首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The open nesting behaviour of giant honeybees (Apis dorsata) accounts for the evolution of a series of defence strategies to protect the colonies from predation. In particular, the concerted action of shimmering behaviour is known to effectively confuse and repel predators. In shimmering, bees on the nest surface flip their abdomens in a highly coordinated manner to generate Mexican wave-like patterns. The paper documents a further-going capacity of this kind of collective defence: the visual patterns of shimmering waves align regarding their directional characteristics with the projected flight manoeuvres of the wasps when preying in front of the bees’ nest. The honeybees take here advantage of a threefold asymmetry intrinsic to the prey–predator interaction: (a) the visual patterns of shimmering turn faster than the wasps on their flight path, (b) they “follow” the wasps more persistently (up to 100 ms) than the wasps “follow” the shimmering patterns (up to 40 ms) and (c) the shimmering patterns align with the wasps’ flight in all directions at the same strength, whereas the wasps have some preference for horizontal correspondence. The findings give evidence that shimmering honeybees utilize directional alignment to enforce their repelling power against preying wasps. This phenomenon can be identified as predator driving which is generally associated with mobbing behaviour (particularly known in selfish herds of vertebrate species), which is, until now, not reported in insects.  相似文献   

2.
Giant honeybees (Apis dorsata) nest in the open and have therefore evolved a variety of defence strategies. Against predatory wasps, they produce highly coordinated Mexican wavelike cascades termed ‘shimmering’, whereby hundreds of bees flip their abdomens upwards. Although it is well known that shimmering commences at distinct spots on the nest surface, it is still unclear how shimmering is generated. In this study, colonies were exposed to living tethered wasps that were moved in front of the experimental nest. Temporal and spatial patterns of shimmering were investigated in and after the presence of the wasp. The numbers and locations of bees that participated in the shimmering were assessed, and those bees that triggered the waves were identified. The findings reveal that the position of identified trigger cohorts did not reflect the experimental path of the tethered wasp. Instead, the trigger centres were primarily arranged in the close periphery of the mouth zone of the nest, around those parts where the main locomotory activity occurs. This favours the ‘special-agents’ hypothesis that suggest that groups of specialized bees initiate the shimmering.  相似文献   

3.
Microtrichia are epidermal protuberances that may serve as temporary adhesive devices. Several insects possess these structures; however, they have not previously been reported in social wasps. With scanning electron microscopy, we characterize the shape and abundance of microtrichia in ten species of social wasps (Vespidae: Polistinae) and three species of related taxa (Vespidae: Eumeninae, Pompilidae, and Scoliidae). Semi-thin sections of the head of Leipomeles spilogastra and Apoica albimacula were also studied. We found microtrichia on a thin, flexible membrane connected to the mandible in all the Vespidae specimens. The flexible membrane can be divided into three regions: the basal region that covers the mandibular mesial emargination, the medial region located around the height of the mandibular condyles, and the distal region that appears anterior to the apodeme folding. Basal and distal regions of the membrane are extensively covered by microtrichia while the medial region has either less microtrichia or is entirely devoid of them. The shape and density of the microtrichia differed between species, and these traits are unrelated with nest material construction or phylogenetic closeness. We propose that the microtrichial membrane described is a passive mechanism to keep the wasps’ mandibles retracted through a mechanical interlocking system. It is possible that this energy-saving mechanism is present in other mandibulate insects.  相似文献   

4.
While foraging, social insects encounter a dynamic array of food resources of varying quality and profitability. Because food acquisition influences colony growth and fitness, natural selection can be expected to favor colonies that allocate their overall foraging effort so as to maximize their intake of high-quality nutrients. Social wasps lack recruitment communication, but previous studies of vespine wasps have shown that olfactory cues influence foraging decisions. Odors associated with food brought into the nest by successful foragers prompt naive foragers to leave the nest and search for the source of those odors. Left unanswered, however, is the question of whether naive foragers take food quality into account in making their decisions about whether or not to search. In this study, two different concentrations of sucrose solutions, scented differently, were inserted directly into each of three Vespula germanica nests. At a feeder away from the nest, arriving foragers were given a choice between two 1.5 M sucrose solutions with the same scents as those in the nest. We show that wasps chose higher-quality resources in the field using information in the form of intranidal food-associated odor cues. By this simple mechanism, the colony can bias the allocation of its foraging effort toward higher-quality resources in the environment.  相似文献   

