首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Powder mixed near dry electrical discharge machining (PMND-EDM) is a novel electrical discharge machining (EDM) process. It is proposed to further improve the machining efficiency of dry EDM. The principle of material removal in PMND-EDM is illustrated and its deionization principle is proposed. The influence of residual heat on MRR is analyzed. The concept of superfluous residual heat is proposed. The material removal rate (MRR), the main index of machining efficiency for PMND-EDM process, is researched. Single factor experiments are performed to get effect of peak current, pulse on time, pulse off time, flow rate, tool rotational speed, air pressure and powder concentration on MRR under different material combinations of tool electrode and workpiece electrode. Thermal phenomena in PMND-EDM are illustrated. Effect of each process parameter on MRR of PMND-EDM is gotten and analyzed based on the deionization principle of PMND-EDM. Differences in MRR under different material combinations are found out. Brass tool electrode and W18Cr4V workpiece gain higher MRR under most of discharge conditions, while the superiority of copper tool electrode and 45 carbon steel workpiece in MRR arise when there is improper heat dissipation. The difference is analyzed based on the deionization principle of PMND-EDM.  相似文献   

2.
In this work, the effects of tool rotation and various intensities of external magnetic field on electrical discharge machining (EDM) performance have been studied. Experimental trials divided into three regimes of low energy regime, middle energy regime and high energy regime. The influences of process parameters were investigated on main outputs of material removal rate (MRR) and surface roughness (SR). In order to correlate the input parameters and output values two mathematical models were developed to predict the MRR and SR according to variations of discharge energy, magnetic field intensity and tool rotational speed. Results indicated that the applying a rotational magnetic field around the machining gap improves the MRR and SR. Combination of rotational magnetic field and rotary electrode increases the machining performance, in comparison of previous conditions. This is due to better flushing debris from machining gap. This work introduces a new method for improving the machining performance, in cost and time points of view.  相似文献   

3.
In most EDM operations, the maximum contribution in the total operation cost is the tool cost. Electrode wear is a major problem in EDM process. Therefore, in this paper, the process performance of sintered copper (Cu)–titanium carbide (TiC) electrode tip in ultrasonic assisted cryogenically cooled electrical discharge machining (UACEDM) has been studied. The performance parameters studied in this paper are electrode wear ratio (EWR), material removal rate (MRR), surface roughness (SR), out of roundness and surface integrity. The process parameters considered in this study are discharge current, pulse on time, duty cycle and gap voltage. Cermet was fabricated, having copper content of 75% and titanium carbide content of 25%, by mixing, pressing, and sintering. The performance of the newly formed cermet electrode tip is compared with conventional copper electrode tip for UACEDM process and analyzed. It has been observed that EWR and out of roundness decreases when cermet electrode tip is used as compared to conventional tooltip. It has also been observed that MRR and SR increase when cermet tooltip is used. The surface cracks density and crack width on workpiece machined by cermet tooltip have been found to be lesser as compared to the specimen machined by conventional tooltip.  相似文献   

4.
In this work the parametric study on EDM process using ultrasonic assisted cryogenically cooled copper electrode (UACEDM) during machining of M2 grade high speed steel has been performed. Electrode wear ratio (EWR), material removal rate (MRR) and surface roughness (SR) was the three parameters observed. Discharge current, pulse on time, duty cycle and gap voltage were the controllable process variables. The effect of process variables on EWR, MRR and SR has been analyzed. The MRR, EWR and SR obtained in EDM process with normal electrode, cryogenically cooled electrode and ultrasonic assisted cryogenically cooled electrode have been compared. EWR and SR were found to be lower in UACEDM process as compared to conventional EDM for the same set of process parameters, while MRR was at par with conventional EDM process. The surface integrity of work piece machined by UACEDM process has been found to be better as compared to conventional EDM process. The shape of the electrode has also been measured and it was found that the shape retention was better in UACEDM process as compared to conventional EDM process. Thus in the present work UACEDM process has been established to be better than conventional EDM process due to better tool life, tool shape retention ability and better surface integrity.  相似文献   

