首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A landfill is a very complex heterogeneous environment and as such it presents many modelling challenges. Attempts to develop models that reproduce these complexities generally involve the use of large numbers of spatially dependent parameters that cannot be properly characterised in the face of data uncertainty. An alternative method is presented, which couples a simplified microbial degradation model with a stochastic hydrological and contaminant transport model. This provides a framework for incorporating the complex effects of spatial heterogeneity within the landfill in a simplified manner, along with other key variables. A methodology for handling data uncertainty is also integrated into the model structure. Illustrative examples of the model's output are presented to demonstrate effects of data uncertainty on leachate composition and gas volume prediction.  相似文献   

2.
The aim of this study is to increase biogas production and methane yield from landfill leachate in anaerobic batch reactors by using low frequency ultrasound as a pretreatment step. In the first part of the study, optimum conditions for solubilization of organic matter in leachate samples were investigated using various sonication durations at an ultrasound frequency of 20 kHz. The level of organic matter solubilization during ultrasonic pretreatment experiments was determined by calculating the ratio of soluble chemical oxygen demand (sCOD) to total chemical oxygen demand (tCOD). The sCOD/tCOD ratio was increased from 47% in raw leachate to 63% after 45 min sonication at 600 W/l. Non-parametric Friedman’s test indicated that ultrasonic pretreatment has a significant effect on sCOD parameter for leachate (p < 0.05). In the second part of the study, anaerobic batch reactors were operated for both ultrasonically pretreated and untreated landfill leachate samples in order to assess the effect of sonication on biogas and methane production rate. In anaerobic batch reactor feed with ultrasonically pretreated leachate, 40% more biogas was obtained compared to the control reactor. For statistical analysis, Mann–Whitney U test was performed to compare biogas and methane production rates for raw and pretreated leachate samples and it has been found that ultrasonic pretreatment significantly enhanced biogas and methane production rates from leachate (p < 0.05) in anaerobic batch reactors. The overall results showed that low frequency ultrasound pretreatment can be potentially used for wastewater management especially with integration of anaerobic processes.  相似文献   

3.
Due to the prohibition of food waste landfilling in Korea from 2005 and the subsequent ban on the marine disposal of organic sludge, including leachate generated from food waste recycling facilities from 2012, it is urgent to develop an innovative and sustainable disposal strategy that is eco-friendly, yet economically beneficial. In this study, methane production from food waste leachate (FWL) in landfill sites with landfill gas recovery facilities was evaluated in simulated landfill reactors (lysimeters) for a period of 90 d with four different inoculum–substrate ratios (ISRs) on volatile solid (VS) basis. Simultaneous biochemical methane potential batch experiments were also conducted at the same ISRs for 30 d to compare CH4 yield obtained from lysimeter studies. Under the experimental conditions, a maximum CH4 yield of 0.272 and 0.294 L/g VS was obtained in the batch and lysimeter studies, respectively, at ISR of 1:1. The biodegradability of FWL in batch and lysimeter experiments at ISR of 1:1 was 64% and 69%, respectively. The calculated data using the modified Gompertz equation for the cumulative CH4 production showed good agreement with the experimental result obtained from lysimeter study. Based on the results obtained from this study, field-scale pilot test is required to re-evaluate the existing sanitary landfills with efficient leachate collection and gas recovery facilities as engineered bioreactors to treat non-hazardous liquid organic wastes for energy recovery with optimum utilization of facilities.  相似文献   

