首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
To determine whether loggerhead turtles (Caretta caretta) nesting in southeastern USA exhibit polymorphic foraging strategies, we evaluated skin samples for stable isotopes of carbon (δ13C) and nitrogen (δ15N) from 310 loggerheads from four locations on the east coast of Florida and epibionts from 48 loggerheads. We found a dichotomy between a depleted δ13C cluster and an enriched δ13C cluster. Epibionts from oceanic/pelagic or neritic/benthic habitats were largely consistent with this dichotomy. The bimodal distribution of δ13C could reflect a bimodal foraging strategy or—because of the potential for confounding among four gradients of δ13C in marine environments—a polymodal foraging strategy. We integrate our results with results from other stable isotope studies, satellite telemetry, and flipper tags to evaluate potential foraging strategies. Understanding foraging strategies is essential for development of management plans for this endangered species that has suffered a 43% population decline over the last decade.  相似文献   

3.
4.
We used satellite telemetry to study behavior at foraging sites of 40 adult female loggerhead sea turtles (Caretta caretta) from three Florida (USA) rookeries. Foraging sites were located in four countries (USA, Mexico, the Bahamas, and Cuba). We were able to determine home range for 32 of the loggerheads. One turtle moved through several temporary residence areas, but the rest had a primary residence area in which they spent all or most of their time (usually >11 months per year). Twenty-four had a primary residence area that was <500 km2 (mean = 191). Seven had a primary residence area that was ≥500 km2 (range = 573–1,907). Primary residence areas were mostly restricted to depths <100 m. Loggerheads appeared to favor areas with larger-grained sediment (gravel and rock) over areas with smaller-grained sediment (mud). Short-term departures from primary residence areas were either looping excursions, typically involving 1–2 weeks of continuous travel, or movement to a secondary residence area where turtles spent 25–45 days before returning to their primary residence area. Ten turtles had a secondary residence area, and six used it as an overwintering site. For those six turtles, the primary residence area was in shallow water (<17 m) in the northern half of the Gulf of Mexico (GOM), and overwintering sites were farther offshore or farther south. We documented long winter dive times (>4 h) for the first time in the GOM. Characterizing behaviors at foraging sites helps inform and assess loggerhead recovery efforts.  相似文献   

5.
Nine post-nesting loggerhead turtles (Caretta caretta) were tracked using sonic and radio telemetry. Tracking began immediately after the turtles left the beach and continued until contact was either lost or terminated. As sonic tags transmit continuously underwater, they were much more effective than the radio tags in determining the paths of the turtles. Radio tags transmit only at the surface and were useful in ascertaining submergence durations. For nine of the ten turtles tracked with sonic signals, the gross movement was away from the beach in a westerly direction. The tracking periods ranged from 3.35 to 8.25 h, while the straight-line movements ranged from 3.05 to 12.88 km, respectively. Sixty-seven percent of the submergence durations recorded were <3 min. This respiratory behavior suggests continuous swimming, and the paths of the turtles suggested directed movement offshore immediately after nesting. The gradual littoral slope and lack of nearshore structure in this part of the Gulf of Mexico could be contributing factors to the patterns of dispersal observed, as benthic structures provide resting and foraging habitat for loggerheads.  相似文献   

6.
F. Bentivegna 《Marine Biology》2002,141(4):795-800
The movements of four Mediterranean loggerhead sea turtles (Caretta caretta; three females, one male) were tracked via satellite telemetry for between 108 and 457 days. Total length of the routes traveled by the turtles varied between 2554 and 7098 km, and the average travel rate was 1.2 km h-1. Long-distance movement between the western and eastern Mediterranean basins followed a seasonal pattern and seemed to be triggered by temperature and food availability. In the autumn/winter months turtles moved from west to east in search of warmer waters, and returned to the western basin in spring, where food resources are generally more plentiful. Three (two females, one male) of the four turtles migrated eastward through the Straits of Messina, which is characterized by high fishing pressure and intense boat traffic. Information about turtle migration patterns and routes will serve to plan effective conservation strategies.  相似文献   

