的BPA,平衡吸附量可达72.62mg/g,经过外加磁场分离回收后依旧具备较好的吸附性能.随着BPA浓度从1mg/L提高到20mg/L,其平衡吸附量由8.33mg/g增至91.78mg/g.随着pH值的升高呈现出先降低后升高再降低的趋势,最高吸附量出现在pH=8(75.34mg/g).Fe-OMC对BPA的吸附过程可用准二级吸附动力学模型和Langmuir吸附等温模型进行描述.计算的热力学参数表明,Fe-OMC对BPA的吸附过程是自发进行的放热过程.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号