首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the rapid increase in the application of biochars as amendments, studies are needed to clarify the possible environmental risks derived from biochars to use safely the biomass resources. This work reported selected dark sides of maize straw-and swine manurederived biochars pyrolyzed at 300 and 500°C. During the pyrolysis processes, total heavy metals in the biochars were enriched greatly accompanying with considerable emission of the heavy metals into atmosphere and the trends became increasingly obvious with pyrolysis temperature. Meanwhile, the biochars showed distinctly decreased available heavy metals compared with raw feedstocks, which could be mainly attributed to the sorption by the inorganics in the biochars. The water-and acid-washing treatments significantly increased the releasing risks of heavy metals from biochars into the environments. Electron paramagnetic resonance analysis indicated that persistent free radicals, emerged strongly in the biochars as a function of the aromatization of biomass feedstocks, were free from the influence of water-, acid-, or organic-washing of the biochars and could remain stable even after aged in soils for 30 days. Dissolved biochars, highly produced during pyrolysis processes, showed distinct properties including lower molecular weight distribution while higher aromaticity compared with soil dissolved organic carbon.The results of this study provide important perspectives on the safe usage of biochars as agricultural/environmental amendments.  相似文献   

2.
为拓展活性污泥资源化利用方向,在固定床反应器中研究了不同含水率污泥与小麦秸秆的共热解。将不同含水率的污泥和秸秆在600~900℃范围内混合热解,研究了热解温度、污泥含水率和秸秆添加量对气体组成的影响。当污泥含水率一定时,随着反应器温度的升高,H2和CO的含量逐渐增加。在相同温度下,随着污泥含水率的增加,H2的含量呈现先增加后减少的趋势,而CO含量呈逐渐下降趋势。当污泥含水率为60%时,H2的含量达到最大值。当热解温度为800℃时,制备富氢合成气的最佳比例为40%的秸秆与含水率为60%的污泥混合热解。  相似文献   

3.
窦晓敏  陈德珍  戴晓虎 《环境科学》2014,35(11):4359-4364
提出一种污泥预植重金属炭化后固定的概念,并以重金属Cu为代表,以CuCl2的形式植入;研究了在不同Cu预植浓度、不同温度下炭化后污泥本身以及额外添加的重金属在炭中的保留率以及稳定特性,同时采用不同的浸出方法,确定与污泥炭最终处置目标相关的最大可预植量.结果表明,在污泥中Cu的预植量为0.5%(质量分数,以Cu元素计)时,经过热解炭化,90%以上的Cu都保留在污泥炭中,其固定效果与温度有关,400℃以上时,炭化温度越高,Cu越容易浸出.在污泥中预植重金属Cu存在最大容量限制,最大可预植量与污泥炭最终处置目标有关,若选择在卫生填埋场进行填埋,则Cu的预植量不宜超过0.5%.本研究提供了一种污泥包裹其他含重金属的废料共炭化实现无害化的新思路,从而达到用污泥治废的效果.  相似文献   

4.
Temperature is the determining factor of pyrolysis, which is one of the alternative technologies for oil sludge treatment. The effects of final operating temperature ranging from 350 to 550°C on pyrolysis products of oil sludge were studied in an externally-heating fixed bed reactor. With an increase of temperature, the mass fraction of solid residues, liquids, and gases in the final product is 67.00%–56.00%, 25.60%–32.35%, and 7.40%–11.65%, and their corresponding heat values are 34.4–13.8 MJ/kg, 44.41–46.6 MJ/kg, and 23.94–48.23 MJ/Nm3, respectively. The mass and energy tend to shift from solid to liquid and gas phase (especially to liquid phase) during the process, and the optimum temperature for oil sludge pyrolysis is 500°C. The liquid phase is mainly composed of alkane and alkene (C5–C29), and the gas phase is dominantly HCS and H2.  相似文献   

5.
为了把城市污泥中温热解产生的挥发性产物转化为可直接利用的洁净可燃性气体或重要的化工原料合成气,采用两段式热解装置对城市污泥进行了催化热解实验研究,讨论了不同催化剂对城市污泥热解挥发性产物的催化裂解能力,结果表明:城市污泥在热解终温500℃,热解液产率最大,超过500℃,热解液产率减少,热解气增多,固相产率基本不变;城市污泥热解液的裂解温度需在900℃以上,产生的气体组分主要为H2、CO、CH4等小分子非冷凝性气体;Ni/分子筛复合催化剂对热解液转化为合成气的作用效果较好,合成气体(H2+CO)体积含量占气体总量的85%以上.  相似文献   