7.
Loggerhead turtles nesting in the Mediterranean Sea exhibit remarkable genetic structuring. This paper tests the hypothesis that young loggerhead turtles from different rookeries do not distribute homogeneously among the major Mediterranean foraging grounds, due to a complex pattern of surface currents. We extracted long fragments of mitochondrial DNA from 275 stranded or bycaught juvenile turtles from six foraging grounds (Catalano-Balearic Sea, Algerian basin, Tyrrhenian Sea, Adriatic Sea, northern Ionian Sea and southern Levantine Sea). We used a Bayesian mixed-stock analysis to estimate the contributions from rookeries in the Mediterranean, the North-west Atlantic and Cape Verde to the studied foraging grounds. Differences were found in the relative contribution of juvenile turtles of Atlantic and Mediterranean origin to each foraging ground. A decreasing proportion of Atlantic juveniles was detected along the main surface current entering the Mediterranean, with a high prevalence of turtles from eastern Florida in the Algerian basin and lower numbers elsewhere. In regard to the turtles of Mediterranean origin, juveniles from Libya prevailed in central and western Mediterranean foraging grounds other than the Algerian basin. Conversely, the Adriatic Sea was characterised by a large presence of individuals from western Greece, while the southern Levantine Sea was inhabited by a heterogeneous mix of turtles from the eastern Mediterranean rookeries (Turkey, Lebanon and Israel). Overall, the distribution of juveniles may be related to surface circulation patterns in the Mediterranean and suggests that fisheries might have differential effects on each population depending on the overlap degree between foraging and fishing grounds.  相似文献   

8.
Few long-term mark-recapture tagging datasets exist to estimate population parameters for loggerhead sea turtle (Caretta caretta) recovery units. Using a two-state open robust design model, we analyzed a 20-year (1990–2009) mark-recapture dataset from the Keewaydin Island loggerhead nesting assemblage off the southwest coast of Florida (USA) in the eastern Gulf of Mexico. For this analysis, 2,292 turtle encounters were evaluated, representing 841 individual nesting turtles. Survival was estimated at 0.73 (95 % CI 0.69–0.76). This estimate is comparable with survival estimates elsewhere in the Peninsular Florida subpopulation and is among the lowest estimates for the Northwest Atlantic loggerhead population. We documented no changes in remigration rates or clutch frequency over time. These are the first survival and remigration probabilities estimated for a loggerhead nesting assemblage in the eastern Gulf of Mexico.  相似文献   

9.
Loggerhead sea turtle hatchlings emerge from nests on either the east or west coast of the South Florida peninsula and then migrate offshore in opposite directions. Under laboratory conditions, magnetic cues induce east coast hatchlings to swim in directions that promote their transport by oceanic surface currents, such as the North Atlantic gyre. However, the surface currents used by west coast hatchlings are unknown. We examined the responses of west (Sarasota) hatchlings to magnetic cues in the Gulf of Mexico, the Florida Straits, and the Gulf Stream to determine their (1) likely migratory routes (2) orientation where currents lead into the Atlantic Ocean, and (3) orientation adjacent to Florida’s east coast. The results suggest that migration inside Gulf waters may be circuitous, that the turtles respond appropriately to enter Atlantic waters, and that orientation along Florida’s east coast probably promotes transport by the Gulf Stream into the North Atlantic gyre.  相似文献   

10.
Satellite telemetry data from 17 juvenile loggerhead turtles (43.5–66.5 cm straight carapace length) were used in conjunction with oceanographic data to analyze the influence of regional and seasonal oceanography on dive behavior in the North Pacific Ocean. Combined dive behavior for all individuals showed that turtles spent more than 80% of their time at depths <5 m, and more than 90% of their time at depths <15 m. Multivariate classifications of dive data revealed four major dive types, three representing deeper, longer dives, and one representing shallower dives shorter in duration. Turtles exhibited variability in these dive types across oceanographic regions, with deeper, longer dives in the Hawaii longline swordfish fishing grounds during the first quarter of the year, as well as in the Kuroshio Extension Bifurcation Region and the region near the Baja California Peninsula, Mexico. Turtles in the Kuroshio Extension Bifurcation Region also exhibited dive variability associated with mesoscale eddy features, with turtles making deeper, longer dives while associated with the strongest total kinetic energy. Turtles in the central North Pacific exhibited seasonality in dive behavior that appeared to reflect synchronous latitudinal movements with the North Pacific Subtropical Front and the associated seasonal, large-scale oceanography. Turtles made deeper, longer dives during the first quarter of the year within this region, the reported time and area where the highest loggerhead bycatch occurs by the longline fishery. These results represent the first comprehensive study of dive data for this species in this region. The increased understanding of juvenile loggerhead dive behavior and the influences of oceanography on dive variability should provide further insight into why interactions with longline fisheries occur and suggest methods for reducing the bycatch of this threatened species.  相似文献   

