首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphorus and nitrogen leached from high-porosity golf greens can adversely affect surface water and groundwater quality. Greenhouse and field lysimeter experiments were carried out to determine the effects of eight fertilizer sources on P and N leaching from simulated golf greens. Phosphorus appeared in the leachate later than nitrate-N, and the highest concentrations were for the soluble 20-20-20 and the 16-25-12 starter fertilizers. The other six sources resulted in lower P concentrations. The soluble 20-20-20 and the 16-25-12 sources each resulted in 43% of the added P eluting in the leachate, whereas the others varied from 15 to 25%. For nitrate-N the lowest cumulative mass was for the controlled-release 13-13-13 and sulfur-coated urea. A higher percentage of applied P than applied N leached from both field and greenhouse lysimeters. However, the amounts of P leached for the field lysimeters were lower than for the greenhouse columns.  相似文献   

2.
This study was undertaken to determine sorption coefficients of eight herbicides (alachlor, amitrole, atrazine, simazine, dicamba, imazamox, imazethapyr, and pendimethalin) to seven agricultural soils from sites throughout Lithuania. The measured sorption coefficients were used to predict the susceptibility of these herbicides to leach to groundwater. Soil-water partitioning coefficients were measured in batch equilibrium studies using radiolabeled herbicides. In most soils, sorption followed the general trend pendimethalin > alachlor > atrazine approximately amitrole approximately simazine > imazethapyr > imazamox > dicamba, consistent with the trends in hydrophobicity (log K(ow)) except in the case of amitrole. For several herbicides, sorption coefficients and calculated retardation factors were lowest (predicted to be most susceptible to leaching) in a soil of intermediate organic carbon content and sand content. Calculated herbicide retardation factors were high for soils with high organic carbon contents. Estimated leaching times under saturated conditions, assuming no herbicide degradation and no preferential water flow, were more strongly affected by soil textural effects on predicted water flow than by herbicide sorption effects. All herbicides were predicted to be slowest to leach in soils with high clay and low sand contents, and fastest to leach in soils with high sand content and low organic matter content. Herbicide management is important to the continued increase in agricultural production and profitability in the Baltic region, and these results will be useful in identifying critical areas requiring improved management practices to reduce water contamination by pesticides.  相似文献   

3.
This study was undertaken to determine sorption coefficients of eight herbicides (alachlor, amitrole, atrazine, simazine, dicamba, imazamox, imazethapyr, and pendimethalin) to seven agricultural soils from sites throughout Lithuania. The measured sorption coefficients were used to predict the susceptibility of these herbicides to leach to groundwater. Soil-water partitioning coefficients were measured in batch equilibrium studies using radiolabeled herbicides. In most soils, sorption followed the general trend pendimethalin > alachlor > atrazine~ amitrole~ simazine > imazethapyr > imazamox > dicamba, consistent with the trends in hydrophobicity (log Kow) except in the case of amitrole. For several herbicides, sorption coefficients and calculated retardation factors were lowest (predicted to be most susceptible to leaching) in a soil of intermediate organic carbon content and sand content. Calculated herbicide retardation factors were high for soils with high organic carbon contents. Estimated leaching times under saturated conditions, assuming no herbicide degradation and no preferential water flow, were more strongly affected by soil textural effects on predicted water flow than by herbicide sorption effects. All herbicides were predicted to be slowest to leach in soils with high clay and low sand contents, and fastest to leach in soils with high sand content and low organic matter content. Herbicide management is important to the continued increase in agricultural production and profitability in the Baltic region, and these results will be useful in identifying critical areas requiring improved management practices to reduce water contamination by pesticides.  相似文献   

4.
Chefetz B  Mualem T  Ben-Ari J 《Chemosphere》2008,73(8):1335-1343
Use of reclaimed wastewater for irrigation is an important route for the introduction of pharmaceutical compounds (PCs) into the environment. In this study, the mobility and sorption-desorption behavior of carbamazepine, naproxen and diclofenac were studied in soil layers sampled from a plot irrigated with secondary-treated wastewater (STWW). Carbamazepine and diclofenac were significantly retarded in the 0-5 cm soil sample rich in soil organic matter (SOM): carbamazepine was not affected by the water quality (freshwater versus STWW), whereas diclofenac exhibited a higher retardation factor (RF) in the freshwater system. Naproxen exhibited significantly lower RFs than diclofenac but with a similar trend - higher retardation in the freshwater versus STWW system. In the 5-15 cm soil sample containing low SOM, naproxen was highly mobile while carbamazepine and diclofenac were still retarded. In the 15-25 cm sample, all compounds exhibited their lowest RFs. Sorption data suggested that SOM governs the studied PCs' interactions with the soil samples. However, higher carbon-normalized sorption coefficients were measured for the PCs in the 15-25 cm sample, suggesting that both quantity and the physicochemical nature of SOM affect sorption interactions. While both naproxen and carbamazepine exhibited reversible sorption isotherms, diclofenac exhibited pronounced sorption-desorption hysteresis. This study suggests that carbamazepine and diclofenac can be classified as slow-mobile compounds in SOM-rich soil layers. When these compounds pass this layer and/or introduced into SOM-poor soils, their mobility increases significantly. This emphasizes the potential transport of PCs to groundwater in semiarid zones due to intensive irrigation with reclaimed wastewater in SOM-poor soils.  相似文献   