5.
How floral odours are learned inside the bumblebee (Bombus terrestris) nest   总被引:1,自引:0,他引:1  
Recruitment in social insects often involves not only inducing nestmates to leave the nest, but also communicating crucial information about finding profitable food sources. Although bumblebees transmit chemosensory information (floral scent), the transmission mechanism is unknown as mouth-to-mouth fluid transfer (as in honeybees) does not occur. Because recruiting bumblebees release a pheromone in the nest that triggers foraging in previously inactive workers, we tested whether this pheromone helps workers learn currently rewarding floral odours, as found in food social learning in rats. We exposed colonies to artificial recruitment pheromone, paired with anise scent. The pheromone did not facilitate learning of floral scent. However, we found that releasing floral scent in the air of the colony was sufficient to trigger learning and that learning performance was improved when the chemosensory cue was provided in the nectar in honeypots; probably because it guarantees a tighter link between scent and reward, and possibly because gustatory cues are involved in addition to olfaction. Scent learning was maximal when anise-scented nectar was brought into the nest by demonstrator foragers, suggesting that previously unidentified cues provided by successful foragers play an important role in nestmates learning new floral odours.  相似文献   

6.
Two field experiments were used to examine how the relative benefits of cooperation influence within-group conflict in foundress associations of the paper wasp Polistes dominulus. P. dominulus foundresses can either nest alone or cooperate with other foundresses. We experimentally manipulated the relative benefits of co-foundress associations vs independent reproduction and tested the effect on aggressive within-group conflict. First, we examined aggression between alpha and beta co-foundresses before and after lower-ranking foundresses were removed. Removal of subordinates increases the relative contributions of the remaining subordinates to group reproductive output as there are fewer adults to care for the brood. Transactional models predict that group conflict over reproductive shares will increase as the relative benefits of grouping increase. As predicted, aggression between the co-foundresses significantly increased following subordinate removal. Second, we experimentally reduced ecological constraints on independent nesting by placing a previously orphaned, adoptable nest comb near the occupied nests. Providing an independent breeding opportunity is predicted to increase the benefits of independent reproduction relative to those of cooperating, thereby reducing group stability and aggression. As predicted, aggression between dominant and subordinate foundresses significantly decreased after the orphaned comb was presented. Therefore, group members sense variation in ecological constraints and relative productivity contributions and quickly modulate their behavior in response. Overall, these two experiments suggest that paper wasps behave as if within-group competition is limited by the threat of group dissolution such that stable groups where cooperation is strongly favored can withstand higher levels of conflict than unstable groups.  相似文献   

7.
DNA methylation plays an important role in the epigenetic control of developmental and behavioral plasticity, with connections to the generation of striking phenotypic differences between castes (larger, reproductive queens and smaller, non-reproductive workers) in honeybees and ants. Here, we provide the first comparative investigation of caste- and life stage-associated DNA methylation in several species of bees and vespid wasps displaying different levels of social organization. Our results reveal moderate levels of DNA methylation in most bees and wasps, with no clear relationship to the level of sociality. Strikingly, primitively social Polistes dominula paper wasps show unusually high overall DNA methylation and caste-related differences in site-specific methylation. These results suggest DNA methylation may play a role in the regulation of behavioral and physiological differences in primitively social species with more flexible caste differences.  相似文献   

8.
Paper nests of social wasps are intriguing constructions for both, biologists and engineers. We demonstrate that moisture and latent heat significantly influence the thermal performance of the nest construction. Two colonies of the hornet Vespa crabro were investigated in order to clarify the relation of the temperature and the moisture regime inside the nest. Next to fairly stable nest temperatures the hornets maintain a high relative humidity inside the nest. We found that in consequence a partial vapor-pressure gradient between nest and ambient drives a constant vapor flux through the envelope. The vapor flux is limited by the diffusion resistance of the envelope. The driving force of vapor flux is heat, which is consumed through evaporation inside the nest. The colony has to compensate this loss with metabolic heat production in order to maintain a stable nest temperature. However, humidity fluctuations inside the nest induce circadian adsorption and desorption cycles, which stabilize the nest temperature and thus contribute significantly to temperature homeostasis. Our study demonstrates that both mechanisms influence nest thermoregulation and need to be considered to understand the thermodynamic behavior of nests of wasps and social insects in general.  相似文献   