4.
In this study, landfill leachate treatment technologies alternative to anaerobic treatment were experimentally investigated. The emphasis was placed upon nitrogen removal through the use of struvite precipitation. Treatment technologies studied included struvite precipitation, low pH (acidic) air stripping, and activated sludge. Dilution of landfill leachate was used as a means to obtain appropriate quality for feeding the activated sludge process in some instances. Five main treatment combinations were applied. The first and second schemes were struvite precipitation followed by activated sludge process which was fed on undiluted and diluted (1:5) effluents. The third scheme was dilution, activated sludge and struvite precipitation. The fourth alternative was acidic air stripping, struvite precipitation and activated sludge process. The fifth scheme was acidic air stripping, activated sludge and struvite precipitation. All treatment schemes provided comparable COD and ammonia removals, all being around 90%. The treatment schemes incorporating the acidic air stripping, however, was found to be the most advantageous in terms of both efficiency and volume and aeration requirements of the activated sludge process since over 80% COD could be removed in the stripping step. Of the fourth and fifth alternative schemes, the fourth was the most efficient, providing 95% removal of both COD and ammonia. Initial dilution of the leachate at a 1:5 ratio was the least effective one, yielding 90% or lower removals for COD and ammonia. The first scheme, namely application of struvite precipitation to raw leachate followed by activated sludge with or without dilution, proved to be a practical system, providing over 85% COD and 99% ammonia removals. High organic loading up to 0.8 g COD/g VSS day was found to be applicable within this scheme.  相似文献   

5.
In order to investigate the effect of raw leachate on anaerobic digestion of food waste, co-digestions of food waste with raw leachate were carried out. A series of single-phase batch mesophilic (35 ± 1 °C) anaerobic digestions were performed at a food waste concentration of 41.8 g VS/L. The results showed that inhibition of biogas production by volatile fatty acids (VFA) occurred without raw leachate addition. A certain amount of raw leachate in the reactors effectively relieved acidic inhibition caused by VFA accumulation, and the system maintained stable with methane yield of 369–466 mL/g VS. Total ammonia nitrogen introduced into the digestion systems with initial 2000–3000 mgNH4–N/L not only replenished nitrogen for bacterial growth, but also formed a buffer system with VFA to maintain a delicate biochemical balance between the acidogenic and methanogenic microorganisms. UV spectroscopy and fluorescence excitation–emission matrix spectroscopy data showed that food waste was completely degraded.We concluded that using raw leachate for supplement water addition and pH modifier on anaerobic digestion of food waste was effective. An appropriate fraction of leachate could stimulate methanogenic activity and enhance biogas production.  相似文献   

6.
In a waste tip methane fermentation should be promoted as much as possible in order to minimize contamination of leachate and groundwater. In this paper the production of biogas is mathematically described as a first-order process. The degradable organic fraction of municipal refuse is subdivided into three fractions with different half-lifes (1, 5 and 15 years). If other categories of waste are present (e.g. industrial refuse or demolition waste) one should know the organic matter content per category and if possible some information on the degradability of the organic fractions. Field tests can also give information, e.g. the pressure lowering in and around an extraction well may be used to calculate the gas production rate and the radius of influence.Without recovery the gas escapes into the atmosphere and is (partly) oxidized by microbes in the soil cover. This may create anaerobic conditions in the soil cover causing injury to vegetation.  相似文献   

7.
Mathematical model analysis of Fenton oxidation of landfill leachate   总被引:2,自引:0,他引:2  
The treatment of concentrated landfill leachate rejected from reverse osmosis (RO) with Fenton process was studied, and the system model was developed through the examination of reaction kinetics. The leachate is typically non-biodegradable with low BOD5/COD ratio 0.01. The oxidation reactions of Fenton process was found to be a two-stage process, where a fast initial reaction (H2O2/Fe2+) was followed by a much slower one (H2O2/Fe3+). A simple and more accurate mathematics model based on COD and TOC removals has been derived successfully to describe the two-stage reaction kinetics. The two corresponding parameters involved in this model have been identified as the initial reaction rate and the maximum oxidation removal efficiency, respectively. It was found to be very useful for evaluating the performance of Fenton system and/or for process design using the two parameters under different experimental conditions.  相似文献   

