首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Solid-phase extraction for multi-residue analysis of pesticides in honey   总被引:1,自引:0,他引:1  
A fast and simple multi-residue method for the analysis of 15 organophosphorus (OP), 17 organochlorine (OC), 8 pyrethroids (PYR), 12 N-methyl-carbamate (NMC) pesticide residues and bromopropylate in honey is presented. Ready-to-use EXtrelutNT 20 column, eluted with dichloromethane, was used to extract the pesticide residues from the aqueous-acetone honey sample, obtaining a clean extract directly analyzable. Determination was carried out by gas chromatography (GC) coupled with flame photometric detector (FPD) for OP compounds and by GC coupled with mass spectrometry detector (MSD) for OC and PYR pesticides and bromopropylate. The NMC pesticides were analysed by liquid chromatography-double derivatization coupled with spectrofluorimetric detector (LC/DD/Fl). This method allows the determination of the 53 pesticide residues at low concentrations (0.0005-0.074 mg/kg) and can be used to assess the compliance with the Maximum Residues Levels (MRLs) set by the European Union. The performance of the method was evaluated and specificity, linearity, recovery, repeatability, reproducibility, limit of quantification (LOQ) and limit of detection (LOD) were determined. A good linearity (r(2)≥ 0.99) was found in the range 0.0005-0.074 mg/kg for the majority of the compounds studied. Most of the pesticides had recoveries in the range 70-103 % and values of relative standard deviation (RSD) < 20 for repeatability and reproducibility, showing good accuracy and precision of the method. Aldicarb partially degraded in aldicarb sulphoxide during the analytical procedure, giving anomalous values. The LOQ for all pesticides investigated was from 0.0005 to 0.025 mg/kg while the LOD ranged from 0.0002 to 0.008 mg/kg.  相似文献   

2.
A sensitive and specific method for the determination of propineb and its metabolites, propylenethiourea (PTU) and propylenediamine (PDA), using gas chromatography with flame photometric detection (GC-FPD) and LC–MS/MS was developed and validated. Propineb and its metabolite residue dynamics in supervised field trials under Good Agricultural Practice (GAP) conditions in banana and soil were studied. Recovery of propineb (as CS2), PDA and PTU ranged from 75.3 to 115.4% with RSD (n = 5) of 1.3–11.1%. The limit of quantification (LOQ) of CS2, PDA and PTU ranged from 0.005 to 0.01 mg kg?1, and the limit of detection (LOD) ranged from 0.0015 to 0.0033 mg kg?1. Dissipation experiments showed that the half-life of propineb in banana and soil ranged from 4.4 to 13.3 days. PTU was found in banana with a half-life of 31.5–69.3 days, while levels of PDA were less than 0.01 mg kg?1 in banana and soil. It has been suggested that PTU is the major metabolite of propineb in banana. The method was demonstrated to be reliable and sensitive for the routine monitoring of propineb and its metabolites in banana and soil. It also serves as a reference for the detection and monitoring of dithiocarbamates (DTCs) residues and the evaluation of their metabolic pathway.  相似文献   

3.
A fast and simple multi-residue method for the analysis of 15 organophosphorus (OP), 17 organochlorine (OC), 8 pyrethroids (PYR), 12 N-methyl-carbamate (NMC) pesticide residues and bromopropylate in honey is presented. Ready–to–use EXtrelut®NT 20 column, eluted with dichloromethane, was used to extract the pesticide residues from the aqueous-acetone honey sample, obtaining a clean extract directly analyzable. Determination was carried out by gas chromatography (GC) coupled with flame photometric detector (FPD) for OP compounds and by GC coupled with mass spectrometry detector (MSD) for OC and PYR pesticides and bromopropylate. The NMC pesticides were analysed by liquid chromatography-double derivatization coupled with spectrofluorimetric detector (LC/DD/Fl). This method allows the determination of the 53 pesticide residues at low concentrations (0.0005–0.074 mg/kg) and can be used to assess the compliance with the Maximum Residues Levels (MRLs) set by the European Union. The performance of the method was evaluated and specificity, linearity, recovery, repeatability, reproducibility, limit of quantification (LOQ) and limit of detection (LOD) were determined. A good linearity (r2? 0.99) was found in the range 0.0005–0.074 mg/kg for the majority of the compounds studied. Most of the pesticides had recoveries in the range 70–103 % and values of relative standard deviation (RSD) < 20 for repeatability and reproducibility, showing good accuracy and precision of the method. Aldicarb partially degraded in aldicarb sulphoxide during the analytical procedure, giving anomalous values. The LOQ for all pesticides investigated was from 0.0005 to 0.025 mg/kg while the LOD ranged from 0.0002 to 0.008 mg/kg.  相似文献   