5.
Titanium aluminide intermetallics offer an attractive combination of low density and good oxidation, corrosion and ignition resistance with unique mechanical properties. In this study two series of machining tests are designed. Firstly the powder mixed electrical discharge machining (PMEDM) of γ-TiAl by means of different powders such as aluminum, chrome, silicon carbide, graphite and iron is performed to investigate the output characteristics of surface roughness and topography, material removal rate (MRR), electrochemical corrosion resistance of machined samples and also the machined surfaces are investigated by means of EDS and XRD analyses. Secondly after selection the aluminum powder as the most appropriate kind of powder, the current, pulse on time, powder size and powder concentration are changed in different levels for overall comparison between EDM and PMEDM output characteristics. In the first setting of input machining parameters, aluminum powder improves the surface roughness of TiAl sample about 32% comparing with EDM case and also aluminum particles with the size of 2 μm, in the second setting of input parameters lead to 54% enhancement of MRR comparing with EDM case. The electrochemical corrosion results show that, corrosion resistance of the samples which are machined by graphite and chrome powders respectively are about three and two times more than the sample which is machined without powder.  相似文献   

6.
The design and tuning of a three-input fuzzy logic controller for electrical discharge machining (EDM) of diesel injector spray holes are presented. The tuning process is based on the variable type and discretization level to balance the data precision and computational time for servo motion updates in the fuzzy logic controller and is performed to improve the micro-hole EDM drilling time. The type and number of input parameters are studied to select the gap voltage, spark ratio, and change of spark ratio as input parameters for the fuzzy logic controller. A gain scheduling controller is used as the baseline and shows excellent drilling time in drilling a 1.14 mm thick workpiece using a 150 μm diameter wire electrode. The tuned fuzzy logic controller is comparable with the gain scheduling controller in drilling time and demonstrates its advantages on different EDM drilling configurations, including deep-hole and small-diameter micro-hole drilling. Analysis of EDM pulse trains reveals insights for controller design and identifies requirements for further improvement.  相似文献   

7.
This work deals with parametric study of dry wire EDM (WEDM) process of cemented tungsten carbide. Experiments have been conducted using air as dielectric medium to investigate effects of pulse on time, pulse off time, gap set voltage, discharge current and wire tension on cutting velocity (CV) surface roughness (SR) and oversize (OS). Firstly, a series of exploratory experiments were carried out to identify appropriate gas and its pressure. Afterward, preliminary experiments were conducted to investigate effects of process parameters on dry WEDM characteristics and find appropriate ranges for each factor. Then a central composite rotatable method was employed to design experiments based on response surface methodology (RSM). Empirical models were developed to create relationships between process factors and responses by considering to analysis of variances (ANOVA). To increase the predictability of the process, intelligent models have been developed based on back-propagation neural network (BPNN) and accuracy of these models was compared with mathematical models based on root mean square error (RMSE) and prediction error percent (PEP). In order to select optimal solutions in the cases of single-objective and multi-objectives optimization problems, optimization includes two main approaches. First approach was based on mathematical model and desirability function. Also second approach was designed based on neural network and particle swarm optimization. These approaches were applied in both cases of single-objective and multi-objectives optimization problems and their results were compared with together. Results indicated that selection of air at inlet pressure of 1.5 bar is really appropriate for conducting experiments of next stages. Also, the BPNN creates more accurate prediction rather than mathematical model. Moreover, the BPNN-PSO approach was more efficient in optimization of process rather than mathematical model-desirability function in respect with validation tests.  相似文献   

8.
Three- dimensional laser machining of structural ceramics such as alumina (Al2O3), silicon nitride (Si3N4), silicon carbide (SiC) and magnesia (MgO) was carried out using a 1.06 μm wavelength pulsed Nd:YAG laser. The rate of machining predicted in terms of material removed per unit time (mg/s) increased with an increase in heating rate (K/s). A thermal model based on temperature dependent absorptivity and thermophysical properties, in addition to conduction, convection and radiation based heat transfer, was developed to predict material removal rate. Predicted values were compared with actual measurements made from machined cavities. Such a study would enable advance predictions of the laser processing conditions required to machine cavities of desired dimensions.  相似文献   

9.
The material removal within different machining process can be performed in distinct modalities. One of the modality is based on the erosion phenomena. In this paper, theoretical model of abrasive jet machining based on erosion phenomenon is discussed. The material is removed from the surface due to erosion. In abrasive jet machining process, the output parameter is achieved by controlling various input parameters. This paper discusses the effects of various input parameters in abrasive jet machining (AJM) on the material removal rate (as the output parameter). The results presented in the paper are obtained from a theoretical study carried out with the help of mathematical model and computational technique. Theoretical investigation indicates that magnetic field, electric field and inhomogeneity in DC electric field have significant effect on metal removal by abrasive jet machining process.  相似文献   

