首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Background, aim, and scope  To enforce the implementation of the Kyoto Protocol targets, a number of governmental/international institutions have launched emission trade schemes as an approach to specify CO2 caps and to regulate the emission trade in recent years. These schemes have been basically applied for large industrial sectors, including energy producers and energy-intensive users. Among them, cement plants are included among the big greenhouse gas (GHG) emitters. The use of waste as secondary fuel in clinker kilns is currently an intensive practice worldwide. However, people living in the vicinity of cement plants, where alternative fuels are being used, are frequently concerned about the potential increase in health risks. In the present study, a cost–benefit analysis was applied after substituting classical fuel for sewage sludge as an alternative fuel in a clinker kiln in Catalonia, Spain. Materials and methods  The economical benefits resulting in the reduction of CO2 emissions were compared with the changes in human health risks due to exposure to polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and carcinogenic metals (As, Cd, Co, and Cr) before and after using sewage sludge to generate 20% of the thermal energy needed for pyro-processing. The exposure to PCDD/Fs and metals through air inhalation, soil ingestion and dermal absorption was calculated according to the environmental levels in soil. The carcinogenic risks were assessed, and the associated cost for the population was estimated by considering the DG Environment’s recommended value for preventing a statistical fatality (VPF). In turn, the amount of CO2 emitted was calculated, and the economical saving, according to the market prices, was evaluated. Results  The use of sewage sludge as a substitute of conventional energy meant a probability cancer decrease of 4.60 for metals and a cancer risk increase of 0.04 for PCDD/Fs. Overall, a net reduction of 4.56 cancers for one million people can be estimated. The associated economical evaluation due to the decreasing cancer for 60,000 people, the current population living near the cement plant, would be of 0.56 million euros (US$ 0.83 million). In turn, a reduction of 144,000 tons of CO2 emitted between 2003 and 2006 was estimated. Considering a cost of 20 euros per ton of CO2, the global saving would be 2.88 million euros (US$ 4.26 million). Discussion  After the partial substitution of the fuel, the current environmental exposure to metals and PCDD/Fs would even mean a potential decrease of health risks for the individuals living in the vicinity of the cement plant. The total benefit of using sewage sludge as an alternative fuel was calculated in 3.44 million euros (US$ 5.09 million). Environmental economics is becoming an interesting research field to convert environmental benefits (i.e., reduction of health risks, emission of pollutants, etc.) into economical value. Conclusions  The results show, that while the use of sewage sludge as secondary fuel is beneficial for the reduction in GHG emissions, no additional health risks for the population derived from PCDD/F and metal emissions are estimated. Recommendations and perspectives  Cost–benefit analysis seems to be a suitable tool to estimate the environmental damage and benefit associated to industrial processes. Therefore, this should become a generalized practice, mainly for those more impacting sectors such as power industries. On the other hand, the extension of the study could vastly be enlarged by taking into account other potentially emitted GHGs, such as CH4 and N2O, as well as other carcinogenic and non-carcinogenic micropollutants.  相似文献   

2.
Li X  Li Y  Zhang Q  Wang P  Yang H  Jiang G  Wei F 《Chemosphere》2011,84(7):957-963
The concern about emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs) from steel industrial parks has increased in the past decades. In this study, polyurethane foam (PUF)-disk based passive air samples were collected in and around a big steel industrial park of Anshan, Northeast China from June 2008 to March 2009. The levels, seasonal variations and potential sources of PCDD/Fs, PCBs and PBDEs in the atmosphere around the steel industrial complex were investigated, and potential contribution of these three groups of persistent organic pollutants (POPs) from iron and steel production was also assessed. The air concentrations of ∑17PCDD/Fs (summer: 0.02-2.77 pg m−3; winter: 0.20-9.79 pg m−3), ∑19PCBs (summer: 23.5-155.8 pg m−3; winter: 14.6-81.3 pg m−3) and ∑13PBDEs (summer: 2.91-10.7 pg m−3; winter: 1.10-3.89 pg m−3) in this targeted industrial park were relatively low in comparison to other studies, which implied that the industrial activities of iron and steel had not resulted in serious contamination to the ambient air in this area. On the whole, the air concentrations of PCDD/Fs in winter were higher than those of summer, whereas the concentrations of PCBs and PBDEs showed opposite trends. The result from principal component analysis indicated that coal combustion might be the main contributor of PCDD/F sources in this area.  相似文献   

