共查询到20条相似文献,搜索用时 15 毫秒
1.
Environmental Science and Pollution Research - Heavy metals released by various industries are among the major pollutants found in water resources. In this research, biosorption technique was... 相似文献
2.
Purpose The objectives of this research are to identify the functional groups and determine corresponding p K a values of the acidic sites on dried brown algae Cystoseira barbata using FTIR and potentiometric titrations, and to investigate the biosorption ability of biomass towards divalent nickel, cadmium, and lead ions. Adsorption was studied as a function of solution pH and contact time, and experimental data were evaluated by the Langmuir isotherm model. Methods CaCl 2 pretreatment was applied to the sorbent for enhancing the metal uptake capacity. The effect of solution pH on biosorption equilibrium was investigated in the pH range of 1.5?C5.0. Individual as well as competitive adsorption capacity of the sorbent were studied for metal cations and mixtures. Results The retention of the tested metal ions was mostly influenced from pH in the range of 1.5?C2.5, then stayed almost constant up to 5.0, while Ni(II) uptake showed the highest variation with pH. Potentiometric titrations were performed to find the number of strong and weak acidic groups and their acidity constants. The density of strong and weak acidic functional groups in the biomass were found to be 0.9 and 2.26?mmol/g, respectively. The FTIR spectra of the sorbent samples indicated various functionalities on the biomass surface including carboxyl, hydroxyl, and amino and sulphonate groups which are responsible for the binding of metal ions. Conclusions The capacity of the biomass for single metal ions (around 1?mmol/g) was increased to 1.3?mmol/g in competitive adsorption, Pb(II) showing the highest Langmuir intensity constant. Considering its extremely high abundance and low cost, C. barbata may be potentially important in metal ion removal from contaminated water and industrial effluents. 相似文献
3.
Environmental Science and Pollution Research - A novel marine fungus was isolated and classified as Aspergillus flavus strain EGY11. The heat-inactivated form of isolated Aspergillus flavus was... 相似文献
4.
A laboratory study demonstrated that ferrate pretreatment significantly enhanced lead and cadmium removal in alum coagulation, under the conditions of natural surface water. The enhancement of lead removal was approximately 21 to 37% by ferrate pretreatment at a dosage of 1 to 5 mg/L. The enhanced removal of cadmium by ferrate pretreatment at a dosage of 1 to 5 mg/L exceeded the removal by alum coagulation alone 2-to 12-fold. Cadmium is much more difficult to remove than lead in alum coagulation. The performance of ferrate in enhancing the removal of lead and cadmium in alum coagulation was better than that of ferric chloride. The removal of lead and cadmium was highly pH-dependent, following the general trend of higher pH being related to higher removal. Satisfactory removal of cadmium could be expected by ferrate pretreatment combined with adjusting the pH of the water. 相似文献
5.
Performance and characteristics of biosorption of Pb(II) had been studied in a batch system using the fungal strain biomass, KC-2. The biosorption performance was investigated by analysing the effects of such factors as the initial pH, initial Pb(II) concentration, and contact time at 303 K. The maximum Pb(II) adsorption was obtained at pH 5.0. The experimental data were described by the pseudo first-order, pseudo second-order and intraparticle diffusion kinetic models, and were closely followed the pseudo second-order kinetic model. The equilibrium experimental data were well fitted to Langmuir model and the maximum biosorption capacity was 84.03 mg g(-1). The adsorption mechanism was examined by FTIR, SEM and EDAX analysis. Results indicated that carboxylic, hydroxyl and amine groups were involved in the biosorption and ion exchange mechanism existed. 相似文献
6.
Arsenic contamination of groundwater is a major threat to human beings globally. Among various methods available for arsenic removal, adsorption is fast, inexpensive, selective, accurate, reproducible and eco-friendly in nature. The present paper describes removal of arsenate from water on zirconium oxide-coated sand (novel adsorbent). In the present work, zirconium oxide-coated sand was prepared and characterised by infrared and X-ray diffraction techniques. Batch experiments were performed to optimise different adsorption parameters such as initial arsenate concentration (100–1,000 μg/L), dose (1–8 g/L), pH of the solution (2–14), contact time (15–150 min.), and temperature (20, 30, 35 and 40 °C). The experimental data were analysed by Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherm models. Furthermore, thermodynamic and kinetic parameters were evaluated to know the mode of adsorption between ZrOCMS and As(V). The maximum removal of arsenic, 97 %, was achieved at initial arsenic concentration of 200 μg/L, after 75 min at dosage of 5.0 g/L, pH?7.0 and 27?±?2 °C. For 600 μg/L concentration, the maximum Langmuir monolayer adsorption capacity was found to be 270 μg/g at 35 °C. Kinetic modelling data indicated that adsorption process followed pseudo-second-order kinetics. The mechanism is controlled by liquid film diffusion model. Thermodynamic parameter, Δ H°, was ?57.782, while the values of Δ G° were ?9.460, ?12.183, ?13.343 and ?13.905 kJ/mol at 20, 30, 35 and 40 °C, respectively, suggesting exothermic and spontaneous nature of the process. The change in entropy, Δ S°?=??0.23 kJ/mol indicated that the entropy decreased due to adsorption of arsenate ion onto the solid adsorbent. The results indicated that the reported zirconium oxide-coated marine sand (ZrOCMS) was good adsorbent with 97 % removal capacity at 200 μg/L concentration. It is interesting to note that the permissible limit of arsenic as per World Health Organization is 10 μg/L, and in real situation, this low concentration can be achieved through this adsorbent. Besides, the adsorption capacity showed that this adsorbent may be used for the removal of arsenic from any natural water resource. 相似文献
7.
