首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
研究了采用厌氧膨胀颗粒污泥床反应器(EGSB)处理高浓度生活污水的可行性.试验结果表明,采用EGSB处理生活污水,出水水质较好.COD去除率达到80%-93%,出水COD值在100mg/L以下;最佳水力停留时间为1 h;SS的去除率在92%-95%之间;出水氨氮值高于进水值,出水总磷值略低于进水值,氮磷去除效果较差.试验说明采用EGSB反应器处理高浓度生活污水是可行的.  相似文献   

2.
为解决土壤渗滤系统出水氨氮浓度不稳定的问题,设计了土壤与河泥按不同比例组合的混合填料土壤渗滤系统,并以模拟生活污水为考察对象,在水力负荷为0.15 m/d的条件下,研究了进水氨氮负荷、溶解氧质量浓度及容积利用率对系统出水氨氮质量浓度的影响。结果表明:当进水氨氮质量浓度由20 mg/L增加至35 mg/L时,出水氨氮质量浓度在短时间内也会大幅提升,9~15 d可恢复处理能力;系统出水氨氮质量浓度随进水溶解氧质量浓度降低而升高,当进水溶解氧质量浓度小于0.5 mg/L时,出水氨氮质量浓度甚至高于进水;容积利用率为38.72%的系统出水氨氮质量浓度低于容积利用率为25.82%的系统;增加土壤中有机质含量,可以改善土壤环境,缩短系统启动时间,提高系统容积利用率,增强土壤渗滤系统抗冲击负荷能力,从而使出水氨氮质量浓度保持在较低水平。  相似文献   

3.
利用气升式环流反应器,处理某连续运行的处理去油脂餐厨垃圾废水的UASB反应塔厌氧出水。结果表明,当进水由易降解啤酒变为难降解的UASB出水时,进水基质突变以及葡萄糖效应等会导致出水COD出现跃升。稳定期,当进水有机物质量浓度和氨氮质量浓度分别为1 500 mg/L和390 mg/L左右,水力停留时间为1.5 d时,COD和NH+4-N去除率分别达到70%和88.6%。反应器内30~90 mg/L的游离氨会对硝化菌的新陈代谢产生明显的抑制作用。出水NH+4-N和COD浓度能够达到CJ 343—2010《污水排入城市下水道水质标准》B等级规定。  相似文献   

4.
以序批式动态膜反应器为研究对象,对其处理低碳氮比废水的效果进行了试验研究.试验温度为19 ~ 21℃,MLSS为3~5g/L;好氧阶段溶解氧质量浓度为2 ~4 mg/L,厌氧阶段溶解氧质量浓度为0.2~0.5 mg/L;水力停留时间共12 h,其中好氧阶段8h,厌氧阶段4h.结果表明:当进水COD、TN和NH4+-N质量浓度分别为250~300mg/L、103 ~ 156 mg/L和92~140 mg/L时,反应器对上述污染物表现出较高且稳定的去除效率,COD、TN和NH4+-N平均去除率分别达到76.15%、82.16%和90.13%.同时,反应器系统中污泥的比硝化速率与常规处理装置中的活性污泥相比较高,以NH4+-N的降解量计为0.101 d-1,以NO3--N的积累量计为0.091 d-.  相似文献   

5.
介绍了高效菌处理焦化废水的试验研究.试验针对焦化废水处理的流行工艺A/O法进行研究,投加高效菌后对好氧池和缺氧池的NH3-N和COD去除效果明显.结果表明,当进水COD质量浓度在2 000 mg/L以下时,出水COD可最低可降至120 mg/L以内,COD去除率最高可达到85%;进水NH3-N质量浓度在300 mg/L以下时,出水氨氮可稳定在15 mg/L以内,氨氮去除率仍可达到95%.  相似文献   

6.
采用SBR法处理高盐肝素钠生产废水,探讨了曝气时间、进水p H、温度等参数对COD和氨氮降解效果及污泥生长的影响。结果表明,控制曝气时间为10 h、进水p H为7.5、反应温度在26~29℃时,COD和氨氮去除率均能稳定在85%以上;对氨氮去除效果较差的反应器,适当添加K+、Ca2+、Mg2+可以取得一定的改善作用,其中K+对Na+和NH4+双重毒性抑制的拮抗效应最明显;经参数优化后的SBR反应器对不同污泥负荷和盐度负荷具有较好的适应能力,受到冲击后COD和氨氮去除率均能在2~3个运行周期内恢复至90%以上。  相似文献   