8.
Anaerobic co-digestion of four organic waste streams; a thickened waste activated sludge (TWAS) and screen cake (SC) from a fruit-juice/winery wastewater treatment plant along with municipal sludge cake (MC) and landfill leachate (LL) was evaluated. A total of eight semi-continuously-fed single and co-digesters were operated side-by-side at sludge retention times (SRT) of 20 and 10 days. Co-digestion of industrial waste streams (TWAS and SC) with MC and LL resulted in increased operational stability compared to the single digestion of industrial TWAS at the higher organic loading (10 d SRT). Although digester operational temperature had no statistically significant effect on organics removal and biogas production, mesophilic digesters had consistently higher total coliform densities (8838–37,959 most probable number or MPN/g-dry weight) compared to the thermophilic digesters (41–6723 MPN/g-dry weight) at both SRTs. Coliform analysis results also proved that most of the thermophilic digestates could be classified as Class A biosolids according to regulations. Furthermore, addition of industrial TWAS to co-digesters enhanced the dewaterability of the digested streams. A cost-benefit analysis confirmed the benefits and indicated that a full-scale co-digester utilizing all four waste streams can decrease the total capital and operational cost by 22% ($10.52 million).  相似文献   

9.
This study is aimed at estimating organic compounds removal and sludge production in SBR during treatment of landfill leachate. Four series were performed. At each series, experiments were carried out at the hydraulic retention time (HRT) of 12, 6, 3 and 2d. The series varied in SBR filling strategies, duration of the mixing and aeration phases, and the sludge age. In series 1 and 2 (a short filling period, mixing and aeration phases in the operating cycle), the relationship between organics concentration (COD) in the leachate treated and HRT was pseudo-first-order kinetics. In series 3 (with mixing and aeration phases) and series 4 (only aeration phase) with leachate supplied by means of a peristaltic pump for 4h of the cycle (filling during reaction period) - this relationship was zero-order kinetics. Activated sludge production expressed as the observed coefficient of biomass production (Y(obs)) decreased correspondingly with increasing HRT. The smallest differences between reactors were observed in series 3 in which Y(obs) was almost stable (0.55-0.6 mg VSS/mg COD). The elimination of the mixing phase in the cycle (series 4) caused the Y(obs) to decrease significantly from 0.32 mg VSS/mg COD at HRT 2d to 0.04 mg VSS/mg COD at HRT 12d. The theoretical yield coefficient Y accounted for 0.534 mg VSS/mg COD (series 1) and 0.583 mg VSS/mg COD (series 2). In series 3 and 4, it was almost stable (0.628 mg VSS/mg COD and 0.616 mg VSS/mg COD, respectively). After the elimination of the mixing phase in the operating cycle, the specific biomass decay rate increased from 0.006 d(-1) (series 3) to 0.032 d(-1) (series 4). The operating conditions employing mixing/aeration or only aeration phases enable regulation of the sludge production. The SBRs operated under aerobic conditions are more favourable at a short hydraulic retention time. At long hydraulic retention time, it can lead to a decrease in biomass concentration in the SBR as a result of cell decay. On the contrary, in the activated sludge at long HRT, a short filling period and operating cycle of the reactor with the mixing and aeration phases seem the most favourable.  相似文献   

10.
11.
Hydraulic properties of waste and cover soil from Kimpo Metropolitan Landfill were experimentally measured by laboratory tests. The degree of compaction was changed to identify the effect on hydraulic conductivity, field capacity, and permanent wilting point. Properties were utilized in developing a reliable numerical tool for leachate analysis. HELP, a simulation model for hydrologic evaluation of landfill performance, was adopted for that purpose. For calibration, results from simulation using the parameter values measured by laboratory tests were compared against the field data. The model was applied to predict the leachate level change according to the degree of compaction and cover soil thickness variation. It was found that the increase in the degree of compaction for intermediate cover soil and waste results in the decrease of field capacity and hydraulic conductivity, hence, the increase of leachate level. The effect of cover layer thickness on the leachate level was minor. Based on the findings from laboratory and numerical experiments, a guideline for reclamation practice was recommended.  相似文献   