3.
Greenhouse gas (GHG) emissions by constructed wetlands (CWs) could mitigate the environmental benefits of nutrient removal in these man-made ecosystems. We studied the effect of 3 different macrophyte species and artificial aeration on the rates of nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4) production in CW mesocosms over three seasons. CW emitted 2-10 times more GHG than natural wetlands. Overall, CH4 was the most important GHG emitted in unplanted treatments. Oxygen availability through artificial aeration reduced CH4 fluxes. Plant presence also decreased CH4 fluxes but favoured CO2 production. Nitrous oxide had a minor contribution to global warming potential (GWP < 15%). The introduction of oxygen through artificial aeration combined with plant presence, particularly Typha angustifolia, had the overall best performance among the treatments tested in this study, including lowest GWP, greatest nutrient removal, and best hydraulic properties.  相似文献   

4.
In this paper the authors have estimated for 1990 and 1995 the inventory of greenhouse gases CO2, CH4 and N2O for India at a national and sub-regional district level. The district level estimates are important for improving the national inventories as well as for developing sound mitigation strategies at manageable smaller scales. Our estimates indicate that the total CO2, CH4 and N2O emissions from India were 592.5, 17, 0.2 and 778, 18, 0.3 Tg in 1990 and 1995, respectively. The compounded annual growth rate (CAGR) of these gases over this period were 6.3, 1.2 and 3.3%, respectively. The districts have been ranked according to their order of emissions and the relatively large emitters are termed as hotspots. A direct correlation between coal consumption and districts with high CO2 emission was observed. CO2 emission from the largest 10% emitters increased by 8.1% in 1995 with respect to 1990 and emissions from rest of the districts decreased over the same period, thereby indicating a skewed primary energy consumption pattern for the country. Livestock followed by rice cultivation were the dominant CH4 emitting sources. The waste sector though a large CH4 emitter in the developed countries, only contributed about 10% the total CH4 emission from all sources as most of the waste generated in India is allowed to decompose aerobically. N2O emissions from the use of nitrogen fertilizer were maximum in both the years (more than 60% of the total N2O). High emission intensities, in terms of CO2 equivalent, are in districts of Gangetic plains, delta areas, and the southern part of the country. These overlap with districts with large coal mines, mega power plants, intensive paddy cultivation and high fertilizer use. The study indicates that the 25 highest emitting districts account for more than 37% of all India CO2 equivalent GHG emissions. Electric power generation has emerged as the dominant source of GHG emissions, followed by emissions from steel and cement plants. It is therefore suggested, to target for GHG mitigation, the 40 largest coal-based thermal plants, five largest steel plants and 15 largest cement plants in India as the first step.  相似文献   

5.
Characterization of eco-cement paste produced from waste sludges   总被引:1,自引:0,他引:1  
Yen CL  Tseng DH  Lin TT 《Chemosphere》2011,84(2):220-226
In this study, marble sludge, sewage sludge, drinking water treatment plant sludge, and basic oxygen furnace sludge were used as replacements for limestone, sand, clay, and iron slag, respectively, as the raw materials for the production of cement in order to produce eco-cement. It was found that it is feasible to use marble sludge to replace up to 50% of the limestone and also that other materials can serve as total replacements for the raw materials typically used in the production of cement. The major components of Portland cement were all found in eco-cement clinkers. The eco-cement was confirmed to produce calcium hydroxide and calcium silicate hydrates during the hydration process, increasing densification with the curing age. The compressive strength (Sc) and microstructural evaluations conducted at 28 d revealed the usefulness of eco-cement. It was observed that the Sc data correlated linearly with the pore volume (P) data at 28 d. The proposed model equation could be represented as Sc = 178-461P (correlation coefficient, R2 = 0.96). Two parameters, the large capillary pore volume and the medium capillary pore volume, were evaluated using multiple regression analysis.  相似文献   