4.
A simple method for the determination of dimethyl fumarate (DMFu) in silica gel pouches has been developed. The gas chromatographic behaviour of DMFu was investigated; the instrumental method, based on EI mass spectrometry coupled with an Ion Trap Detector operating whether in full scan mode or in MS/MS mode was also investigated. Several factors have been evaluated and optimized during the development process: solvent and temperature of extraction, type of stationary phase in capillary column. The analytical procedure consists of two steps as follows: (a) the sample preparation using 10 g of sample extracted with acetonitrile in an ultrasonic, heated bath and (b) the determination by gas chromatography-ion trap mass spectrometry. Mass spectrometry in conjunction with chromatographic separation is a very powerful combination for identification of an analyte in the extract in spite of selective detectors employed with GC, such as ECD, FPD and NPD, that offer only limited specificity. Blank samples show no interfering peaks in the areas of interest, so the specificity of the method was assured under the investigated GC/MS conditions. The method has been validated in terms of recovery, repeatability, linearity, detection limits and measurement uncertainty. The results obtained meet both the method validation criteria and requirements of the European/National legislation. The method was verified to be accurate with 97 % mean recoveries at 0.05 mg/kg and 1.00 mg/kg levels; the repeatability (expressed as RSD %) was found to be better than 15 %. Good linearity was found in the range between 0.05 μg/mL and 5.0 μg/mL and a value of R2 > 0.9998 was calculated. The procedure ensures high specificity and a good sensitivity with detection limit (ld) of 0.02 mg/kg and quantification limit (LOQ) of 0.05 mg/kg. This procedure has been successfully applied for the analysis of several hundred of real samples collected during a monitoring control plan started last year in our country. All samples exceeding the maximum allowed level of DMFu (0, 1 mg/kg) were confirmed by GC/MS/MS (ITD) for a higher degree of confidence in identification. The main advantages of this method include: rapidity, simplicity (few, simple steps), reliability, cheapness, no need for long and difficult clean-up and evaporation steps, high specificity by using GC/MS and GC/MS/MS, availability for routine monitoring.  相似文献   

5.
An extraction method based on matrix solid-phase dispersion was developed to determine pirimicarb, methyl parathion, malathion, procymidone, α -endosulfan and β -endosulfan in lettuce using gas chromatography-mass spectrometry. The best results were obtained using 4.0 g of lettuce, 2.0 g of silica as dispersant sorbent, 0.1 g of activated carbon as clean up sorbent and acetonitrile as eluting solvent. The method was validated using lettuce samples fortified with pesticides at six different concentration levels (0.1 to 2.0 mg/kg). Average recoveries (7 replicates) ranged from 50 to 120 %, with relative standard deviations between 0.6 and 8.0 %. Detection and quantification limits for lettuce ranged from 0.01 to 0.02 mg/kg and 0.04 to 0.10 mg/kg, respectively.  相似文献   

6.
A fast, simple and inexpensive method has been developed for the analysis of phenoxy acid herbicides: 2,4-dichlorophenoxyacetic acid (2,4-D), 4-chloro-2-methylphenoxyacetic acid (MCPA), 2-(4-chloro-o-tolyloxy)propionic acid (MCPP), 2-(4-aryloxyphenoxy)propionic acid (Fluazifop) and 2-(4-aryloxyphenoxy)propionic acid (Haloxyfop) in carrots and apples by liquid chromatography coupled to triple quadrupole mass spectrometry (LC/MS/MS). The compounds were analyzed by QuEChERS (quick, easy, cheap, effective, rugged, safe) methodology without cleanup.

The recoveries were performed at two spiked levels (0.05 and 0.5 mg/kg) for both matrices with six replicates for each level. The mean recoveries ranged from 70–92% for both apples and carrots. The precision of the method expressed as relative standard deviation (RSD%) was found to be in the range 3–15%. For all compounds, good linearity (r2 > 0.99) was obtained over the range of concentration from 0.05 μ g/mL to 0.5 μ g/mL, corresponding to the pesticide concentrations of 0.05 mg/kg and 0.5 mg/kg, respectively. The determination limits (LOQs) ranged from 0.01 ng/mL to 1.3 ng/mL in solvent, whereas, the LOQs calculated in matrix ranged from 0.05 ng/g to 21.0 ng/g for apples and from 0.06 ng/g to 10.2 ng/g for carrots. The developed methodology combines the advantages of both QuEChERS and LC/MS/MS producing a very rapid, sensitive and cheap method useful for the routine analytical laboratories.  相似文献   