12.
This paper presents the results of leachate quantity and quality measurement at 20 landfills in the northern part of West Germany over an average period of 3 years. The leachate flow rate could only be estimated as a percentage of annual pre-cipitation (measured precipitation 501–1057 mm year−1). The values for compaction with crawler tractors are 25–50% and with steel wheel compactors, 15–25%. The organic contents of leachate are dependent upon the kind of decomposition conditions (aerobic, anaerobic acetic production or anaerobic methane production). With anaerobic acetic production the volatile fatty acids produced in leachate have a high COD and BOD5. In the following methane production phase these acids are converted to CO2 and CH4 with low organic leachate contents. The concentrations of some inorganic components, such as Fe and Ca, are parallel as a result of changes in pH. Ammonia shows a slow increase with landfill age. In most cases the contents of heavy metals are lower than 1 mg 1−1.  相似文献   

13.
14.
Silver nanoparticles (AgNPs, nanosilver) released from industrial activities and consumer products may be disposed directly or indirectly in sanitary landfills. To determine the impact of AgNPs on anaerobic digestion of landfill waste, municipal solid waste (MSW) was loaded in identical landfill bioreactors (9L volume each) and exposed to AgNPs (average particle size=21nm) at the final concentrations of 0, 1, and 10mgAg/kg solids. The landfill anaerobic digestion was carried out for more than 250 days, during which time the cumulative biogas production was recorded automatically and the chemical property changes of leachates were analyzed. There were no significant differences in the cumulative biogas volume or gas production rate between the groups of control and 1mgAg/kg. However, landfill solids exposed to AgNPs at 10mg/kg resulted in the reduced biogas production, the accumulation of volatile fatty acids (including acetic acid), and the prolonged period of low leachate pH (between 5 and 6). Quantitative PCR results after day 100 indicated that the total copy numbers of 16S rRNA gene of methanogens in the groups of control and 1mgAgNPs/kg were 1.97±0.21×10(7) and 0.90±0.03×10(7), respectively. These numbers were significantly reduced to 5.79±2.83×10(5)(copies/mL) in the bioreactor treated with 10mgAgNPs/kg. The results suggest that AgNPs at the concentration of 1mg/kg solids have minimal impact on landfill anaerobic digestion, but a concentration at 10mg/kg or higher inhibit methanogenesis and biogas production from MSW.  相似文献   

15.
A survey was conducted between 2006 and 2008 in order to identify municipal solid waste (MSW) composition and its influence on leachate generation and to assess the amount of biogas yield from the Jebel Chakir landfill in Tunis City. The organic fraction was the predominant compound in the MSW, followed by paper, fine, plastic, leather, rubber, metal, textile, glass and ceramic. The average MSW moisture content varies from 60 % in the wet season to 80 % in the dry one. The recognised MSW composition is well representative if compared to that of cities in developing countries. A large leachate quantity is produced in the landfill of Jebel Chakir, despite the negative water balance of the site. Based on the annual MSW landfilled quantities and using the LandGEM model, the expected peak landfill gas (LFG) production is estimated to occur 1 year after the landfill closure with a rate of 3.53 × 107 m3/year. The analysis of the potential conversion of LFG to electric energy shows it at a total LFG-to-electricity energy of around 257 GWh with a heating value of 4,475 kcal/m3 based on an LFG collection efficiency of 33 % and energy efficiency of 33 % giving an economic feasibility for a 10 MW power plant.  相似文献   

16.
Shredded green wastes were composted in windrows, at the Harewood Whin landfill, near the city of York, in West Yorkshire, UK. Landfill leachate were added twice during the second and fourth week of the process in two piles. One pile was turned once every week for eight weeks and the other was turned twice, during the same period. Each time approximately, 2 m3 of leachate was added, into each pile. The two piles each contained about 45 m3 of shredded green waste. The effect of adding leachate on the sanitisation of the green waste during composting, was evaluated based on the changes in the levels of faecal coliforms and faecal streptococci. The results suggested that using leachate as the moisture source had no significant effect (tested with two factors ANOVA test) on the sanitisation process when compared with two similar piles, used as the control, for which tap water was used for moisture addition. In all four piles sanitisation was almost complete and below the acceptable levels. Additionally, the results indicated that there was no significant effect on the sanitisation process of the turning frequency.  相似文献   