6.
7.
A comprehensive, spatially resolved (0.25°×0.25°) fossil fuel consumption database and emissions inventory was constructed, for India, for the first time. Emissions of sulphur dioxide and aerosol chemical constituents were estimated for 1996–1997 and extrapolated to the Indian Ocean Experiment (INDOEX) study period (1998–1999). District level consumption of coal/lignite, petroleum and natural gas in power plants, industrial, transportation and domestic sectors was 9411 PJ, with major contributions from coal (54%) followed by diesel (18%). Emission factors for various pollutants were derived using India specific fuel characteristics and information on combustion/air pollution control technologies for the power and industrial sectors. Domestic and transportation emission factors, appropriate for Indian source characteristics, were compiled from literature. SO2 emissions from fossil fuel combustion for 1996–1997 were 4.0 Tg SO2 yr−1, with 756 large point sources (e.g. utilities, iron and steel, fertilisers, cement, refineries and petrochemicals and non-ferrous metals), accounting for 62%. PM2.5 emitted was 0.5 and 2.0 Tg yr−1 for the 100% and the 50% control scenario, respectively, applied to coal burning in the power and industrial sectors. Coal combustion was the major source of PM2.5 (92%) primarily consisting of fly ash, accounting for 98% of the “inorganic fraction” emissions (difference between PM2.5 and black carbon+organic matter) of 1.6 Tg yr−1. Black carbon emissions were estimated at 0.1 Tg yr−1, with 58% from diesel transport, and organic matter emissions at 0.3 Tg yr−1, with 48% from brick-kilns. Fossil fuel consumption and emissions peaked at the large point industrial sources and 22 cities, with elevated area fluxes in northern and western India. The spatial resolution of this inventory makes it suitable for regional-scale aerosol-climate studies. These results are compared to previous studies and differences discussed. Measurements of emission factors for Indian sources are needed to further refine these estimates.  相似文献   

8.
Zhang K  Liu J  Liu W  Yang J 《Chemosphere》2011,85(4):689-692
A novel approach to prepare glass-ceramics from molten steel slag (MSS) was proposed. In laboratory, the water-quenched steel slag was melted at 1350 °C to simulate the MSS. A mixture of additive powders in wt.% (55 quartz powder, 5 Na2O, 16 emery powder, 15 CaO, 8 MgO, 1 TiO2) were melted into liquid at 1350 °C separately. Then the MSS and the molten additives were mixed homogeneously in order to obtain parent glass melt. The proportion of MSS in the melt was 50 wt.%. The melt was subsequently cast, annealed, heat-treated and transformed into glass-ceramics. Their microstructure and crystallization behavior were analyzed. The samples exhibited excellent properties and displayed bulk crystallization. The major crystallized phase was diopside ((Fe0.35Al0.20Mg0.44)Ca0.96(Fe0.08Si0.70Al0.20)2O6.12), which was uniformly distributed in the microstructure. The novel approach may help iron and steel industry achieve zero disposal of steel slag with utilization of the heat energy of the MSS.  相似文献   

9.
Biochar has been recently proposed as a management strategy to improve crop productivity and global warming mitigation. However, the effect of such approach on soil greenhouse gas fluxes is highly uncertain and few data from field experiments are available. In a field trial, cultivated with wheat, biochar was added to the soil (3 or 6 kg m−2) in two growing seasons (2008/2009 and 2009/2010) so to monitor the effect of treatments on microbial parameters 3 months and 14 months after char addition. N2O, CH4 and CO2 fluxes were measured in the field during the first year after char addition. Biochar incorporation into the soil increased soil pH (from 5.2 to 6.7) and the rates of net N mineralization, soil microbial respiration and denitrification activity in the first 3 months, but after 14 months treated and control plots did not differ significantly. No changes in total microbial biomass and net nitrification rate were observed. In char treated plots, soil N2O fluxes were from 26% to 79% lower than N2O fluxes in control plots, excluding four sampling dates after the last fertilization with urea, when N2O emissions were higher in char treated plots. However, due to the high spatial variability, the observed differences were rarely significant. No significant differences of CH4 fluxes and field soil respiration were observed among different treatments, with just few exceptions. Overall the char treatments showed a minimal impact on microbial parameters and GHG fluxes over the first 14 months after biochar incorporation.  相似文献   