7.
A fast and easy method was developed for the determination of glyphosate in maize and rice by using liquid chromatography triple quadrupole mass spectrometry with a Dionex Ion Pack column and phosphate buffer mobile phase. Samples were extracted with an acidified methanol solution. An isotope-labeled internal standard was added to the sample before extraction to ensure accurate tracking and quantification. The method’s performance was evaluated through a series of assessments to determine the accuracy, precision, linearity, matrix effect, limit of detection (LOD), and limit of quantification (LOQ). The mean recoveries for both matrices were within 70–105% at three fortification levels, including the LOQ. The precision for replicates was <20% (RSD%) for both matrices. Good linearity (R2=0.9982) was obtained over the concentration range of 0.01–1.5?mg kg?1. The LOD was determined to be 0.002?mg kg?1 for rice and 0.004?mg kg?1 for maize. The LOQ was 0.01?mg kg?1 for both maize and rice. Due to its versatility, the proposed method could be considered useful for the determination of glyphosate in cereals in routine analysis.  相似文献   

8.
To estimate the variability of pesticide residue levels present in cauliflower units, a total of 142 samples were collected from a field trial of a cooperative farmer, and 120 samples were collected from different market places in Thessaloniki, Greece. The collected samples were extracted using the quick, easy, cheap, effective, rugged, and safe (QuEChERS) extraction technique, and the residues were determined by liquid chromatography–tandem mass spectrometry. The developed method was validated by evaluating the accuracy, precision, linearity, limit of detection (LOD), and limit of quantification (LOQ). The average recoveries for all the analytes, derived from the data of control samples fortified at 0.01, 0.05, 0.1, and 0.2 mg/kg, ranged from 74 to 110% with a relative standard deviation of ≤8%. The correlation coefficient (R2) was ≥0.997 for all the analytes using matrix-matched calibration standards. The LOD values ranged from 0.001 to 0.003 mg/kg, and the LOQ was determined at 0.01 mg/kg for all the sought analytes. The matrix effect was found to be at a considerable level, especially for cypermethrin and deltamethrin, amounting to +90% and +145%, respectively. For the field samples, the unit-to-unit variability factors (VFs) calculated for cypermethrin and deltamethrin were 2.38 and 2.32, respectively, while the average VF for the market basket samples was 5.11. In the market basket samples, residues of cypermethrin, deltamethrin, chlorpyrifos, and indoxacarb were found at levels ≥LOQ and their respective VFs were 7.12, 5.67, 5.28, and 2.40.  相似文献   

9.
Soxhlet extraction and high-performance liquid chromatography (HPLC) coupled to tandem mass spectrometry detection (MS/MS) was used for the determination of selected quaternary ammonium compounds (QACs) in solid samples. The method was applied for the determination of alkyl benzyl, dialkyl and trialkyl quaternary ammonium compounds in sediment and sludge samples in Austria. The overall method quantification limits range from 0.6 to 3 microg/kg for sediments and from 2 to 5 microg/kg for sewage sludges. Mean recoveries between 67% and 95% are achieved. In general sediments were especially contaminated by C12 chain benzalkonium chloride (BAC-C12) as well as by the long C-chain dialkyldimethylammonium chloride (DDAC-C18) with a maximum concentration of 3.6 mg/kg and 2.1mg/kg, respectively. Maxima of 27 mg/kg for DDAC-C10, 25 mg/kg for BAC-C12 and 23 mg/kg for BAC-C14 were determined for sludge samples. The sums of the 12 selected target compounds range from 22 mg/kg to 103 mg/kg in the sludge samples.  相似文献   