9.
Wasps robbing food from ants: a frequent behavior?   总被引:1,自引:0,他引:1  
Food robbing, or cleptobiosis, has been well documented throughout the animal kingdom. For insects, intrafamilial food robbing is known among ants, but social wasps (Vespidae; Polistinae) taking food from ants has, to the best of our knowledge, never been reported. In this paper, we present two cases involving social wasps robbing food from ants associated with myrmecophytes. (1) Polybioides tabida F. (Ropalidiini) rob pieces of prey from Tetraponera aethiops Smith (Formicidae; Pseudomyrmecinae) specifically associated with Barteria fistulosa Mast. (Passifloraceae). (2) Charterginus spp. (Epiponini) rob food bodies from myrmecophytic Cecropia (Cecropiaceae) exploited by their Azteca mutualists (Formicidae; Dolichoderinae) or by opportunistic ants (that also attack cleptobiotic wasps). We note here that wasps gather food bodies (1) when ants are not yet active; (2) when ants are active, but avoiding any contact with them by flying off when attacked; and (3) through the coordinated efforts of two to five wasps, wherein one of them prevents the ants from leaving their nest, while the other wasps freely gather the food bodies. We suggest that these interactions are more common than previously thought.  相似文献   

10.
In many bird species, floaters are present on the breeding grounds in one or more years before they breed. There is increasing evidence that they have specific home ranges in which they search for information about current and future breeding opportunities. We investigated the role of prospecting in a migratory European starling (Sturnus vulgaris) population. Radio-tracking showed that male starling floaters use specific home range areas during the breeding period. Nest-box observations demonstrated that non-parental nest intrusion is common in the starling and that it is significantly more frequent during the nestling than during the incubation period. In addition, small groups of nest boxes were more likely to be occupied by starlings if they had been put up during the preceding breeding season. The results suggest that floaters try to acquire information about local breeding communities. One specific type of information may be the location of potential breeding sites.  相似文献   

11.
Chemical compounds of the foraging recruitment pheromone in bumblebees   总被引:2,自引:0,他引:2  
When the frenzied and irregular food-recruitment dances of bumblebees were first discovered, it was thought that they might represent an evolutionary prototype to the honeybee waggle dance. It later emerged that the primary function of the bumblebee dance was the distribution of an alerting pheromone. Here, we identify the chemical compounds of the bumblebee recruitment pheromone and their behaviour effects. The presence of two monoterpenes and one sesquiterpene (eucalyptol, ocimene and farnesol) in the nest airspace and in the tergal glands increases strongly during foraging. Of these, eucalyptol has the strongest recruitment effect when a bee nest is experimentally exposed to it. Since honeybees use terpenes for marking food sources rather than recruiting foragers inside the nest, this suggests independent evolutionary roots of food recruitment in these two groups of bees.  相似文献   

12.
The Ficus–their specific pollinating fig wasps (Chalcidoidea, Agaonidae) interaction presents a striking example of mutualism. Figs also shelter numerous non-pollinating fig wasps (NPFW) that exploit the fig–pollinator mutualism. Only a few NPFW species can enter figs to oviposit, they do not belong to the pollinating lineage Agaonidae. The internally ovipositing non-agaonid fig wasps can efficiently pollinate the Ficus species that were passively pollinated. However, there is no study to focus on the net effect of these internally ovipositing non-agaonid wasps in actively pollinated Ficus species. By collecting the data of fig wasp community and conducting controlled experiments, our results showed that internally ovipositing Diaziella bizarrea cannot effectively pollinate Ficus glaberrima, an actively pollinated monoecious fig tree. Furthermore, D. bizarrea failed to reproduce if they were introduced into figs without Eupristina sp., the regular pollinator, as all the figs aborted. Furthermore, although D. bizarrea had no effect on seed production in shared figs, it significantly reduced the number of Eupristina sp. progeny emerging from them. Thus, our experimental evidence shows that reproduction in Diaziella depends on the presence of agaonid pollinators, and whether internally ovipositing parasites can act as pollinators depends on the host fig’s pollination mode (active or passive). Overall, this study and others suggest a relatively limited mutualistic role for internally ovipositing fig wasps from non-pollinator (non-Agaonidae) lineages.  相似文献   