6.
The effect of salinity on sludge alkaline fermentation at low temperature(20°C) was investigated, and a kinetic analysis was performed. Different doses of sodium chloride(Na Cl, 0–25 g/L) were added into the fermentation system. The batch-mode results showed that the soluble chemical oxygen demand(SCOD) increased with salinity. The hydrolysate(soluble protein, polysaccharide) and the acidification products(short chain fatty acids(SCFAs), NH+4–N, and PO_4~(3-)–P) increased with salinity initially, but slightly declined respectively at higher level salinity(20 g/L or 20–25 g/L). However, the hydrolytic acidification performance increased in the presence of salt compared to that without salt.Furthermore, the results of Haldane inhibition kinetics analysis showed that the salt enhanced the hydrolysis rate of particulate organic matter from sludge particulate and the specific utilization of hydrolysate, and decreased the specific utilization of SCFAs. Pearson correlation coefficient analysis indicated that the importance of polysaccharide on the accumulation of SCFAs was reduced with salt addition, but the importance of protein and NH+4–N on SCFA accumulation was increased.  相似文献   

7.
针对一次给料稳定运行污泥热解系统制取三相产物的工艺展开分析,并基于能流图、能源回收率、能耗比等方法和衡算指标讨论该工艺的能量平衡关系。研究发现:热解产物的产率和热值高低受热解终温影响最大,反应时间次之,升温速率最小。不同工况条件下热解过程热量损失具有明显差别,热解停留时间长、升温速率低都造成输入能量、热损失增大。热解过程能量平衡分析也验证了以制取气相产物为目标的污泥热解工艺条件的回收率和能耗比最高,分别为0.94和1.73;与高产出液相油的热解过程相比,产物总能量相差不多而系统消耗的能量能够减少35%。从能源回收、节约能源角度分析,污泥低温热解制取可燃性气相产物的工艺系统具有较高应用价值。  相似文献   

8.
塑料垃圾的热解气化实验研究   总被引:1,自引:0,他引:1  
在小型外热式固定床实验台上,对塑料垃圾进行高温热解实验研究。研究主要针对不同的热解终温,目的是弄清热解过程的规律、热解温度对热解产物的影响、热解终温和产气量及气体成分的组分之间的关系。尤其研究了在热解处于末期的时候,强化水煤气反应对结果的影响。  相似文献   

9.
Sorbents for CO_2 capture have been prepared by wet impregnation of a commercial active carbon(Ketjen-black, Akzo Nobel) with two CO_2-philic compounds, polyethylenimine(PEI)and tetraethylenepentamine(TEPA), respectively. The effects of amine amount(from 10 to70 wt.%), CO_2 concentration in the feed, sorption temperature and gas hourly space velocity on the CO_2 capture performance have been investigated. The sorption capacity has been evaluated using the breakthrough method, with a fixed bed reactor equipped with on line gas chromatograph. The samples have been characterized by N_2 adsorption–desorption,scanning electron microscopy and energy dispersive X-ray(SEM/EDX). A promising CO_2 sorption capacity of 6.90 mmol/gsorbenthas been obtained with 70 wt.% of supported TEPA at 70℃ under a stream containing 80 vol% of CO_2. Sorption tests, carried out with simulated biogas compositions(CH_4/CO_2mixtures), have revealed an appreciable CO_2 separation selectivity; stable performance was maintained for 20 adsorption–desorption cycles.  相似文献   

10.
In this work, the effects of different methods of activation on CO2 adsorption performance of activated carbon were studied. Activated carbons were prepared from biochar, obtained from fast pyrolysis of white wood, using three different activation methods of steam activation, CO2 activation and Potassium hydroxide (KOH) activation. CO2 adsorption behavior of the produced activated carbons was studied in a fixed-bed reactor set-up at atmospheric pressure, temperature range of 25–65°C and inlet CO2 concentration range of 10–30 mol% in He to determine the effects of the surface area, porosity and surface chemistry on adsorption capacity of the samples. Characterization of the micropore and mesopore texture was carried out using N2 and CO2 adsorption at 77 and 273 K, respectively. Central composite design was used to evaluate the combined effects of temperature and concentration of CO2 on the adsorption behavior of the adsorbents. The KOH activated carbon with a total micropore volume of 0.62 cm3/g and surface area of 1400 m2/g had the highest CO2 adsorption capacity of 1.8 mol/kg due to its microporous structure and high surface area under the optimized experimental conditions of 30 mol% CO2 and 25°C. The performance of the adsorbents in multi-cyclic adsorption process was also assessed and the adsorption capacity of KOH and CO2 activated carbons remained remarkably stable after 50 cycles with low temperature (160°C) regeneration.  相似文献   