10.
A sensitive and reliable method for the simultaneous determination of hydroxycoumarin-type (brodifacoum, bromadiolone, coumatetralyl, and warfarin) and indandione-type (chlorophacinone, diphacinone, and pindone) rodenticides in agricultural products by gel permeation chromatography (GPC) and liquid chromatography–tandem mass spectrometry (LC–MS/MS) was developed. The procedure involved extraction of the rodenticides from samples with acetone, followed by liquid–liquid partitioning with hexane/ethyl acetate (1:1, v/v) and 10% sodium chloride aqueous solution, then cleanup using GPC, and finally, analysis using LC–MS/MS. High recoveries from the GPC column were obtained for all rodenticides tested using a mobile phase of acetone/cyclohexane/triethylamine (400:1600:1, v/v/v). An ODS column, which contains low levels of metal impurities, gave satisfactory peak shapes for both hydroxycoumarin- and indandione-type rodenticides in the LC–MS/MS separation. The average recoveries of rodenticides from eight agricultural foods (apple, eggplant, cabbage, orange, potato, tomato, brown rice, and soybean) fortified at 0.0005–0.001 mg/kg ranged from 76 to 116%, except for bromadiolone in orange (53%) and diphacinone in soybean (54%), and the relative standard deviations ranged from 1 to 16%. The proposed method effectively removed interfering components, such as pigments and lipids, and showed high selectivity. In addition, the matrix effects were negligible for most of the rodenticide/food combinations. The results suggest that the proposed method is reliable and suitable for determining hydroxycoumarin- and indandione-type rodenticides in agricultural products.  相似文献   

11.
The aim of this study was to develop an analytical method for the determination of residues of organophosphorus and carbamate pesticides which are widely used in Tunisia. This method involves a liquid-liquid extraction procedure followed by liquid chromatography tandem mass spectrometry (LC/MS/MS) for the identification and quantification of compounds. Ionization of molecules was performed by the electrospray mode. Multiple reactions monitoring (MRM) was the acquisition mode used for the monitoring of two MS/MS transitions for each compound. The average recoveries obtained, at three different fortification levels, ranged between 65% and 106% for most of the pesticides studied, except for methamidophos (lower than 25%).The linearity of the method was in the range of 5 to 50 μ g/L with a correlation coefficient from 0.995 to 0.999, depending on the analyte. The estimated limit of detection and limit of quantification were 2 μ g/L and 5 μ g/L, respectively. The precision of the analytical procedure was satisfactory and the coefficients of variation, evaluated at three concentration levels were lower than 15% for most pesticides studied. The application of the method was investigated in a population of agricultural workers chronically exposed to various pesticides some of which, such as carbofuran, carbendazim, methomyl and pirimicarb, were detected in some serum samples.  相似文献   

12.
The work was carried out to develop and validate a method based on liquid chromatography tandem mass spectrometry (LC-MS/MS) for the simultaneous detection and quantification of five neonicotinoid insecticides: acetamiprid, clothianidin, imidacloprid, thiacloprid and thiamethoxam in groundwater samples for the purpose of a further column experiment. This experiment will be used to analyze breakthrough curves of neonicotinoids under a saturated water flow to set transport parameters, where the reliability of the results of chemical analysis plays an important role. The validation was performed in a concentration range from 0.09?µg L?1 to 100?µg L?1 using an Infinity 1290 (Agilent, USA) chromatograph coupled with a QTrap 5500 mass spectrometer (Sciex, Canada). The calibration curves were obtained on the basis of the results of six standard solution analyses. Linearity was not lower than 0.998. The limit of detection was set at the lowest concentration which can be determined with an acceptable accuracy and precision. All pesticides had recoveries in the range 85–109% with relative standard deviation values less than 8.1%. The estimated measurement uncertainty did not exceed 30%, so the LC-MS/MS method fits for the intended purpose.  相似文献   

13.
Chaves A  Shea D  Danehower D 《Chemosphere》2008,71(4):629-638
We present a method using gas chromatography (GC) and liquid chromatography (LC) coupled to a mass selective detector to measure concentrations of the fungicide chlorothalonil and several of its metabolites in soil and water. The methods employed solid-phase extraction using a hydrophobic polymeric phase for the isolation of analytes. In lake water, average analyte recoveries ranged from 70% to 110%, with exception of pentachloronitrobenzene that gave low recoveries (23%). The method detection limits were determined to be in the range of 1 and 0.1microg l(-1) for the LC and GC methods, respectively. In soil samples, recoveries ranged from 80% to 95% for 4-hydroxy-2,5,6-trichloroisophthalonitrile (metabolite II) and 1,3-dicarbamoyl-2,4,5,6-tetrachlorobenzene (metabolite III). Limits of detection (LOD) were 0.05 and 0.02microg g(-1), respectively. Chlorothalonil and other metabolites were analyzed by GC giving recoveries ranging from 54% to 130% with LOD of 0.001-0.005microg g(-1).  相似文献   