7.
A/DAT-IAT生物膜法处理高含盐废水   总被引:1,自引:0,他引:1  
以含盐量为60 000mg/L(以NaCl计)的模拟工业废水为研究对象,利用A/DAT-IAT生物膜反应器,研究A/DAT-IAT工艺对投加悬浮填料后高含盐废水的处理,并以CODCr、NH4 -N、PO43--P等作为指标评价处理效果.试验结果表明,在总水力停留时间(HRT)为13 h、pH=7,5、25℃条件下,进水ρ(CODCr)、ρ(NH4 -N)和ρ(PO43--P)分别为907.4~1 210.0 mg/L、86.2~99.7 mg/L和3.6~5.1 mg/L.CODCr、NH4 -N和PO43--P的平均去除率分别为73.9%、38.6%和93.5%,平均出水SS为198 mg/L,其中CODCr和PO43--P的去除效果较好.研究表明,A/DAT-IAT生物膜法较其他活性污泥法有了较大的提高.  相似文献   

8.
同步硝化与反硝化(SND)好氧颗粒污泥脱氮过程初步研究   总被引:7,自引:1,他引:7  
研究好氧颗粒污泥的同步硝化反硝化脱氮,寻找消除氮素对水体污染的途径。在反应器中培养了好氧条件下具有同步硝化反硝化功能的颗粒污泥,进行脱氮过程研究。好氧颗粒污泥为无载体结构,直径2~3 mm,其构成松隙,具有厌(兼)氧与好氧微生物生长代谢的环境;反应液中氨氮浓度为201 mg·L-1时,6 h反应周期内氨完全被氧化,出水中检测不到NO2--N,仅残留2 mg·L-1的N03一N,硝化与反硝化两个过程完成了脱氮反应,颗粒污泥中存在硝化细菌和反硝化细菌;改变反应器中进水有机物浓度,发现COD浓度越大,氮去除率越低,硝化细菌在高有机物浓度下反应活性受抑制,自养硝化细菌竞争氧及其他营养物质的能力弱于异养细菌;在好氧条件下(4 mgO2·L-1),进水中不加有机碳源,反应6 h后NH4+-N去除率达75%,反应过程中pH值下降,说明颗粒污泥中硝化细菌为自养型,硝化反应产酸降低反应器中pH值;在厌氧条件下,进水COD和NO3--N浓度分别为227.25 mg·L-1和103.63 mg·L-1,反应结束后,NO3--N去除率为74%,反应过程中pH值呈上升趋势,证明了好氧颗粒污泥中存在厌氧反硝化细菌,且反硝化细菌生长于颗粒污泥内部的厌氧区域,反硝化产碱使反应液pH值上升。  相似文献   

9.
以抚顺某油母页岩炼油厂为例,重点介绍此油母页岩干馏污水厂干馏废水处理工艺流程并分析其出水水质变化情况,检测了隔油-厌氧-好氧对COD、石油类物质和氨氮的处理效果.经上述工艺处理后,COD、石油类、和氨氮的去除率分别达到了80%、96%、和86%.但是出水中COD和氨氮质量浓度指标仍然比较高,最终出水分别为913 mg/L和126 mg/L,不能达到辽宁省污水排放标准.通过用UV/Fenton高级氧化法对其出水进一步深化处理,研究了芬顿试剂的组成、进水初始pH值、光照时间等对反应效果的影响.最优条件下,COD、氨氮和石油类的最终出水质量浓度分别为160 mg/L、9 mg/L和6 mg/L.  相似文献   

10.
通过探索垃圾渗滤液硝化生物强化体系中进、出水含氮化合物形态的转化规律及采用测定呼吸耗氧速率来表征硝化菌群的生物活性等方法研究了不同pH值、进水NH4 -N浓度(负荷)、DO条件下体系的硝化特性.研究发现,酸性条件下,垃圾渗滤液的亚硝化作用较硝化作用受抑制程度大,碱性条件下相反.为了维持较高的硝化效率,垃圾渗滤液的硝化生物强化pH值宜控制在7.5~8.5.实验体系所能承受的氨氮浓度和负荷上限分别为300 mg/L和0.6 kg NH4 -N/(m3·d)左右,当进水NH4 -N浓度和负荷过高时,硝化细菌活性下降幅度较亚硝化细菌要显著得多.DO影响因子实验表明,DO水平的控制对垃圾渗滤液的生物硝化程度有重要影响,当DO控制在0.5~0.6mg/L时,氨氮的氧化以亚硝化作用为主,当DO控制在1.1~2.6 mg/L时,垃圾渗滤液的硝化作用进行得较彻底.  相似文献   

11.
构建曝气式矿化垃圾反应器,研究其对高水力负荷垃圾渗滤液的处理效果。结果表明,在水力负荷为70 L/(m~3垃圾·d),曝气量为0.744 m~3/(m~3垃圾·d)的条件下,进水渗滤液中COD_(Cr)、氨氮、总磷、总氮质量浓度分别为4 776~5 305,1 659~2 200,15~22,2 115~2 578 mg/L时,COD_(Cr)、氨氮、总磷的平均去除率分别为75.2%,96.0%,89.0%。总氮去除率呈下降趋势,从56.6%降至16.1%,平均去除率为25.8%。  相似文献   