11.
A novel joint method of bioleaching with Fenton oxidation was applied to condition sewage sludge. The specific resistance to filtration (SRF) and moisture of sludge cake (MSC) were adopted to evaluate the improvement of sludge dewaterability. After 2-day bioleaching, the sludge pH dropped to about 2.5 which satisfied the acidic condition for Fenton oxidation. Meanwhile, the SRF declined from 6.45 × 1010 to 2.07 × 1010 s2/g, and MSC decreased from 91.42% to 87.66%. The bioleached sludge was further conditioned with Fenton oxidation. From an economical point of view, the optimal dosages of H2O2 and Fe2 + were 0.12 and 0.036 mol/L, respectively, and the optimal reaction time was 60 min. Under optimal conditions, SRF, volatile solids reduction, and MSC were 3.43 × 108 s2/g, 36.93%, and 79.58%, respectively. The stability and settleability of sewage sludge were both improved significantly. Besides, the results indicated that bioleaching-Fenton oxidation was more efficient in dewatering the sewage sludge than traditional Fenton oxidation. The sludge conditioning mechanisms by bioleaching-Fenton oxidation might mainly include the flocculation effects and the releases of extracellular polymeric substances–bound water and intercellular water.  相似文献   

12.
城市生活污泥低温催化热解实验研究   总被引:5,自引:1,他引:4  
文章研究了在固体残留物催化作用下,不同热解温度下污泥热解产物的产率及特性。结果表明,与无催化剂相比,污泥低温热解所得的液体产率、油品产率、气体产率和固体减少率明显增加。油品最大产率所需温度从440℃降低至400℃,油品最大产率从20.5%增加到24.5%,油品的品质有一定的提高。  相似文献   

13.
城市污水厂污泥低温热解动力学模型研究   总被引:5,自引:0,他引:5       下载免费PDF全文
依据对城市污水厂污泥低温热化学转化(热解)反应机理研究的结果,提出污泥热解反应的二级串联竞争反应模型。由非等温(恒速升温)和拟等温污泥T GA实验数据支持,对反应模式导出的动力学模型进行了参数估值。模型可对相关反应器的发展提供支持。  相似文献   

14.
利用厌氧消化技术处理城市污泥等有机废弃物,可以生成以甲烷为主要成分的沼气,同时实现废弃物减量化。传统的污泥厌氧消化技术存在水力停留时间长,处理水质差,反应器对环境变动敏感,运行不稳定等缺陷。使用有效体积15 L的实验室规模厌氧膜生物反应器(AnMBR)对初沉污泥与剩余污泥混合的城市污水厂污泥进行高浓度厌氧消化处理。AnMBR通过膜过滤方式将悬浮固体(SS)截留在反应器内,增强了反应器运行的稳定性并促进有机物的分解。AnMBR反应器在中温35℃,HRT为15 d,有机负荷为4.66 g-COD/(L·d)的条件下进行了为期155 d的长期运行实验。实验过程中,反应器运行稳定,没有出现氨氮抑制和挥发性脂肪酸的积累。沼气收率为0.48 L/g-VS,甲烷平均含量为63.32%。膜过滤水中COD浓度为0.77 g/L,COD去除率高达98%以上。通过物质衡算,基质总COD的54.38%转化为甲烷,仅有0.6%残留在膜过滤水中。在保持反应器污泥浓度25 g/L的高浓度条件下,实现了工作模式为4 min抽吸,1 min休息,平均膜通量9.6 L/(m2·h)的连续稳定运行。通过膜阻力抵抗值的计算,污染膜总阻力为11.87×1012/m,其中附着在膜表面的泥饼层和导致膜孔闭塞的有机层为膜污染形成的主要因素。通过长期连续实验的产甲烷情况及膜过滤效果,验证了AnMBR在有机废弃物减量化和能源回收应用上的可行性。  相似文献   

15.
颗粒污泥SBR处理生活污水同步除磷脱氮的研究   总被引:5,自引:2,他引:3  
卢姗  季民  王景峰  魏燕杰 《环境科学》2007,28(8):1687-1692
采用厌氧-好氧的SBR运行方式,以人工配水培养的好氧颗粒污泥为接种污泥,处理碳、氮、SS浓度均较高的生活污水,研究了系统中颗粒污泥的稳定性及其去除有机物和同步除磷脱氮的效果.经过1个月的驯化培养,颗粒污泥即可呈现出良好的污染物去除性能并趋于稳定,反应器中颗粒污泥含量始终占污泥总量的68%以上.颗粒污泥系统污泥浓度为5 000~6000mg/L,SVI值为20~35 mL/g.经过3个月的运行后,反应器中颗粒污泥由原来以粒径0.6~0.9 mm的中等大小颗粒占主体变为粒径>1.25 mm的大颗粒占主体.稳定运行阶段颗粒污泥系统对COD、TOC、磷酸盐、氨氮、总氮和SS的平均去除率分别为83.04%、70.41%、94.30%、86.51%、41.82%和85.89%.对反应器运行过程中典型周期的分析,反映出颗粒污泥良好的同步除磷脱氮效果.  相似文献   