14.
In this study, a rapid and accurate ultra-fast liquid chromatography–tandem quadrupole mass spectrometry (UFLC–MS/MS) method coupled with the isotope internal standard dilution technique was established and validated to determine trace dicyandiamide (DCD) in mussels. The sample was extracted by acetonitrile, and chromatographic separations were performed on an Acquity UPLC BEH Amide column by using water–acetonitrile (9:91, v/v) as the mobile phase within 3 min. DCD was determined by using DCD-15N4 as an internal standard. The results showed that the recoveries were between 96.2 and 103 % with relative standard deviations (RSDs) in the range of 0.6–6.0 %. The limit of quantification (LOQ) was 0.05 μg/kg. This method can be applied to the routine analysis for the rapid and sensitive determination of trace DCD in mussels. Overall, the data reiterate the importance of investigating the presence of DCD in marine biological samples, which can act as food quality controls for human health.  相似文献   

15.
Kemmochi Y  Tsutsumi K  Futami K 《Chemosphere》2002,46(9-10):1451-1455
Commercial ion trap mass spectrometer provides easy-to-operate MS/MS analysis for the determination of PCDD/PCDF. The limit of quantification is appropriately low (0.2 pg for 23478-P5CDF) because all the stages are performed in the trap and sample losses associated with the ion transportation are minimized. However, if excessive ions are injected into the trap, its electrical fields are distorted and an overall reduction in performance arises. Ionization condition is an important parameter as it affects the amount of the total ions produced. If the amount of interfering compounds are negligible, such as standard solution or cleaned-up sample, lower ionization condition (e.g. electron energy: 30 eV, emission current (EC): 150 μA) is preferable. On the contrary, in case excessive interfering ions are coexisting with PCDD/PCDF, such as crude extract or semi-cleaned-up sample, the ionization condition should be high (e.g. electron energy: 90 eV, EC: 350 μA) for the reproductive quantification.  相似文献   

16.
A simple and accurate method for the analysis of acibenzolar-S-methyl (benzo[1,2,3]thiadiazole-7-carbothioic acid-S-methyl ester; CGA 245 704; ASM) and its major conversion product, benzo[1,2,3]thiadiazole-7-carboxylic acid (CGA 210 007; BTC), in soils is presented. ASM extraction from soil samples was performed using acetonitrile and BTC was extracted with a mixture of potassium phosphate buffer (0.5 M, pH 3) and acetonitrile (70:30 %, v/v). Both extracts were directly analyzed in a high-performance liquid chromatography-diode array detection (HPLC-DAD) system. Pesticide separation was achieved on a C18 (4.6 mm × 150 mm, 5 μm) analytical column with a isocratic elution of acetonitrile:water 40:60 % (v/v) with 0.6 mL L?1 acetic acid at a flow rate of 1 mL min?1. Linear regression coefficients (r (2)) of the external calibration curves were always above 0.9997. The limits of detection (LOD) and quantification (LOQ) of the method were 0.005 and 0.02 mg kg?1 for ASM, and 0.01 and 0.05 mg kg?1 for BTC, respectively. Recoveries were investigated at six fortification levels and were in the range of 90-120 % for ASM and 74-96 % for BTC with relative standard deviations (RSDs) below 11 % in all cases. The method was also validated by analyzing freshly spiked soil samples with 2.7% organic matter content at 0.5 mg kg?1 level, with slightly lower recovery values only for ASM. Moreover, recoveries for intermediate aged residues of the analytes were similar to fresh residues. This method was also applied to determine ASM half-life (t(?) = 8.7 h) and the rate of the acidic metabolite formation.  相似文献   

17.
Dissipation of β-cyfluthrin and imidacloprid in okra was studied following three applications of a combination formulation of Solomon 300 OD (β-cyfluthrin 9 % + imidacloprid 21 %) @ 60 and 120 g a.i. ha(-1) at 7 days interval. Residues of β-cyfluthrin and imidacloprid in okra were estimated by gas liquid chromatography (GLC) and high performance liquid chromatography (HPLC), respectively. Residues of β-cyfluthrin were confirmed by gas chromatograph-mass spectrometry (GC-MS) and that of imidacloprid by high performance thin layer chromatography (HPTLC). Half-life periods for β-cyfluthrin were found to be 0.91 and 0.68 days whereas for imidacloprid these values were observed to be 0.85 and 0.96 days at single and double the application rates, respectively. Residues of β-cyfluthrin dissipated below its limit of quantification (LOQ) of 0.01 mg kg(-1) after 3 and 5 days at single and double the application dosage, respectively. Similarly, residues of imidacloprid took 5 and 7 days to reach LOQ of 0.01 mg kg(-1), at single and double dosages respectively. Soil samples collected after 15 days of the last application did not show the presence of β-cyfluthrin and imidacloprid at their detection limit of 0.01 mg kg(-1).  相似文献   