10.
Energy supply utilities release significant amounts of greenhouse gases (GHGs) into the atmosphere. It is essential to accurately estimate GHG emissions with their uncertainties, for reducing GHG emissions and mitigating climate change. GHG emissions can be calculated by an activity-based method (i.e., fuel consumption) and continuous emission measurement (CEM). In this study, GHG emissions such as CO2, CH4, and N2O are estimated for a heat generation utility, which uses bituminous coal as fuel, by applying both the activity-based method and CEM. CO2 emissions by the activity-based method are 12–19% less than that by the CEM, while N2O and CH4 emissions by the activity-based method are two orders of magnitude and 60% less than those by the CEM, respectively. Comparing GHG emissions (as CO2 equivalent) from both methods, total GHG emissions by the activity-based methods are 12–27% lower than that by the CEM, as CO2 and N2O emissions are lower than those by the CEM. Results from uncertainty estimation show that uncertainties in the GHG emissions by the activity-based methods range from 3.4% to about 20%, from 67% to 900%, and from about 70% to about 200% for CO2, N2O, and CH4, respectively, while uncertainties in the GHG emissions by the CEM range from 4% to 4.5%. For the activity-based methods, an uncertainty in the Intergovernmental Panel on Climate Change (IPCC) default net calorific value (NCV) is the major uncertainty contributor to CO2 emissions, while an uncertainty in the IPCC default emission factor is the major uncertainty contributor to CH4 and N2O emissions. For the CEM, an uncertainty in volumetric flow measurement, especially for the distribution of the volumetric flow rate in a stack, is the major uncertainty contributor to all GHG emissions, while uncertainties in concentration measurements contribute a little to uncertainties in the GHG emissions.
Implications:Energy supply utilities contribute a significant portion of the global greenhouse gas (GHG) emissions. It is important to accurately estimate GHG emissions with their uncertainties for reducing GHG emissions and mitigating climate change. GHG emissions can be estimated by an activity-based method and by continuous emission measurement (CEM), yet little study has been done to calculate GHG emissions with uncertainty analysis. This study estimates GHG emissions and their uncertainties, and also identifies major uncertainty contributors for each method.  相似文献   

11.
A novel nanocomposite based on incorporation of multiwalled carbon nanotubes (MWCNTs) in polyvinyl chloride (PVC) was prepared. Proposed nanocomposite was coated on stainless steel wire by deep coating. Composition of nanocomposite was optimized based on results of morphological studies using scanning electron microscopy. The best composition (83% MWCNTs:17% PVC) was applied as a solid phase microextraction fiber. Complex mixture of aromatic (BTEX) and aliphatic hydrocarbons (C5–C34) were selected as model analytes, and performance of proposed fiber in extraction of the studied compounds from water and soil samples was evaluated. Analytical merits of the method for water samples (LODs = 0.10–1.10 ng L−1, r2 = 0.9940–0.9994) and for soil samples (LODs = 0.10–0.77 ng kg−1, r2 = 0.9946–0.9994) showed excellent characteristics of it in ultra trace determination of petroleum type environmental pollutants. Finally, the method was used for determination of target analytes in river water, industrial effluent and soil samples.  相似文献   

12.
Liu G  Zheng M  Du B  Nie Z  Zhang B  Liu W  Li C  Hu J 《Chemosphere》2012,89(4):467-472
Iron ore sintering processes constitute significant sources of dioxins, and studies have confirmed a close correlation between polychlorinated naphthalenes (PCNs) and dioxin formation. Thus, iron ore sintering processes are thought to be a potential source of PCNs, although intensive investigations on PCN emissions from sintering processes have not been carried out. Therefore, the aim of the present study was to qualify and quantify PCN emissions from nine sintering plants operating on different industrial scales. PCN concentrations ranged from 3 to 983 ng m−3 (0.4-23.3 pg TEQPCN m−3) and emission factors ranged from 14 to 1749 μg t−1 (0.5-41.5 ng TEQPCN t−1), with a geometric mean of 84 μg t−1 (2.1 ng TEQPCN t−1). The estimated annual emission of PCNs from sintering processes in China was 1390 mg TEQPCN. These figures will assist in the development of a PCN emissions inventory. Regarding emission characteristics, PCNs mainly comprised low-chlorinated homologs. The ratios of several characteristic PCN congeners were also measured and compared with those from other sources. Taken together, these results may provide useful information for identifying the sources of PCNs produced by iron ore sintering processes.  相似文献   