10.
In this paper, the effect of silicon powder mixing into the dielectric fluid of EDM on machining characteristics of AISI D2 (a variant of high carbon high chrome) die steel has been studied. Six process parameters, namely peak current, pulse-on time, pulse-off time, concentration of powder, gain, and nozzle flushing have been considered. The process performance is measured in terms of machining rate (MR). The research outcome will identify the important parameters and their effect on MR of AISI D2 in the presence of suspended silicon powder in a kerosene dielectric of EDM. The study indicated that all the selected parameters except nozzle flushing have a significant effect on the mean and variation in MR (S/N ratio). Optimization to maximize MR has also been undertaken using the Taguchi method. The ANOVA analysis indicates that the percentage contribution of peak current and powder concentration toward MR is maximum among all the parameters. The confirmation runs showed that the setting of peak current at a high level (16 A), pulse-on time at a medium level (100 μs), pulse-off time at a low level (15 μs), powder concentration at a high level (4 g/l), and gain at a low level (0.83 mm/s) produced optimum MR from AISI D2 surfaces when machined by silicon powder mixed EDM.  相似文献   

11.
薯类酒精醪液综合治理工程技术经济分析   总被引:5,自引:0,他引:5  
在充分调查目前薯类酒精醪液治理工程的基础上,结合多年的实际工作经验和研究成果,提出了薯类酒精醪液治理达标排放的基本工艺流程,并对该基本流程的主要设计环节进行了技术经济分析。  相似文献   

12.
Surface modification by material transfer during electrical discharge machining (EDM) has emerged as a key research area in the last decade. Material may be provided to the machined surface of the workpiece by the eroding tool electrode or by using powder-mixed dielectric. Breakdown of the hydrocarbon dielectric contributes carbon to the plasma channel which may also cause surface modification. The present work has investigated the response of three die steel materials to surface modification by EDM method with tungsten powder mixed in the dielectric medium. Taguchi experimental design technique was used to conduct the experiments on each work material independently. Peak current, pulse on-time and pulse off-time were taken as variable factors and micro-hardness of the machined surface was taken as the response parameter. X-ray diffraction (XRD) and spectrometric analysis show substantial transfer of tungsten and carbon to the workpiece surface and an improvement of more than 100% in micro-hardness for all the three die steels. Presence of tungsten carbide (WC and W2C) indicates that its formation is taking place in the plasma channel. Machining parameters for the best value of micro-hardness for each work material were found to be the same.  相似文献   

13.
由于GEO轨道空间环境的特殊性,温度、辐照电子能量和束流密度等环境因素会对处于该轨道的航天器太阳电池阵充放电效应造成影响,为掌握GEO轨道太阳电池阵静电放电影响规律,以航天器太阳电池阵为研究对象,对太阳电池阵机理和研究现状进行分析的基础上,设计了太阳电池阵静电放电试验电路,确定了太阳电池阵静电放电试验参数与试验程序,重点开展了一定电子能量和束流密度条件下环境温度因素对太阳电池阵静电放电特性试验研究,获得了环境因素对太阳电池阵静电放电的影响规律。研究表明,静电放电频率、放电电流幅值与环境温度相关,温度越高,放电频率越小,放电电流幅值相应减小,放电电流主要能量集中在10 MHz以下频段。研究成果可为航天器静电放电效应分析和防护设计提供参考。  相似文献   

14.
刘丽娜  丁志江  肖林  肖立春 《环境工程》2012,(Z2):203-206,47
极配形式作为电除尘器的核心组成部分,对电晕放电特性的影响十分重要。电除尘器极配系统电晕放电性能可用伏安特性曲线来描述和判断。通过实验研究了电场风速、雾滴粒径和喷水量对湿式电除尘器电晕放电特性的影响。结果表明:电场风速对起晕电压和火花放电电压的影响不大;在相同的试验条件下,随着电场风速的增大,伏安特性曲线向下偏移;在相同的电压下,雾滴粒径越大,电晕电流越大,但火花放电电压却降低;在一定的电场风速下,随着喷水量的增大,伏安特性曲线有向上偏移的趋势,但火花放电电压比不喷水时要低得多。  相似文献   

15.
概括了目前典型的电极直接驱动的小型电火花加工装置——椭圆驱动装置、冲击式驱动装置和蠕动式驱动装置的发展现状,介绍了这些装置的结构和工作原理,分析了其存在的不足,提出了改进措施.最后指出了电极直接驱动的小型电火花加工装置的发展趋势及其应用前景,并首次提出了电火花加工机器人的新概念.  相似文献   