17.
This paper analyses the evolution of the physico-chemical characteristics of the leachate from the Central Landfill of Asturias (Spain), which has been operating since 1986, as well as different treatment options. The organic pollutant load of the leachate, expressed as chemical oxygen demand (COD), reached maximum values during the first year of operation of the landfill (around 80,000 mg/L), gradually decreasing over subsequent years to less than 5000 mg/L. The concentration of ammonium, however, has not decreased, presenting values of up to 2000 mg/L. When feasible, recirculation can greatly decrease the organic matter content of the leachate to values of 1500–1600 mg COD/L. Applying anaerobic treatment to leachates with a COD between 11,000 and 16,000 mg/L, removal efficiencies of 80–88% were obtained for organic loading rates of 7 kg COD/m3 d. For leachates with lower COD (4000–6000 mg/L), the efficiency decreased to around 60% for organic loading rates of 1 kg COD/m3 d.Applying coagulation–flocculation with iron trichloride or with aluminium polychloride, it was possible to reduce the non-biodegradable organic matter by 73–62% when treating old landfill leachate (COD: 4800 mg/L, BOD5: 670 mg/L), also reducing turbidity and colour by more than 97%. It is likewise possible to reduce the non-biodegradable organic matter that remains after biological treatment by adsorption with activated carbon, although adsorption capacities are usually low (from 15 to 150 mg COD/g adsorbent). As regards ammonium nitrogen, this can be reduced to final effluent values of 5 mg/L by means of nitrification/denitrification and to values of 126 mg/L by stripping at pH 12 and 48 h of stirring.  相似文献   

18.
Journal of Material Cycles and Waste Management - One-third of food produced results as food waste, with no organized and sustainable disposal, and ends up in landfills. Garden waste is yet another...  相似文献   

19.
Anaerobic co-digestion strategies are needed to enhance biogas production, especially when treating certain residues such as cattle/pig manure. This paper presents a study of co-digestion of cattle manure with food waste and sewage sludge. With the aim of maximising biogas yields, a series of experiments were carried out under mesophilic and thermophilic conditions using continuously stirred-tank reactors, operating at different hydraulic residence times. Pretreatment with ultrasound was also applied to compare the results with those obtained with non-pretreated waste. Specific methane production decreases when increasing the OLR and decreasing HRT. The maximum value obtained was 603 LCH(4)/kg VS(feed) for the co-digestion of a mixture of 70% manure, 20% food waste and 10% sewage sludge (total solid concentration around 4%) at 36°C, for an OLR of 1.2g VS/Lday. Increasing the OLR to 1.5g VS/Lday led to a decrease of around 20-28% in SMP. Lower methane yields were obtained when operating at 55°C. The increase in methane production when applying ultrasound to the feed mixtures does not compensate for the energy spent in this pretreatment.  相似文献   

20.
Anaerobic digestion of mixed leaf (MLW) and food wastes (FW) was used to explore the potential use of MLW as an accelerator for FW digestion in two parts for biogas production and as a waste management option in a university community. The effects of the single substrate of FW, co-digestion, ratio of MLW and FW (3:2 and 2:3) and ratio of waste feed to inoculum: F/I (0.1 and 0.4), and feeding frequency (every other day and every 2 days) were evaluated in two neutralized anaerobic reactors. The results showed that different mixture ratios with the same F/I ratio were the major factor on biogas (39.87 m3/kg VSadded) and CH4 yield (25.99 m3/kg VSadded), including %COD removal (84.50%). Co-digestion had the same effect as F/I on biogas production. Only FW provided the lowest biogas and CH4 yield. The use of a MLW:FW 2:3, F/I 0.4 mixture with every 2 days feeding provided higher biogas production and %COD removal than with every other day feeding. Two neutralized anaerobic reactors were suitable for digestion with a high F/I, and a wider interval feeding. This finding affirms the possibility of biogas production using MLW as the co-substrate with FW, as opposed to using FW alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号