13.
Liu H  Yang J  Shi Y  Li Y  He S  Yang C  Yao H 《Chemosphere》2012,88(2):235-239
Physical conditioners, often known as skeleton builders, are commonly used to improve the dewaterability of sewage sludge. This study evaluated a novel joint usage of Fenton’s reagent and skeleton builders, referred to as the F-S inorganic composite conditioner, focusing on their efficacies and the optimization of the major operational parameters. The results demonstrate that the F-S composite conditioner for conditioning sewage sludge is a viable alternative to conventional organic polymers, especially when ordinary Portland cement (OPC) and lime are used as the skeleton builders. Experimental investigations confirmed that Fenton reaction required sufficient time (80 min in this study) to degrade organics in the sludge. The optimal condition of this process was at pH = 5, Fe2+ = 40 mg g−1 (dry solids), H2O2 = 32 mg g−1, OPC = 300 mg g−1 and lime = 400 mg g−1, in which the specific resistance to filtration reduction efficiency of 95% was achieved.  相似文献   

14.
The global demand for water transmission and service pipelines is expected to more than double between 2012 and 2022. This study compared the carbon footprint of the two most common materials used for large-diameter water transmission pipelines, steel pipe (SP) and prestressed concrete cylinder pipe (PCCP). A planned water transmission pipeline in Texas was used as a case study. Four life-cycle phases for each material were considered: material production and pipeline fabrication, pipe transportation to the job site, pipe installation in the trench, and operation of the pipeline. In each phase, the energy consumed and the CO2-equivalent emissions were quantified. It was found that pipe manufacturing consumed a large amount of energy, and thus contributed more than 90% of life cycle carbon emissions for both kinds of pipe. Steel pipe had 64% larger CO2-eq emissions from manufacturing compared to PCCP. For the transportation phase, PCCP consumed more fuel due to its heavy weight, and therefore had larger CO2-eq emissions. Fuel consumption by construction equipment for installation of pipe was found to be similar for steel pipe and PCCP. Overall, steel had a 32% larger footprint due to greater energy used during manufacturing.

Implications: This study compared the carbon footprint of two large-diameter water transmission pipeline materials, steel and prestressed concrete cylinder, considering four life-cycle phases for each. The study provides information that project managers can incorporate into their decision-making process concerning pipeline materials. It also provides information concerning the most important phases of the pipeline life cycle to target for emission reductions.  相似文献   


15.

Wastewater treatment plants (WWTPs) have been recognized as important sources for anthropogenic greenhouse gas (GHG) emission. The objective of the study was to thoroughly investigate a typical industrial WWTP in southern Taiwan in winter and summer which possesses the emission factors close to those reported values, with the analyses of emission factors, mass fluxes, fugacity, lab-scale in situ experiments, and impact assessment. The activated sludge was the important source in winter and summer, and nitrous oxide (N2O) was the main contributor (e.g., 57 to 91 % of total GHG emission in a unit of kg carbon dioxide-equivalent/kg chemical oxygen demand). Albeit important for the GHGs in the atmosphere, the fractional contribution of the GHG emission to the carbon or nitrogen removal in wastewater treatment was negligible (e.g., less than 1.5 %). In comparison with the sludge concentration or retention time, adjusting the aeration rate was more effective to diminish the GHG emission in the activated sludge without significantly affecting the treated water quality. When the aeration rate in the activated sludge simulation was reduced by 75 %, the mass flux of N2O could be diminished by up to 53 % (from 9.6 to 4.5 mg/m2-day). The total emission in the WWTP (including carbon dioxide, methane, and N2O) would decrease by 46 % (from 0.67 to 0.36 kg CO2-equiv/kg COD). However, the more important benefit of changing the aeration rate was lowering the energy consumption in operation of the WWTP, as the fractional contribution of pumping to the total emission from the WWTP ranged from 46 to 93 % within the range of the aeration rate tested. Under the circumstance in which reducing the burden of climate change is a global campaign, the findings provide insight regarding the GHG emission from treatment of industrial wastewater and the associated impact on the treatment performance and possible mitigation strategies by operational modifications.