11.
草甘膦暴露可能对某些水生动物具有致死及亚致死毒性,但未见有涉及龟鳖类动物的行为毒理学的研究报道。用不同浓度草甘膦铵盐处理孵化中的乌龟卵来检测草甘膦暴露对其胚胎发育、孵出幼体大小、翻身能力以及空间学习能力的影响。结果表明,2~2 000 mg·L~(-1)浓度范围内的草甘膦铵盐暴露并不会影响乌龟卵孵化成功率、胚胎发育速率以及孵出个体的体质量和翻身时间,但对孵出幼体的空间学习能力产生一定影响。较高浓度的草甘膦铵盐暴露会导致孵出幼体的觅食时间延长、觅食过程中的运动距离增大。因此,胚胎期草甘膦铵盐暴露可能对乌龟孵出幼体的后续生长和存活有一定的负面效应。  相似文献   

12.
草甘膦是全球范围内生产与使用量最大的除草剂。虽然草甘膦制剂被分于低毒等级,但是许多研究显示其对动物的生理、行为表达具有广泛的干扰作用。本研究将中华鳖胚胎暴露于不同浓度的草甘膦铵盐溶液以评估草甘膦除草剂对其胚胎发育及孵出幼体表型及生理表现的影响。结果显示:一定浓度范围(5~5 000 mg·L~(-1))内,草甘膦铵盐对中华鳖胚胎发育速率、孵出幼体大小、游泳能力、肝脏甘油三酯含量、超氧化物歧化酶活性、丙二醛含量以及热激蛋白70 mRNA相对表达量无显著影响。结果表明:一定浓度范围草甘膦除草剂暴露对中华鳖胚胎发育的影响较小,不改变孵出幼体的表型及其生理表现。  相似文献   

13.
Because subpopulations can differ geographically, genetically and/or phenotypically, using data from one subpopulation to derive vital rates for another, while often unavoidable, is not optimal. We used a two-state open robust design model to analyze a 14-year dataset (1998–2011) from the St. Joseph Peninsula, Florida (USA; 29.748°, ?85.400°) which is the densest loggerhead (Caretta caretta) nesting beach in the Northern Gulf of Mexico subpopulation. For these analyses, 433 individuals were marked of which only 7.2 % were observed re-nesting in the study area in subsequent years during the study period. Survival was estimated at 0.86 and is among the highest estimates for all subpopulations in the Northwest Atlantic population. The robust model estimated a nesting assemblage size that ranged from 32 to 230 individuals each year with an annual average of 110. The model estimates indicated an overall population decline of 17 %. The results presented here for this nesting group represent the first estimates for this subpopulation. These data provide managers with information specific to this subpopulation that can be used to develop recovery plans and conduct subpopulation-specific modeling exercises explicit to the challenges faced by turtles nesting in this region.  相似文献   

14.
The analysis of mitochondrial DNA in loggerhead sea turtles (Caretta caretta) from eight foraging grounds in the Mediterranean and the adjoining Atlantic revealed deep genetic structuring within the western Mediterranean. As a consequence, the foraging grounds off the North-African coast and the Gimnesies Islands are shown to be inhabited mainly by turtles of the Atlantic stocks, whereas the foraging grounds off the European shore of the western Mediterranean are shown to be inhabited mainly by turtles from the eastern Mediterranean rookeries. This structuring is explained by the pattern of sea surface currents and water masses and suggests that immature loggerhead sea turtles entering the western Mediterranean from the Atlantic and the eastern Mediterranean remain linked to particular water masses, with a limited exchange of turtles between water masses. As the north of the western Mediterranean comprises mostly individuals from the highly endangered eastern Mediterranean rookeries, conservation plans should make it a priority to reduce the mortality caused by incidental by-catch in these areas.  相似文献   