The activated carbon was prepared using industrial solid waste called sago waste and physico-chemical properties of carbon were carried out to explore adsorption process. The effectiveness of carbon prepared from sago waste in adsorbing Rhodamine-B from aqueous solution has been studied as a function of agitation time, adsorbent dosage, initial dye concentration, pH and desorption. Adsorption equilibrium studies were carried out in order to optimize the experimental conditions. The adsorption of Rhodamine-B onto carbon followed second order kinetic model. Adsorption data were modeled using both Langmuir and Freundlich classical adsorption isotherms. The adsorption capacity Q0 was 16.12 mg g(-1) at initial pH 5.7 for the particle size 125-250 microm. The equilibrium time was found to be 150 min for 10, 20 mg l(-1) and 210 min for 30, 40 mg l(-1) dye concentrations, respectively. A maximum removal of 91% was obtained at natural pH 5.7 for an adsorbent dose of 100mg/50 ml of 10 mg l(-1) dye concentration and 100% removal was obtained when the pH was increased to 7 for an adsorbent dose of 275 mg/50 ml of 20 mg l(-1) dye concentration. Desorption studies were carried out in water medium by varying the pH from 2 to 10. Desorption studies were performed with dilute HCl and show that ion exchange is predominant dye adsorption mechanism. This adsorbent was found to be both effective and economically viable. 相似文献
8.
Cu(II) adsorption in continuous column using green adsorbents like peanut and almond shell was investigated. Fourier transform infrared (FTIR) spectroscopy, Brunaer-Emmett-Teller (BET) analysis, scanning electron microscopy (SEM), and Point of Zero charge (pHpzc) determination have been used for characterization of the adsorbents. Experiments were conducted at various operating conditions to calculate the adsorption capacity of the adsorbents. Adsorption studies signify that both the adsorbents have good adsorptive capacity for Cu(II) ion. Equilibrium of adsorption was described using Langmuir isotherm and the highest qmax value for both the adsorbent were obtained at an operating condition of 20 ml/min flow rate, 15 mg/L influent Cu(II) concentration, and 7 cm bed depth. Regeneration of both the adsorbents suggests that these adsorbents can be used several times for Cu(II) removal. Seven different kinetic models were tested among which the modified dose response model was fitted well for peanut shell and the Thomas model was fitted well for almond shell. These fitted models were further used for scale-up design. Regeneration studies show that peanut shell and almond shell are useful up to the fifth adsorption cycle. Application of these adsorbents with industrial effluent was also reported. This study reveals that peanut and almond shells can be used for Cu(II) removal for industrial wastewater. 相似文献
9.
Chemically prepared activated carbon material derived from palm flower was used as adsorbent for removal of Amido Black dye in aqueous solution. Batch adsorption studies were performed for the removal of Amido Black 10B (AB10B), a di-azo acid dye from aqueous solutions by varying the parameters like initial solution pH, adsorbent dosage, initial dye concentration and temperature with three different particle sizes such as 100 μm, 600 μm and 1000 μm. The zero point charge was pH 2.5 and the maximum adsorption occurred at the pH 2.3. Experimental data were analyzed by model equations such as Langmuir, Freundlich and Temkin isotherms and it was found that the Freundlich isotherm model best fitted the adsorption data and the Freundlich constants varied from ( KF) 1.214, 1.077 and 0.884 for the three mesh sizes. Thermodynamic parameters such as Δ G, Δ H and Δ S were also calculated for the adsorption processes and found that the adsorption process is feasible and it was the endothermic reaction. Adsorption kinetics was determined using pseudo first-order, pseudo second-order rate equations and also Elovich model and intraparticle diffusion models. The results clearly showed that the adsorption of AB10B onto lignocellulosic waste biomass from palm flower (LCBPF) followed pseudo second-order model, and the pseudo second-order rate constants varied from 0.059 to 0.006 (g mg −1 min) by varying initial adsorbate concentration from 25 mg L −1 to 100 mg L −1. Analysis of the adsorption data confirmed that the adsorption process not only followed intraparticle diffusion but also by the film diffusion mechanism. 相似文献
10.
The potential of loofa sponge discs to immobilize fungal biomass of Phanerochaete chrysosporium (a known biosorbent) was investigated as a low cost biosorbent for the removal of Cd(II) ions from aqueous solution. A comparison of the biosorption of Cd(II) by immobilized and free fungal biomass from 10 to 500 mg l(-1) aqueous solutions showed an increase in uptake of over 19% when the biomass is immobilized (maximum biosorption capacity of 89 and 74 mg Cd(II) g(-1) biomass for immobilized and free biomass respectively at a solution pH of 6). Equilibrium was established within 1h and biosorption was well defined by the Langmuir isotherm model. The immobilized biomass could be regenerated using 50 mM HCl, with up to 99% metal recovery and reused in ten biosorption-desorption cycles without significant loss of capacity. This study suggests that such an immobilized biosorbent system has the potential to be used in the industrial removal/recovery of cadmium and other pollutant metal ions from aqueous solution. 相似文献
11.