5.
Rabølle M  Spliid NH 《Chemosphere》2000,40(7):715-722
Laboratory studies were conducted to characterise four different antibiotic compounds with regard to sorption and mobility in various soil types. Distribution coefficients (Kd values) determined by a batch equilibrium method varied between 0.5 and 0.7 for metronidazole, 0.7 and 1.7 for olaquindox and 8 and 128 for tylosin. Tylosin sorption seems to correlate positively with the soil clay content. No other significant interactions between soil characteristics and sorption were observed. Oxytetracycline was particularly strongly sorbed in all soils investigated, with Kd values between 417 in sand soil and 1026 in sandy loam, and no significant desorption was observed. Soil column leaching experiments indicated large differences in the mobility of the four antibiotic substances, corresponding to their respective sorption capabilities. For the weakly adsorbed substances metronidazole and olaquindox the total amounts added were recovered in the leachate of both sandy loam and sand soils. For the strongly adsorbed oxytetracyline and tylosin nothing was detected in the leachate of any of the soil types, indicating a much lower mobility. Results from defractionation and extraction of the columns (30 cm length) showed that 60-80% of the tylosin added had been leached to a depth of 5 cm in the sandy loam soil and 25 cm in the sand soil.  相似文献   

6.
Two white clover (Trifolium repens L.) clones with varying sensitivity to O(3) are being developed as a system to indicate effects of ambient concentrations of tropospheric O(3) on plants. One clone (NC-S) is highly sensitive to O(3) and the other (NC-R) is highly resistant. The system relies on periodic measurement of foliar injury, foliar chlorophyll, and forage production of NC-S and NC-R grown in 15-liter pots throughout a summer season. Relative amounts of foliar injury and ratios (NC-S/NC-R) for chlorophyll and forage weight can be used to estimate biologically effective ambient O(3) concentrations. The effect of variation in rooting media formulation and fertilizer rate on response of NC-S and NC-R to ambient O(3) was determined in the present study. In the rooting medium experiment, clover was grown in three mixtures of sandy loam topsoil:course washed sand:Metro Mix 220 (ratios (by volume) of 2:1:1, 2:1:5, and 6:1:1). In the fertilizer experiment, clover was grown in the 2:1:1 medium at four fertilizer rates (soluble 5-11-26 (N-P-K) at 0.0, 0.5, 1.0, or 2.0 g per pot). Ozone caused more foliar injury, more chlorosis, and a greater decrease in forage production of NC-S than of NC-R in all studies. Rooting media treatments affected both clones similarly and occasional clone x media interactions were judged to be random. Forage production by NC-S, relative to that of NC-R, was generally greater in the 0.0 fertilizer treatment, but the forage ratios were similar at all other fertilizer treatments. The relative response of NC-S and NC-R to O(3) is fairly stable under cultural conditions that support normal plant growth.  相似文献   

7.
In the present paper, sorption, persistence, and leaching behavior of three microcystin variants in Chinese agriculture soils were examined. Based on this study, the values of capacity factor and slope for three MCs variants in three soils ranged from 0.69 to 6.00, and 1.01 to 1.54, respectively. The adsorption of MCs in the soils decreased in the following order: RR > Dha7 LR > LR. Furthermore, for each MC variant in the three soils, the adsorption rate in the soils decreased in the following order: soil A > soil C > soil B. The calculated half-time ranged between 7.9 and 17.8 days for MC-RR, 6.0-17.1 days for MC-LR, and 7.1-10.2 days for MC-Dha7 LR. Results from leaching experiments demonstrated that recoveries of toxins in leachates ranged from 0-16.7% for RR, 73.2-88.9% for LR, and 8.9-73.1% for Dha7 LR. The GUS value ranged from 1.48 to 2.06 for RR, 1.82-2.88 for LR, and 1.76-2.09 for Dha7 LR. Results demonstrated the use of cyanobacterial collections as plant fertilizer is likely to be unsafe in soils.  相似文献   