12.
生物接触氧化技术处理二级出水中的氨氮   总被引:2,自引:1,他引:1  
采用生物接触氧化技术,以污水处理厂二级出水为处理对象,研究工艺的生物降解过程及脱氮效果,并分析了影响NH3-N去除效果的几种因素.实验结果表明,水力停留时间3 h,进水COD 80 mg/L,进水NH3-N 15 mg/L的情况下,生物接触氧化技术能有效去除二级出水中的NH3-N,平均去除率为47.6%,出水满足GB/T 18920-2002《城市污水再生利用城市杂用水水质》中的洗车、清扫的要求.  相似文献   

13.
采用有效容积为6.3 L的上流式流化床接种普通污泥,进行了厌氧氨氧化反应器的启动,研究了先富集反硝化污泥再启动厌氧氨氧化反应器的过程特征。首先投配硝氮质量浓度70 mg/L、以葡萄糖为碳源、COD为200 mg/L的模拟废水增强污泥的反硝化能力。运行6 d后,出水硝氮质量浓度在10 mg/L左右,反应器对硝氮的去除率稳定在80%以上,污泥具有较高的反硝化活性。随后投配氨氮质量浓度50~60 mg/L、亚硝氮质量浓度30~58 mg/L的废水进行厌氧氨氧化菌培养。培养一开始出水氨氮质量浓度就比进水低,第31 d氨氮的去除率达到50%以上。逐步提高进水氨氮和亚硝酸氮质量浓度,从100 mg/L、140 mg/L、200 mg/L到420 mg/L,氨氮和亚硝氮去除率亦不断提高。第40 d后,反应器氨氮去除量、亚硝氮去除量和硝氮增加量之比在1∶(1.3±0.2)∶(0.3±0.1)范围内小幅波动,表明厌氧氨氧化反应已经成为反应器内的主导脱氮反应。经过76 d的培养,在进水氨氮和亚硝氮质量浓度分别为405.23 mg/L和488.24 mg/L时,反应器对它们的去除率达到80%和95.22%,最大氮去除速率为0.93 kg/(m3·d)。研究表明,采用上流式流化反应器先富集反硝化菌再培养厌氧氨氧化菌和采用逐步提高进水负荷的启动策略,对于快速培养高活性Anammox污泥、启动反应器是有效的。  相似文献   

14.
针对传统反应器在有机废水处理中存在的问题,在结合UASB和IC反应器特点的基础上,通过设置布水器进行均衡布水,引进固定化微生物填料防止反应器堵塞,改进三相分离器提高回流比,设置内循环回流管减少水头损失及布置多级取样口方便采样,设计可自动控制的厌氧/好氧一体化内循环回流式流化床反应器,并且采用PLC控制器控制进出水水量、水流上升速度、曝气量、进气时间及水力停留时间等参数,用于处理高氨氮有机废水.屠宰废水室内试验结果表明:在进水流量为1 m3/d,水力停留时间为3h,pH值7.2,25℃的条件下,好氧微曝气使溶解氧为2 mg/L,厌氧好氧自动交替运行,水流上升速控制在约1.0 m/h,约40%的污水无动力回流处理,填料无堵塞,采样方便.经50d驯化后,出水CODcr、NH+4-N、油脂及色度的去除率分别达到了87%、63.6%、74.7%和84.7%,且每天能获得生物质气体约0.32 m,平均处理费用为0.15元/t,比传统处理工艺费用要低.这说明内循环回流式流化床反应器较传统反应器在高氨氮有机废水处理,特别是脱氮方面有较大提高,可用于高氨氮有机废水的处理.  相似文献   

15.
研究碳源和硝酸盐对填加聚氨酯载体的SBBR反硝化除磷的影响。在SBR中填加聚氨酯载体,将生物膜法和活性污泥法相结合,形成序批式生物膜反应器(SBBR),在厌氧/缺氧交替运行条件下利用NO3-作为电子受体,研究NaAc浓度、NaAc与丙酸钠的比例、NO3-浓度及NO3-投加方式等因素对除磷效果的影响。PO43-质量浓度在9~11 mg/L之间,COD质量浓度为200 mg/L时,SBBR有较佳的除磷效果;当进水NaAc与丙酸钠配比为2时,进水COD自身降解速率较慢,且不影响除磷效果;分批次(这里分2次)投加硝酸盐有利于硝酸盐向亚硝酸盐的转化;NO3-质量浓度为65 mg/L左右时,能获得较好的除磷、除氮效果。填加聚氨酯载体的SBR装置除磷效果较理想;碳源和硝酸盐对SBBR反硝化除磷影响显著。  相似文献   