Background In this study, manganese dioxide-coated multiwall carbon nanotube (MnO 2/CNT) nanocomposite has been successfully synthesized. 相似文献
12.
Purpose This study has the objective to evaluate the lead(II) removal capacity of hydroxyapatite powder synthesized by microwave as an alternative method to decrease production time and cost. Methods Hydroxyapatite (HA) was synthesized by a microwave-assisted precipitation method using calcium nitrate and ammonium hydrogen phosphate as calcium and phosphorus sources, respectively. X-ray diffraction and Fourier transform infrared results clearly revealed that the resulting powder was HA with high purity and crystallinity. The obtained powder was used for the removal of lead(II) from aqueous solutions. The effects of pH, amount of adsorbent, initial lead(II) concentration, and contact time were studied in batch experiments. Results In the adsorption experiments, maximum lead(II) retention was obtained at pH 6. Adsorption equilibrium was established after 40 min. It was found that the adsorption of lead(II) on HA was correlated well ( R 2?=?0.958) with the Freundlich equation for the concentration range studied. Both ion exchange and adsorption process were thought to exist in the removal process. Conclusions This study indicates that easily and rapidly synthesized HA by microwave-assisted precipitation method could be used as an efficient adsorbent for removal of lead(II) from aqueous solutions. 相似文献
13.
In this study, a natural adsorbent (activated dry flowers (ADF)) was prepared from plant-derived waste biomass by chemical activation and employed for chromium (VI) removal from aqueous medium using experimental batch technique. Experiments were carried out as function of adsorbent dosage, pH, and contact time. The maximum chromium (Vl) removal was observed at initial pH 3 (~94 % removal). The equilibrium data was fitted well to Langmuir isotherm. The adsorption capacity of ADF was found to be 4.40 (mg chromium (Vl)/g) which was comparable to the adsorption capacity of some other adsorbents documented. Among various kinetic models applied, pseudo second-order model was found to explain the kinetics of chromium (VI) adsorption most effectively ( R 2 >0.99). Thermodynamic parameters such as ΔG, ΔS, and ΔH shows that adsorption process was spontaneous and endothermic at all the concentration ranges studied. Desorption of chromium (Vl) with 2 N NaOH was effective (~71 %) and, hence, there exists the possibility of recycling the ADF. The major advantages of using ADF as an adsorbent are due to its effectiveness in reducing the concentration of chromium (Vl) to very low levels. It requires little processing and is reversible as well as eco-friendly in contrast to traditional methods. 相似文献
14.
Environmental Science and Pollution Research - The present work investigates the primary adsorption mechanisms of lead (II) and cadmium (II) cations onto pomelo fruit peel (PFP) from aqueous... 相似文献
17.
Background and purpose The biosorption of Cr(VI) from aqueous solution has been studied using free and immobilized Pediastrum boryanum cells in a batch system. The algal cells were immobilized in alginate and alginate?Cgelatin beads via entrapment, and their algal cell free counterparts were used as control systems during biosorption studies of Cr(VI). Methods The changes in the functional groups of the biosorbents formulations were confirmed by Fourier transform infrared spectra. The effect of pH, equilibrium time, initial concentration of metal ions, and temperature on the biosorption of Cr(VI) ion was investigated. Results The maximum Cr(VI) biosorption capacities were found to be 17.3, 6.73, 14.0, 23.8, and 29.6?mg/g for the free algal cells, and alginate, alginate?Cgelatin, alginate?Ccells, and alginate?Cgelatin?Ccells at pH?2.0, which are corresponding to an initial Cr(VI) concentration of 400?mg/L. The biosorption of Cr(VI) on all the tested biosorbents ( P. boryanum cells, alginate, alginate?Cgelatin, and alginate?Ccells, alginate?Cgelatin?Ccells) followed Langmuir adsorption isotherm model. Conclusion The thermodynamic studies indicated that the biosorption process was spontaneous and endothermic in nature under studied conditions. For all the tested biosorbents, biosorption kinetic was best described by the pseudo-second-order model. 相似文献
18.
Environmental Science and Pollution Research - The fine fraction of the Tagaran natural clay (TC) from the Kurdistan region of Iraq-Sulaimani was characterized and used to remove Cd ions from... 相似文献
19.
Objective The present work was carried out to investigate the effects of temperature, initial pH, initial concentration, and contact
time on the biosorption of lead (Pb) and cadmium (Cd) by modified stalk sponge of Zea mays using a batch technique. 相似文献
20.
Environmental Science and Pollution Research - A new one-pot synthesis method optimized by a 23 experimental design was developed to prepare a biosorbent, sugarcane bagasse cellulose succinate... 相似文献
|