18.
An analytical method for simultaneous determination of the active substance (chlorpyrifos) and its relevant impurity (sulfotep) in commercial pesticide formulations has been developed and validated. The proposed method entails extraction of the analytes from samples by sonication with acetone and analysis by gas chromatography-flame ionization detection (GC-FID). The proposed method was characterized by satisfactory accuracy and precision. The repeatability expressed as relative standard deviation (RSD) was lower than the acceptable values calculated from the modified Horwitz equation whereas individual recoveries were in the range of 98–102% and 80–120% for chlorpyrifos and sulfotep, respectively. The limit of quantification (LOQ) for the impurity (sulfotep) was 0.003 mg mL?1 corresponding to the maximum permitted level according to Food and Agricultural Organization of the United Nations (FAO) specifications for the active substance (chlorpyrifos) being 3 g kg?1 of the chlorpyrifos content found. The main advantage of the proposed method was a considerable reduction in the analysis time since both analytes were determined based on a single injection into the GC-FID. Analysis of real samples of commercial pesticide formulations confirmed fitness-for-purpose of the proposed method.  相似文献   

19.
An isocratic High Performance Liquid Chromatographic (HPLC) method was optimized for 3-phenoxybenzyl (1RS)-cis-trans-3-(2,2-dichlorovinyl)-2,2-dimethyl-cyclopropanecarboxylate (permethrin) residues identification and quantification in wine matrix. Analytical reverse phase (RP) C-18 column was used (25 cm × 4 mm i.d., 5 μ m) with mobile phase consisting of acetonitrile and water in ratio 70 %/30 % (v v?1), flow-rate 2.0 mL min?1, UV-detection at 215 nm and controlled oven temperature at 25°C. The peaks of isomers were identified with the retention times as compared to standard cis-/trans- mixture and confirmed with characteristic spectra using photodiode array detector. Under these conditions, permethrin isomers were well separated with resolution 2.8 and no interference with the naturally present wine compounds was observed. The method was validated for linearity, precision, accuracy, limit of detection (LOD) and limit of quantification (LOQ). Linear regression analysis data proved a good linear relationship (correlation coefficients, r2, for cis- and trans-isomer are: 0.9995 and 0.9997, respectively) between response of the detector and concentration of permethrin isomers over a wide concentration range for both isomers (0.55 mg L?1 ?4.40 mg L?1). Experimental data showed mean recoveries between 93.95% and 96.58% with RSD values in range: 0.89% ?3.69%. The effect of ethanol content in the solvent on permethrin isomers peak areas was also studied and 60% v v?1 ethanol was found to be optimal for sample preparation. The method was successfully tested on 20 commercial wine samples from the market in which no permethrin was detected. Thus, it was proved that it is suitable for routine permethrin residues analysis. The proposed method is suitable for routine analysis because of the simple sample preparation, acceptable run-time, low cost and its applicability with conventional instruments.  相似文献   

20.
A sensitive and efficient method has been developed for the simultaneous determination of 73 multi-class acidic pesticides, such as phenoxy acid and sulfonylurea herbicides, in vegetables and fruits. The sample preparation procedure was carefully optimized for the efficient removal of co-extracted matrix components. The method involves extraction of acidic pesticides with acetonitrile containing hydrochloric acid, removal of water from crude extract by salting out, and sequential cleanup by octadecylsilyl silica gel and silica gel columns. For samples containing high amounts of pigments, such as spinach, additional cleanup using a graphitized carbon column was performed prior to liquid chromatography–mass spectrometry (LC–MS/MS) analysis. Recovery tests were performed for five times for each sample of cabbage, spinach, potato, eggplant, orange, and apple fortified at 0.01 mg kg?1. Out of the 73 tested pesticides, 70 for cabbage, 67 for spinach, 69 for potato, 67 for eggplant, 64 for orange, and 70 for apple were within the range of 70–120%, with relative standard deviations below 25%. Nitenpyram and pyrasulfotole showed low recoveries for all the samples tested, probably due to low recoveries from silica gel column. The developed method effectively removed co-extracted matrix components and was highly selective, with no interfering peaks found in the chromatograms of blank samples. The overall results indicate that the developed method is suitable for the quantitative analysis of acidic pesticide residues in vegetables and fruits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号