8.
To investigate the effects of golf course construction and operation on the water chemistry of Shield streams, we compared the water chemistry in streams draining golf courses under construction (2) and in operation (5) to streams in forested reference locations and to upstream sites where available. Streams were more alkaline and higher in base cation and nitrate concentrations downstream of operational golf courses. Levels of these parameters and total phosphorus increased over time in several streams during golf course construction through to operation. There was evidence of inputs of mercury to streams on two of the operational courses. Nutrient (phosphorus and nitrogen) concentrations were significantly related to the area of unmanaged vegetation in a 30 x 30 m area on either side of the sampling sites, and to River Bank Quality Index scores, suggesting that maintaining vegetated buffers along the stream on golf courses will reduce in-stream nutrient concentrations.  相似文献   

9.
Investigations were undertaken to determine the adsorption-desorption, persistence and leaching of dithiopyr (S,S'-dimethyl 2-difluoromethyl-4-isobutyl-6-trifluoromethyl pyridine-3,5-dicarbothioate) in an alluvial soil under laboratory condition. The adsorption-desorption studies were carried out using batch equilibration technique. The mass balance studies showed that 83-97% of the pesticide was recovered during adsorption-desorption studies. The results revealed strong adsorption of dithiopyr in alluvial soil with Kd values ranging from 3.97-5.78 and Freundlich capacity factor (KF) value of 2.41. The strong adsorption was evident from the hysteresis effect observed during desorption. The hysteresis coefficients ranged from 0.17-0.40. The persistence studies were carried out at two concentrations (1.0 and 10.0 microg g(-1) level) under field capacity moisture and submerged condition by incubating the treated soil at 25 +/- 1 degrees C. In general, dithiopyr persisted beyond 90 days with half-life varying from 11.5-12.9 days under different conditions. The rate of application and moisture regimes had no overall effect on the persistence. The leaching studies carried out in packed column under saturated flow condition revealed that dithiopyr was highly immobile in alluvial soil. Only small amounts (0.02-0.04%) were recovered from leachate whereas major portion (99.9%) remained in top layer of the soil column. The data suggest that strong adsorption of dithiopyr will cause a greater persistence problem in the soil. However, the chances of its movement to ground water will be negligible due to its immobility.  相似文献   

10.
Two plant species, arugula (Eruca sativa) and mustard (Brassica juncea) were field-grown under four soil management practices: soil mixed with municipal sewage sludge (SS), soil mixed with horse manure (HM), soil mixed with chicken manure (CM), and no-mulch bare soil (NM) to investigate the impact of soil amendments on the concentration of glucosinolates (GSLs) in their shoots. GSLs, hydrophilic plant secondary metabolites in arugula and mustard were extracted using boiling methanol and separated by adsorption on sephadex ion exchange disposable pipette tips filled with DEAE, a weak base, with a net positive charge that exchange anions such as GSLs. Quantification of GSLs was based on inactivation of arugula and mustard myrosinase and liberation of the glucose moiety from the GSLs molecule by addition of standardized myrosinase (thioglucosidase) and spectrophotometric quantification of the liberated glucose moiety. Overall, GSLs concentrations were significantly greater (1287 µg g?1 fresh shoots) in plants grown in SS compared to 929, 890, and 981 µg g?1 fresh shoots in plants grown in CM, HM, and NM soil, respectively. Results also revealed that mustard shoots contained greater concentrations of GSLs (974 µg g?1 fresh shoots) compared to arugula (651 µg g?1 fresh shoots).  相似文献   

11.
Ptaquiloside (PTA) is a carcinogenic norsesquiterpene glucoside produced by Bracken in amounts up to at least 500 mg m(-2). The toxin is transferred from Bracken to the underlying soil from where it may leach to surface and groundwater's impairing the quality of drinking water. The objectives of the present study were to characterize the solubility, degradation and retention of PTA in soils in order to evaluate the risk for groundwater contamination. PTA was isolated from Bracken. The logarithmic octanol-water and ethyl acetate-water partitioning coefficients for PTA were -0.63 and -0.88, respectively, in agreement with the high water solubility of the compound. PTA hydrolysed rapidly in aqueous solution at pH 4 or lower, but was stable above pH 4. Incubation of PTA with 10 different soils at 25 degrees C showed three different first order degradation patterns: (i) rapid degradation observed for acid sandy soils with half life's ranging between 8 and 30 h decreasing with the soil content of organic matter, (ii) slow degradation in less acid sandy soils with half-lives of several days, and (iii) fast initial degradation with a concurrent solid phase-water partitioning reaction observed for non-acid, mostly clayey soils. The presence of clay silicates appears to retard the degradation of PTA, possibly through sorption. Degradation at 4 degrees C was generally of type (iii) and degradation rates were up to 800 times lower than at 25 degrees C. Sorption isotherms for the same set of soils were almost linear and generally showed very low sorption affinity with distribution coefficients in the range 0.01-0.22 l kg(-1) at a solution concentration of 1 mg l(-1) except for the most acid soil; Freundlich affinity coefficients increased linearly with clay and organic matter contents. Negligible sorption was also observed in column studies where PTA and a non-sorbing tracer showed almost coincident break-through. Leaching of PTA to the aqueous environment will be most extensive on sandy soils, having pH >4 and poor in organic matter which are exposed to high precipitation rates during cold seasons.  相似文献   