16.
卢勇  徐治国  赵杰 《环境科技》2009,22(5):32-34
DASB反应器作为新型现代厌氧反应器,具有结构简单、运行方便,处理效果好等优点,在处理生活污水方面有着广泛的应用前景。研究了常温条件下,DASB处理生活污水的启动运行,得出在最佳水力停留时间6h时,COD和SS的平均去除率分别达到81.48%和86.07%。  相似文献   

17.
As a support material, zeolite can be used to promote the granulation process due to its high settable property and the ability to retain biomass on its surface. The present paper reports on the influence of zeolite addition on the hydrodynamic behavior of an expanded granular sludge bed reactor (EGSB). Different models were applied to fit the flow pattern and to compare EGSB hydrodynamic performance with and without the addition of zeolite. The experimental data fit the tanks in a series model for zeolite bed height of 5 cm and upflow velocity of 6 m/hr. Higher axial dispersion degree (D/uL) was obtained at lower heights of zeolite. The real hydraulic retention time (HRTr) was increased with both increased zeolite bed height and increased upflow velocity. The short-circuit results for 5 cm of zeolite bed and 6, 8 and 10 m/hr upflow velocity were 0.3, 0.24 and 0.19 respectively, demonstrating the feasibility of using zeolite for a proper hydrodynamic environment to operate the EGSB reactor. The presence of zeolite resulted in the higher percentage values of dead zones, ranging from 12% to 24%. Zeolite addition exerted a positive effect on the hydrodynamics pattern for this technology being advantageous for the anaerobic process because of its possible contribution to better biofilm agglomeration, granule formation and substrate-microorganism contact.  相似文献   

18.
污水污泥低温热解实验研究   总被引:2,自引:0,他引:2  
研究不同热解最终温度下污水污泥热解产物的产率及特性。结果表明,随着温度的升高,固体产物产率下降,且C/H增加;气体产率随着温度的升高而增加;液体产物产率随着热解温度的升高而增加,440℃时达到最大30.5%;热解温度进一步升高,液体产率略有不太明显的下降;液体油品具有较高的热值,它们作为潜在的能源是不可忽视的。  相似文献   

19.
Impact of ultrasonication(ULS) and ultrasonication–ozonation(ULS-Ozone) pre-treatment on the anaerobic digestibility of sewage sludge was investigated with semi-continuous anaerobic reactors at solid retention time(SRT) of 10 and 20 days. The control, ULS and ULS-Ozone reactors produced 256, 309 and 348 m L biogas/g CODfedand the volatile solid(VS) removals were 35.6%, 38.3% and 42.1%, respectively at SRT of 10 days. At SRT of20 days, the biogas yields reached 313, 337 and 393 m L biogas/g CODfedand the VS removal rates were 37.3%, 40.9% and 45.3% in the control, ULS and ULS-Ozone reactors, respectively.ULS-Ozone pre-treatment increased the residual organic amount in the digested sludge.These soluble residual organics were found to contain macromolecules with molecular weights(MW) larger than 500 k Da and smaller polymeric products with MW around 19.4and 7.7 k Da. These compounds were further characterized to be humic acid-like substances with fluorescent spectroscopy analysis.  相似文献   

20.
Land disposal of fly ash (FA) and sewage sludge (SS) is a major problem due largely to their potentially harmful constituents. Combined use of FA and SS however may help reduce the associated pollution potential. In this paper we summarize the results of several case studies designed to assess the feasibility of land application of FA with and without SS. A wide range of application rates was tested under laboratory, greenhouse and field conditions. The leaching of metals from soil columns amended with moderate rates of FA applications (8-16 Mg ha−1) generally had no significant impact on the metal content of leachate or their downward migration in the soil. The application of FA or SS at a much high rate (74.1 Mg ha−1) significantly increased both leaching and downward migration of metals. The use of 1:1 FA+SS mixture at 148.2 Mg ha−1 reduced metal leaching compared to the combined metal quantities leached when FA or SS applied at 74.1 Mg ha−1. The results indicate that combined use of FA and SS at a rational rate of application should not cause any significant effect on drainage water quality. Plant studies conducted using FA and SS mixtures indicated that these materials could be beneficial for biomass production, without contributing significant metal uptake or leaching. The application of FA as high as 560 Mg ha−1 in a long-term field trial had no detectable deterioration in soil or groundwater quality and no substantial increases in plant uptake of metals and other trace elements were observed. Low to moderate rates of FA and SS therefore could be successfully used as soil amendments, particularly so when used as a mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号