16.
以PBS为载体和碳源的SND系统的脱氮效果研究   总被引:1,自引:0,他引:1  
水产养殖业高速发展所带来的氮素污染问题越来越严重,近年来同步硝化反硝化(Simultaneous Nitrification and Denitrification,SND)脱氮工艺因其良好的脱氮效果引起广泛关注。以人工模拟养殖污水作为原水,研究了以可生物降解材料聚丁二酸丁二醇酯(Polybutylene succinate,PBS)作为碳源和载体的同步硝化反硝化反应器(PBS-SND)的脱氮效果。结果表明,在水力停留时间(Hydraulic Retention Time,HRT)为4 h、进水氨氮(NH+4-N)质量浓度为10 mg/L、硝酸氮(NO-3-N)质量浓度为50 mg/L、溶氧(Dissolve Oxygen,DO)质量浓度为(6.242±1.262)mg/L的条件下,SND反应器可在11 d内成功启动并稳定运行。反应器稳定运行后具有良好的脱氮能力,NH+4-N、NO-3-N和总氮(TN)的去除率分别为66.50%、98.55%、99.10%;反应器内载体表面生物量随空间位置升高逐渐递减,上、中、下三层的PBS颗粒表面的生物量分别为(0.549 6±0.021 7)×109CFU/g PBS、(6.563 9±3.078 1)×109CFU/g PBS、(29.148 7±0.884 7)×109CFU/g PBS。快速硝化测试试验中NH+4-N的去除率为22.93%,快速反硝化测试中NO-3-N的去除率最高达88.90%,其平均去除速率可达到1.481 7 mg/(L·h)。PBS-SND系统可实现低C/N比养殖废水的高效脱氮。  相似文献   

17.
运用海藻酸钠添加硅藻精土的方法,将低温13~14℃下驯化的硝化污泥制成的包埋固定化微生物凝胶小球,投入简易SBR反应器中,通过平行试验比较了低温条件下同等污泥浓度的普通SBR反应器(N1)与投加了少量固定化小球的SBR反应器(N2)的氨氮去除效果。研究结果表明,在相同的运行条件下,投加了5g固定化小球的N2反应器的氨氮去除率较N1反应器平均提高了12%以上,而投加了10g固定化小球的N2反应器的氨氮去除率进一步提高,氨氮去除率较N1反应器提高了20%。实验中通过改变进水氨氮浓度,证明添加了小球的SBR工艺对较高浓度的氨氮有较强的适应性。  相似文献   

18.
实验研究了膜生物反应器与接触氧化组合工艺处理生活废水的效果,结果表明:DO在2.0mg/L左右,HRT为8h的条件下,COD、NH3-N、TN、TP的去除率分别达到93.8%、93.7%、41.4%、40.6%;处理出水COD质量浓度小于30mg/L,NH3-N质量浓度小于4 mg/L,SS检不出,出水水质好,能达到中水回用的标准。  相似文献   

19.
研究在低温和常温条件下不同比例砂土与黏土混合制成的生态减污袋对模拟污水中氨氮及磷的去除效果。试验模拟污水中氨氮及磷的质量浓度分别为10 mg/L和1 mg/L,生态减污袋中砂土和黏土的质量比分别为1∶1、5∶1和10∶1,温度控制在22℃和4℃。结果表明,低温条件下砂土与黏土比例为1∶1的减污袋对模拟污水中氨氮和磷的去除率分别达到67%和38%;而砂土与黏土比例为10∶1的减污袋对低温条件下模拟污水中氨氮和磷的去除率均最低,分别为32%和28%,其对常温条件下污水中氨氮和磷的去除率也分别只有48%和52%。对比常温条件下的试验,低温条件下生态减污袋的去除效果明显偏低。由于黏土颗粒具有较大的比表面积和较好的离子交换能力,因此应选择黏土含量较高的生态减污袋,以在低温条件下保持良好的去氮除磷效果。  相似文献   

20.
为明确厌氧氨氧化和反硝化协同脱氮除碳过程,采用ABR反应器控制进水氨氮和亚硝酸盐氮质量浓度分别为75 mg/L、110 mg/L,研究在不同进水COD浓度下脱氮除碳效果。结果表明,在ABR反应器的不同隔室脱氮除碳途径存在差异,低浓度COD(质量浓度120 mg/L)为Anammox菌和反硝化菌之间良好的协同作用提供了保障从而实现稳定高效脱氮除碳,TN和COD去除率分别在98%和79%以上,但在高进水COD(质量浓度120 mg/L)条件下,异养反硝化作用增强使得COD去除率可达到92%,Anammox受到限制致使总氮去除率降至70%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号