  相似文献   

16.
Parameters that influence the zero valent iron mediated degradation of the pharmaceutical diazepam (DZP) were evaluated including the iron concentration and its pre-treatment, the effect of complexation with EDTA and oxic versus anoxic condition. It was observed that acid pre-treatment of iron particles is important for degradation efficiency and that H2SO4 is a better choice than HCl, resulting in higher degradation of DZP. Under oxic conditions, the degradation of DZP achieved 96% after 60 min using Fe0 (25 g L−1) pre-treated with H2SO4 in the presence of EDTA (119 mg L−1), while mineralization achieved around 60% after the same time. Under anoxic conditions, degradation occurred, however at lower extent, achieving 67% after 120 min. The addition of EDTA improved the treatment efficiency in 20% leading to 99% DZP degradation after 120 min. The first intermediates formed during DZP degradation were identified using LC/MS analysis and revealed the formation of mono- and di-hydroxylated products from DZP during Fe0/EDTA/O2 degradation, which evidences that OH was the main oxidizing species formed in this process.  相似文献   

17.
This study proposes an easy-to-apply method, the Total Life Cycle Emission Model (TLCEM), to calculate the total emissions from shipping and help ship management groups assess the impact on emissions caused by their capital investment or operation decisions. Using TLCEM, we present the total emissions of air pollutants and greenhouse gases (GHGs) during the 25-yr life cycle of 10 post-Panamax containerships under slow steaming conditions. The life cycle consists of steel production, shipbuilding, crude oil extraction and transportation, fuel refining, bunkering, and ship operation. We calculate total emissions from containerships and compare the effect of emission reduction by using various fuels. The results can be used to differentiate the emissions from various processes and to assess the effectiveness of various reduction approaches. Critical pollutants and GHGs emitted from each process are calculated. If the containerships use heavy fuel oil (HFO), emissions of CO2 total 2.79 million tonnes (Mt), accounting for 95.37% of total emissions, followed by NOx and SOx emissions,which account for 2.25% and 1.30%, respectively.The most significant emissions are from the operation of the ship and originate from the main engine (ME).When fuel is switched to 100% natural gas (NG), SOx, PM10, and CO2 emissions show remarkable reductions of 98.60%, 99.06%, and 21.70%, respectively. Determining the emission factor of each process is critical for estimating the total emissions. The estimated emission factors were compared with the values adopted by the International Maritime Organization (IMO).The proposed TLCEM may contribute to more accurate estimates of total life cycle emissions from global shipping.

Implications: We propose a total life cycle emissions model for 10 post-Panamax container ships. Using heavy fuel oil, emissions of CO2 total 2.79 Mt, accounting for approximately 95% of emissions, followed by NOx and SOx emissions. Using 100% natural gas, SOx, PM10, and CO2 emissions reduce by 98.6%, 99.1%, and 21.7%, respectively. NOx emissions increase by 1.14% when running a dual fuel engine at low load in natural gas mode.  相似文献   