12.
13.
Organic matter and nutrients in municipal sewage sludge (SS) and chicken manure (CM) could be recycled and used for land farming to enhance fertility and physical properties of soils. Three soil management practices were used at Kentucky State University Research Farm, Franklin County, to study the impact of soil amendments on kale (Brassica oleracea cv. Winterbar) and collard (Brassica oleracea cv. Top Bunch) yields and quality. The three soil management practices were: (i) SS mixed with native soil at 15 t acre?1, (ii) CM mixed with native soil at 15 t acre?1, and (iii) no-mulch (NM) native soil for comparison purposes. At harvest, collard and kale green plants were graded according to USDA standards. Plants grown in CM and SS amended soil produced the greatest number of U.S. No. 1 grade of collard and kale greens compared to NM native soil. Across all treatments, concentrations of ascorbic acid and phenols were generally greater in kale than in collards. Overall, CM and SS enhanced total phenols and ascorbic acid contents of kale and collard compared to NM native soil. We investigated the chemical and physical properties of each of the three soil treatments that might explain variability among treatments and the impact of soil amendments on yield, phenols, and ascorbic acid contents of kale and collard green grown under this practice.  相似文献   

14.
Abstract

The adsorption–desorption and leaching of flucetosulfuron, a sulfonylurea herbicide, was investigated in three Indian soils. Freundlich adsorption isotherm described the sorption mechanism of herbicide with adsorption coefficients (Kf) ranging from 17.13 to 27.99 and followed the order: Clayey loam?>?Loam?>?Sandy loam. The Kf showed positive correlation with organic carbon (OC) (r?=?0.910) and clay content (r?=?0.746); but, negative correlation with soil pH (r = ?0.635). The adsorption isotherms were S-type suggesting that herbicide adsorption was concentration dependent and increased with increase in concentration. Desorption followed the sequence: sandy loam?>?clayey loam?>?loam . Hysteresis (H) was observed in all the three soils with H?<?1. Leaching of flucetosulfuron correlated positively with the soil pH; but, negatively with the OC content. Sandy loam soil (OC- 0.40%, pH ?7.25) registered lowest adsorption and highest leaching of flucetosulfuron while lowest leaching was found in the loam soil (pH ? 7.89, OC ? 0.65%). The leaching losses of herbicide increased with increase in the rainfall intensity. This study suggested that the soil OC content, pH and clay content played important roles in deciding the adsorption–desorption and leaching behavior of flucetosulfuron in soils.  相似文献   

15.
The goal of this work was to propose a novel method for the solid-phase extraction of the herbicides diquat (DQT2+) and difenzoquat (DFQT+) from aqueous medium using polymeric Amberlite XAD-2 and XAD-4 resins in the presence of sodium dodecylsulfate (SDS). The addition of SDS to the medium was of fundamental importance in order to allow the formation of a negatively charged surface able to sorb the cationic solutes. Several factors that could influence the sorption process, such as SDS concentration in the medium, sorbent mass, pH, ionic strength, and initial concentration of the solutes were investigated. Kinetic studies were also performed to model the system and to identify the mechanisms that operate the sorption process of the herbicides. SDS concentration in the medium presented remarkable influence on the extraction efficiency, achieving maximum values when the ratios [SDS]/[herbicide] were approximately 90, for XAD-2, and 22 and 11 for DQT2+ and DFQT+, respectively, for XAD-4. The sorption process followed a pseudo second-order kinetic in all cases studied. It was also found that an intraparticle diffusion process controlled exclusively the sorption of the herbicides by the Amberlite XAD-2 and XAD-4 resins in the first 15 min, becoming less active with time.  相似文献   