15.
In response to a call from the US National Research Council for research programs to combine their data to improve sea turtle population assessments, we analyzed somatic growth data for Northwest Atlantic (NWA) loggerhead sea turtles (Caretta caretta) from 10 research programs. We assessed growth dynamics over wide ranges of geography (9–33°N latitude), time (1978–2012), and body size (35.4–103.3 cm carapace length). Generalized additive models revealed significant spatial and temporal variation in growth rates and a significant decline in growth rates with increasing body size. Growth was more rapid in waters south of the USA (<24°N) than in USA waters. Growth dynamics in southern waters in the NWA need more study because sample size was small. Within USA waters, the significant spatial effect in growth rates of immature loggerheads did not exhibit a consistent latitudinal trend. Growth rates declined significantly from 1997 through 2007 and then leveled off or increased. During this same interval, annual nest counts in Florida declined by 43 % (Witherington et al. in Ecol Appl 19:30–54, 2009) before rebounding. Whether these simultaneous declines reflect responses in productivity to a common environmental change should be explored to determine whether somatic growth rates can help interpret population trends based on annual counts of nests or nesting females. Because of the significant spatial and temporal variation in growth rates, population models of NWA loggerheads should avoid employing growth data from restricted spatial or temporal coverage to calculate demographic metrics such as age at sexual maturity.  相似文献   

16.
Most studies on the foraging ecology of loggerhead turtles (Caretta caretta) have focused on adult females and juveniles. Little is known about the foraging patterns of adult male loggerheads. We analyzed tissues for carbon and nitrogen stable isotopes (δ13C and δ15N) from 29 adult male loggerheads tracked with satellite transmitters from one breeding area in Florida, USA, to evaluate their foraging habitats in the Northwest Atlantic (NWA). Our study revealed large variations in δ13C and δ15N and a correlation between both δ13C and δ15N and the latitude to which the loggerheads traveled after the mating season, thus reflecting a geographic pattern in the isotopic signatures. Variation in δ13C and δ15N can be explained by differences in food web baseline isotopic signatures rather than differences in loggerhead trophic levels. Stable isotope analysis may help elucidate residency and migration patterns and identify foraging sea turtle subpopulations in the NWA due to the isotopically distinct habitats used by these highly migratory organisms.  相似文献   

17.
Knowledge about migratory routes and highly frequented areas is a priority for sea turtle conservation, but the movement patterns of juveniles frequenting the Adriatic have not been investigated yet, although juveniles represent the bulk of populations. We tracked by satellite six juvenile and one adult female loggerhead from the north Adriatic. The results indicated that loggerhead juveniles (1) can either show a residential behaviour remaining in the Adriatic throughout the year or perform seasonal migrations to other areas, (2) can remain even in the coldest, northernmost area during winter, (3) can frequent relatively small foraging areas, (4) mostly frequent the eastern part of the Adriatic, and (5) follow preferred migratory routes along the western and eastern Adriatic coasts. The movements of the adult turtle also revealed (6) a behavioural polymorphism in Mediterranean adults, which included a lack of area fidelity and connection between distant neritic foraging grounds.  相似文献   

18.
Four loggerhead females (Caretta caretta) were caught when emerging at their nesting beach on the Natal coast, prevented from egg laying and displaced along the coast 38 to 70 km from the capture site. They were then released either on the shore or 37 km offshore. The successful journeys back to the capture area and the successive migrations were tracked by satellite. In compensating for the displacement, loggerheads showed a capability of true navigation. The 545 to 1000 km long migratory journeys of three turtles were followed along the Mozambique coast up to the feeding grounds. Migratory speed was similar at night and during the day. During the trip, submergences were shorter and more frequent than during the stay at the feeding grounds. Received: 17 March 1997 / Accepted: 21 April 1997  相似文献   

19.
To reveal the mechanism underlying intrapopulation variation in the use of feeding habitats (oceanic vs. neritic) by adult female loggerhead turtles (Caretta caretta), we compared telomere length in the epidermis (a proxy for age) between oceanic- and neritic-foraging recruits (first-time nesters). Based on egg-yolk stable isotope ratios, recruits at Yakushima Island, Japan, were clearly divided into small oceanic planktivores and large neritic benthivores. There were no significant differences in telomere length between oceanic and neritic foragers, suggesting that they start reproduction at similar ages. Turtles that experienced faster growing conditions during their oceanic early lives may achieve sexual maturity there, while others may move from oceanic areas into neritic habitats, switching diets from nutrient-poor macroplankton to nutrient-rich benthic fauna in order to compensate for their earlier slow growth rate and continue their sexual development, reaching maturity in neritic waters.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号