13.
Social wasps from temperate zones have clear annual colony cycles, and the young queens hibernate during winter. In the subtropics, the only previously reported evidence for the existence of “hibernation” is the facultative winter aggregations of females during harsh climate conditions. As in temperate-zone species analyzed so far, we show in this study that in the paper wasp, Polistes versicolor, a subtropical species, body size increases as an unfavorable season approaches. Our morphological studies indicate that larger females come from winter aggregations—that is, they are new queens. Multivariate analyses indicate that size is the only variable analyzed that shows a relationship to the differences. Given the absence of a harsh climate, we suggest that the occurrence of winter aggregations in tropical P. versicolor functions to allow some females to wait for better environmental conditions to start a new nest, rather than all being obliged to start a new nest as soon as they emerge.  相似文献   

14.
Communal nesting is a fundamental component of many animal societies. Because the fitness consequences of this behavior vary with the relatedness among nest mates, understanding the kin structure of communally nesting groups is critical to understanding why such groups form. Observations of captive degus (Octodon degus) indicate that multiple females nest together, even when supplied with several nest boxes. To determine whether free-living degus also engage in communal nesting, we used radiotelemetry to monitor spatial relationships among adult females in a population of O. degus in central Chile. These analyses revealed that females formed stable associations of > 2–4 individuals, all of whom shared the same nest site at night. During the daytime, spatial overlap and frequency of social interactions were greatest among co-nesting females, suggesting that nesting associations represent distinct social units. To assess kinship among co-nesting females, we examined genotypic variation in our study animals at six microsatellite loci. These analyses indicated that mean pairwise relatedness among members of a nesting association (r=0.25) was significantly greater than that among randomly selected females (r=–0.03). Thus, communally nesting groups of degus are composed of female kin, making it possible for indirect as well as direct fitness benefits to contribute to sociality in this species.  相似文献   

15.
Here we show that trying to rob prey (cleptobiosis) from a highly specialized predatory ant species is risky. To capture prey, Allomerus decemarticulatus workers build gallery-shaped traps on the stems of their associated myrmecophyte, Hirtella physophora. We wondered whether the frequent presence of immobilized prey on the trap attracted flying cleptoparasites. Nine social wasp species nest in the H. physophora foliage; of the six species studied, only Angiopolybia pallens rob prey from Allomerus colonies. For those H. physophora not sheltering wasps, we noted cleptobiosis by stingless bees (Trigona), social wasps (A. pallens and five Agelaia species), assassin bugs (Reduviidae), and flies. A relationship between the size of the robbers and their rate of capture by ambushing Allomerus workers was established for social wasps; small wasps were easily captured, while the largest never were. Reduviids, which are slow to extract their rostrum from prey, were always captured, while Trigona and flies often escaped. The balance sheet for the ants was positive vis-à-vis the reduviids and four out of the six social wasp species. For the latter, wasps began by cutting up parts of the prey’s abdomen and were captured (or abandoned the prey) before the entire abdomen was retrieved so that the total weight of the captured wasps exceeded that of the prey abdomens. For A. pallens, we show that the number of individuals captured during attempts at cleptobiosis increases with the size of the Allomerus’ prey.  相似文献   