16.
17.
This study was undertaken to obtain information about the behavior of sulfentrazone in soil by evaluating the sorption and desorption of the herbicide in different Brazilian soils. Batch equilibrium method was used and the samples were analyzed by high performance liquid chromatography. Based on the results obtained from the values of Freundlich constants (Kf), we determined the order of sorption (Haplic Planosol < Red-Yellow Latosol < Red Argisol < Humic Cambisol < Regolitic Neosol) and desorption (Regolitic Neosol < Red Argisol < Humic Cambisol < Haplic Planosol < Red-Yellow Latosol) of sulfentrazone in the soils. The process of pesticide sorption in soils was dependent on the levels of organic matter and clay, while desorption was influenced by the organic matter content and soil pH. Thus, the use of sulfentrazone in soils with low clay content and organic matter (low sorption) increases the probability of contaminating future crops.  相似文献   

18.
Sorption and transport of trichloroethylene in caliche soil   总被引:3,自引:0,他引:3  
Sorption of TCE to the caliche soil exhibited linear isotherm at the high TCE concentrations (Co = 122-1300 mg L−1) but Freundlich isotherm at the low concentration range (1-122 mg L−1). Sorption strength of the carbonate fraction of the soil was about 100-fold lower than the sorption strength of soil organic matter (SOM) in the caliche soil, indicating weak affinity of TCE for the carbonate fraction of the soil. Desorption of TCE from the caliche soil was initially rapid (7.6 × 10−4 s−1), then continued at a 100-fold slower rate (7.7 × 10−6 s−1). Predominant calcium carbonate fraction of the soil (96%) was responsible for the fast desorption of TCE while the SOM fraction (0.97%) controlled the rate-limited desorption of TCE. Transport of TCE in the caliche soil was moderately retarded with respect to the water (R = 1.75-2.95). Flow interruption tests in the column experiments indicated that the rate-limited desorption of TCE controlled the non-ideal transport of TCE in the soil. Modeling studies showed that both linear and non-linear nonequilibrium transport models provided reasonably good match to the TCE breakthrough curves (r2 = 0.95-0.98). Non-linear sorption had a negligible impact on both the breakthrough curve shape and the values of sorption kinetics parameters at the high TCE concentration (Co = 1300 mg L−1). However, rate-limited sorption/desorption processes dominated at this concentration. For the low TCE concentration case (110 mg L−1), in addition to the rate-limited sorption/desorption, contribution of the non-linear sorption to the values of sorption kinetics became fairly noticeable.  相似文献   

19.
Imidacloprid, the major component of many widely used insecticide formulations, is highly persistent in soils. In this study, the sorption of imidacloprid by six soils as well as its photodegradation and hydrolysis in water were studied. The soils differed significantly in organic matter content and other physical and chemical properties. Sorption increased with increasing soil organic matter content but was not significantly correlated with other soil properties. Removal of organic matter via H2O2 oxidation decreased the sorption. By normalizing the Freundlich coefficients (Kf) to organic matter contents, the variability in obtained sorption coefficient (Kom) was substantially reduced. These results indicate that soil organic matter was the primary sorptive medium for imidacloprid. The low heat of sorption calculated from Kom suggests that partition into soil organic matter was most likely the mechanism. The photodegradation and hydrolysis of imidacloprid in water followed pseudo-first-order kinetics; however, the latter process needed a six-time-higher activation energy. While both processes produced the same main intermediate, they occurred via different pathways. The hydrolysis of imidacloprid was not catalyzed by the high interlayer pH in the presence of metal-saturated clays, which appeared to result from the lack of the pesticide adsorption in the interlayers of clays.  相似文献   

20.
ABSTRACT

Neonicotinoids are the most widely applied class of insecticides in cocoa farming in Ghana. Despite the intensive application of these insecticides, knowledge of their fate in the Ghanaian and sub-Saharan African environment remains low. This study examined the behavior of neonicotinoids in soils from cocoa plantations in Ghana by estimating their sorption and degradation using established kinetic models and isotherms. Studies of sorption were conducted using the batch equilibrium method on imidacloprid, thiamethoxam, clothianidin, acetamiprid and thiacloprid, while degradation of imidacloprid, thiamethoxam and their respective deuterated counterparts was studied using models proposed by the European forum for coordination of pesticide fate and their use (FOCUS). Analytes were extracted using the quick, easy, cheap, effective, rugged and safe (QuEChERS) procedure and quantified by liquid chromatography-tandem mass spectrometry (LC–MS/MS). Average recoveries were high (≥ 85%) for all analytes. The findings from the study suggest that neonicotinoid insecticides may be persistent in the soils studied based on estimated half-lives > 150 days. The study also revealed generally low-sorption coefficients for neonicotinoids in soils, largely influenced by soil organic carbon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号