16.
The discussion presented in this work is about evaluation of physical behavior of μED-milling process based on channel shape, form and surface quality. μED-milling process is gaining lot of interest in recent times in micro manufacturing to generate complex shapes. Tool rotation and traverse which are not an inherent part of EDM process become important for μED-milling where it significantly influence the molten metal flow, debris flushing and redeposition. The effect of tool rotation not only disturbs the plasma but also affects the final shape and form of channel. Using scanning electron micrographs of μ-channel at different instant and conditions of machining, the physical nature of the process is understood and the results are presented. This study will provide a better understanding of the working phenomenon of μED-milling process.  相似文献   

17.
陶瞻  孙明  黄书舟 《环境工程》2020,38(9):71-75,230
采用自行研制的喷嘴-板-筒式反应器,研究了大气压纳秒负脉冲空气放电对水中大肠杆菌(Escherichia coli, E.coli)灭菌率的影响因素及规律。实验中空气自放电喷嘴电极进入反应器,气流带动放电生成的活性粒子流到达并作用于水中大肠杆菌。研究结果表明:本实验装置可有效实现对水中大肠杆菌的灭活,灭菌率随着放电电压和脉冲重复频率的增加、放电处理时间的延长而升高;随着鼓气速率的增大先增大后减小;随着喷嘴电极直径的增加先减小后增大。当采用1.30 mm喷嘴电极,在脉冲峰值电压为-32 kV、重复频率80 Hz,鼓气速率为80 mL/min时,连续放电处理12 min,灭菌率达到91%。  相似文献   

18.
基于GIS的渤海湾溢油预测系统研究   总被引:2,自引:0,他引:2  
为预测海上溢油的运动轨迹和扩散面积,以渤海湾为研究对象,根据FVCOM模型和MM5模式来模拟流场和风场,充分考虑风化过程对溢油行为归宿的影响,利用Fortran语言建立动态溢油模型并生成DLL.在Visual Studio.net语言环境下基于ArcEngine控件进行组件式GIS开发,嵌入动态溢油DLL,开发出渤海湾...  相似文献   

19.
Metalworking fluids (MWFs) are used widely in machining process to dissipate heat, lubricate moving surfaces, and clear chips. They have also been linked to a number of environmental and worker health problems. To reduce these impacts, minimum quantity lubrication (MQL) sprays of MWF delivered in air or CO2 have been proposed. MQL sprays can achieve performance comparable with conventional water-based or straight oil MWFs while only delivering a small fraction of the fluid. This performance advantage could be explained by the enhanced penetration into the cutting zone that results from delivering MWF in high pressure and precise sprays. To explore this hypothesis, an analytical model of MWF penetration into the flank face of the cutting zone is developed and validated using experimental data. The model is based on a derivation of the Navier–Stokes equation and the Reynolds equation for lubrication and applied to an orthogonal cutting geometry under steady-state conditions. A solution to the model is obtained using a numerical strategy of discretizing the analytical scheme with two-dimensional centered finite difference method. Penetration into the cutting zone is estimated for MQL sprays delivered in air, CO2 and N2 as well as two conventional MWFs, straight oil and semi-synthetic emulsion. The model suggests that conventional MWFs, do not penetrate the cutting zone fully and fail to provide direct cooling to the flank zone where wear is most likely to occur. MQL sprays do penetrate the cutting zone completely. Using convective heat transfer coefficients from a previous study, a finite element heat balance is carried out on the tool to understand how each fluid impacts temperature near the flank tip of the tool. The results of the modeling effort are consistent with experimental measurements of tool temperature during turning of titanium (6AL4V) using a K313 carbide tool. The prediction of temperature near the flank indicates that MQL sprays do suppress temperatures near the flank effectively. These results help explain the low levels of tool wear observed for some MQL sprays, particularly those based on high pressure CO2. This modeling framework provides valuable insight into how lubricant delivery characteristics such as speed, viscosity, and cutting zone geometry can impact lubricant penetration.  相似文献   

20.
采用人工模拟UV-B增强方式,通过大田试验,研究了UV-B增强与秸秆施用对土壤-大豆系统呼吸速率和N2O排放通量的影响.结果表明:在三叶-分枝期、开花-结荚期、鼓粒成熟期和全生长期,UV-B增强,系统平均呼吸速率分别降低了59.88%,65.47%,67.35%和64.44%,N2O平均排放通量分别降低了37.94%,24.61%,48.42%和34.16%;秸秆施用促进了系统呼吸速率,4个时期平均呼吸速率分别增加了59.88%,61.50%,99.16%和64.44%;降低了全生长期的N2O平均排放通量,但没有达到显著差异水平(P=0.236).UV-B增强和秸秆施用复合处理显著增大土壤-大豆系统的呼吸速率,降低全生长期的N2O平均排放通量,但没有达到显著差异水平(P=0.229).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号