16.
Aphids often form mutualistic associations with ants, in which the aphids provide the ants with honeydew and the ants defend the aphids from predators. In this paper, we report aphid egg protection by ants as a novel aspect of the deeply interdependent relationship between a tree-feeding aphid and its attendant ant. The ant Lasius productus harbours oviparous females, males, and eggs of the hinoki cypress-feeding aphid Stomaphis hirukawai in its nests in winter. We investigated the behaviour of ants kept with aphid eggs in petri dishes to examine whether the ants recognise the aphid eggs and tend them or only provide a refuge for the aphids. Workers carried almost all of the aphid eggs into the nest within 24 h. The ants indiscriminately tended aphid eggs collected from their own colonies and those from other ant colonies. The ants cleaned the eggs and piled them up in the nest, and egg tending by ants dramatically increased aphid egg survival rates. Starving the ants showed no significant effect on aphid egg survivorship. Without ants, aphid eggs were rapidly killed by fungi. These results suggested that grooming by the ants protected the aphid eggs, at least, against pathogenic fungi. This hygienic service afforded by the ants seems indispensable for egg survival of these aphids in an environment rich in potentially pathogenic microorganisms.Electronic supplementary material  Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

17.
We report the results of a simple experiment to determine whether honeybees feed their small hive beetle nest parasites. Honeybees incarcerate the beetles in cells constructed of plant resins and continually guard them. The longevity of incarcerated beetles greatly exceeds their metabolic reserves. We show that survival of small hive beetles derives from behavioural mimicry by which the beetles induce the bees to feed them trophallactically. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at htpp://dx.doi.org/10.1007/s00114-002-0326-y.  相似文献   

18.
Symbiosis is one of the most fundamental relationships between or among organisms and includes parasitism (which has negative effects on the fitness of the interacting partner), commensalism (no effect), and mutualism (positive effects). The effects of these interactions are usually assumed to influence a single component of a species’ fitness, either survival or fecundity, even though in reality the interaction can simultaneously affect both of these components. I used a dual lattice model to investigate the process of evolution of mutualistic symbiosis in the presence of interactive effects on both survival and fecundity. I demonstrate that a positive effect on survival and a negative effect on fecundity are key to the establishment of mutualism. Furthermore, both the parasitic and the mutualistic behaviour must carry large costs for mutualism to evolve. This helps develop a new understanding of symbiosis as a function of resource allocation, in which resources are shifted from fecundity to survival. The simultaneous establishment of mutualism from parasitism never occurs in two species, but can do so in one of the species as long as the partner still behaves parasitically. This suggests that one of the altruistic behaviours in a mutualistic unit consisting of two species must originate as a parasitic behaviour.  相似文献   

19.
At a very early age several mammals establish a first dominance hierarchy, which often persists into adulthood. Social wasps offer an excellent opportunity to study such a phenomenon in insects. Indeed, foundresses of several paper wasps meet in clusters to hibernate from September to March. In spring, wasps found new associative nests where linear hierarchies occur. In the first phase of hibernation, clustering Polistes dominulus wasps show most of the social interactions occurring on the nest 6 months later. At the emergence from diapause, some females already show some behavioral and physiological traits typical of dominant individuals. Here, we investigated the significance of the interactions in the autumnal clusters. We demonstrated that in a given pair, it is more likely that the dominant wasp in autumn becomes the alpha female in spring after the nest foundation phase occurred. Moreover, we showed that dominant females in clusters have both larger body size and ovaries. As ovarian development mainly depends on the social context, our findings seem to indicate that social factors affect the tendency to dominate in aggregations. Furthermore, we suggest that some females may reinforce their physiological status by dominating in clusters, thus increasing the probability to become dominant in spring.  相似文献   

20.
Animals rely on associative learning for a wide range of purposes, including danger avoidance. This has been demonstrated for several insects, including cockroaches, mosquitoes, drosophilid flies, paper wasps, stingless bees, bumblebees and honeybees, but less is known for parasitic wasps. We tested the ability of Psyttalia concolor (Hymenoptera: Braconidae) females to associate different dosages of two innately attractive host-induced plant volatiles (HIPVs), ethyl octanoate and decanal, with danger (electric shocks). We conducted an associative treatment involving odours and shocks and two non-associative controls involving shocks but not odours and odours but not shocks. In shock-only and odour-only trained wasps, females preferred on HIPV-treated than on blank discs. In associative-trained wasps, however, P. concolor’s innate positive chemotaxis for HIPVs was nullified (lowest HIPV dosage tested) or reversed (highest HIPV dosage tested). This is the first report of associative learning of olfactory cues for danger avoidance in parasitic wasps, showing that the effects of learning can override innate positive chemotaxes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号