18.
Guéguen F  Stille P  Millet M 《Chemosphere》2011,85(2):195-202
Tree barks were used as biomonitors to evaluate past atmospheric pollution within and around the industrial zones of Strasbourg (France) and Kehl (Germany) in the Rhine Valley. The here estimated residence time for trace metals, PCBs and PCDD/Fs in tree bark is >10 years. Thus, all pollution observed by tree bark biomonitoring can be older than 10 years. The PCB baseline concentration (sum of seven PCB indicators (Σ7PCBind)) determined on tree barks from a remote area in the Vosges mountains is 4 ng g−1 and corresponds to 0.36 × 10−3 ng toxic equivalent (TEQ) g−1 for the dioxin-like PCBs (DL-PCBs). The northern Rhine harbor suffered especially from steel plant, waste incinerator and thermal power plant emissions. The polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/Fs) concentrations analyzed in tree barks from this industrial area range between 392 and 1420 ng kg−1 dry-weight (dw) corresponding to 3.9 ng TEQPCDD/Fs kg−1 to 17.8 ng TEQPCDD/Fs kg−1, respectively. Highest PCDD/F values of 7.2 ng TEQ kg−1 to 17.8 ng TEQ kg−1 have been observed close to and at a distance of <2 km southwest of the chemical waste incinerator. However, very close to this incinerator lowest TEQ dioxin-like PCB (TEQDL-PCB) values of 0.006 ng TEQ g−1 have been found. On the other hand close to and southwest and northeast of the steel plant the values are comparatively higher and range between 0.011 ng TEQ g−1 and 0.026 ng TEQ g−1. However, even stronger Σ7PCBind enrichments have been observed at a few places in the city center of Kehl, where ΣDL-PCB values of up to 0.11 ng TEQ g−1 have been detected. These enrichments, however, are the result of ancient pollutions since recent long-term measurements at the same sites indicate that the atmospheric PCB concentrations are close to baseline. Emissions from an old landfill of waste and/or great fires might have been the reasons of these PCB enrichments. Other urban environments of the cities of Kehl and Strasbourg show significantly lower Σ7PCBind concentrations. They suffer especially from road and river traffic and have typically Σ7PCBind concentrations ranging from 11 ng g−1 to 29 ng g−1. The PCB concentration of 29 ng g−1 has been found in tree bark close to the railway station of Strasbourg. Nevertheless, the corresponding TEQDL-PCB are low and range between 0.2 × 10−3 ng TEQ g−1 and 7 × 10−3 ng TEQ g−1. Samples collected near road traffic are enriched in Fe, Sb, Sn and Pb. Cd enrichments were found close to almost all types of industries. Rural environments not far from industrial sites suffered from organic and inorganic pollution. In this case, TEQDL-PCB values may reach up to 58 × 10−3 ng TEQ g−1 and the corresponding V, Cr, Co, Ni, and Cd concentrations are comparatively high.  相似文献   

19.
The concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) were determined in breast milk from women living in the vicinity of a hazardous waste incinerator (HWI) in Catalonia, Spain. The results were compared with the levels obtained in previous surveys carried out in the same area in 1998 (baseline study), 2002 and 2007. The current total concentrations of 2,3,7,8-chlorinated PCDD/Fs in breast milk ranged from 18 to 126 pg g−1 fat (1.1–12.3 pg WHO2005-TEQPCDD/F), while the total levels of PCBs ranged from 27 to 405 pg g−1 fat (0.7–5.3 pg WHO2005-TEQPCB). In turn, PBDE concentrations (sum of 15 congeners) ranged 0.3–5.1 g g−1 fat, with a mean value of 1.3 ng g−1 fat. A general decrease in the concentrations for PCDD/Fs, both planar and total PCBs, and PBDEs in breast milk was observed. The levels of PCDD/Fs, PCBs, and PBDEs in milk of women living in urban zones were higher than those corresponding to industrial zones (41%, 26%, and 8%, respectively). For PCDD/Fs and PCBs, the current decreases are in accordance with the reduction in the dietary intake of these pollutants that we have also observed in recent studies carried out in the same area of study.  相似文献   

20.
Liu X  Zhao W  Sun K  Zhang G  Zhao Y 《Chemosphere》2011,82(5):773-777
The conventional hydrothermal reaction with iron powder, NaOH and H2O as reactants was reported to occur at temperature above 423 K, and iron oxides (Fe3O4 and NaFeO2) and hydrogen were produced. In this study, microwave heating was adopted to take the place of conventional heating to induce the hydrothermal reaction. Under microwave irradiation, NaOH and H2O absorbed microwave energy by space charge polarization and dipolar polarization and instantly converted it into thermal energy, which initiated the hydrothermal reaction that involved with zero-valent iron. X-ray diffraction (XRD) analysis found Fe3O4/NaFeO2 and confirmed the occurrence of microwave-induced hydrothermal reaction. The developed microwave-hydrothermal reaction was employed for the dechlorination of PCBs. Hexadecane containing 100 mg L−1 of Aroclor1254 was used as simulative transformer oil, and the dechlorination of PCBs was evaluated by GC/ECD, GC/MS and ion chromatography. For PCBs in 10 mL simulative transformer oil, almost complete dechlorination was achieved by 750 W microwave irradiation for 10 min, with 0.3 g iron powder, 0.3 g NaOH and 0.6 mL H2O added. The effects of important factors including microwave power and the amounts of reactants added, on the dechlorination degree were investigated, moreover, the dechlorination mechanism was suggested. Microwave irradiation combined with the common and cheap materials, iron powder, NaOH and H2O, might provide a fast and cost-effective method for the treatment of PCBs-containing wastes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号