首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Increases in anthropogenic nitrogen fixation have resulted in wide-scale enrichment of aquatic ecosystems. Existing biogeochemical theory suggests that N enrichment is associated with increasing concentrations of nitrate; however, dissolved organic nitrogen (DON) is often a major component of the total dissolved nitrogen (TDN) pool in streams and rivers, and its concentration can be significantly elevated in human-influenced basins. We examined N concentrations during summer base flow conditions in 324 Wisconsin streams to determine whether DON was a significant component of TDN and how its relative contribution changed across a gradient of increasing human (agriculture and urban) land use for 84 of these sites. Total dissolved nitrogen varied from 0.09 to 20.74 mg/L, and although DON was significantly higher in human-dominated basins relative to forested and mixed-cover basins, its concentration increased relatively slowly in response to increasing human land cover. This limited response reflected a replacement of wetland-derived DON in low-N streams by anthropogenic sources in human-dominated sites, such that net changes in DON were small across the land use gradient. Nitrate-N increased exponentially in response to greater human land cover, and NH4-N and NO2-N were present at low levels. Nitrite-N exceeded NH4-N at 20% of sites and reached a maximum concentration of 0.10 mg/L. This examination suggests that basic mechanisms driving N losses from old-growth forests subject to N saturation also shape the summertime N pool in Wisconsin streams, in addition to other processes dictated by landscape context. The overwhelming role of human land use in determining the relative and absolute composition of the summertime N pool included (1) rapid increases in NO3-N, (2) limited changes in DON, and (3) the unexpected occurrence of NO2-N. High (>3 mg/L) TDN conditions dominated by NO3-N, regardless of landscape context or forms of N inputs, indicate a state of "N hypersaturation", which appears to be increasingly common in human-influenced streams and rivers. Many sites in agriculturally rich areas had NO2-N and NO3-N concentrations that, if sustained, are at chronically toxic levels for sensitive aquatic biota, suggesting that N enrichment now has local consequences for resident stream biota in addition to contributing to coastal eutrophication.  相似文献   

2.
不同品种浮萍磷素吸收动力学特征   总被引:2,自引:0,他引:2  
以长江三角洲地区常见的3种浮萍——稀脉浮萍(Lemna aequinoctialis)、少根紫萍(Spirodela oligorrhiza)和紫萍(Spriodela polyrrhiza)为对象,研究不同品种浮萍对HPO42-的吸收动力学影响。结果表明,3种浮萍对无机磷的吸收动力学特征基本可采用Michaelis-Menten方程描述3,种浮萍无机磷吸收速率V对磷浓度S双倒数曲线的拟合关系均在α=0.01水平上显著。稀脉浮萍对无机磷的亲和力较强,适宜应用于对低磷浓度污水的净化;紫萍对无机磷的最大吸收速率Vmax较高,适宜应用于对高磷浓度污水的净化。  相似文献   

3.
Land use change and nitrogen enrichment of a Rocky Mountain watershed.   总被引:4,自引:0,他引:4  
Headwater ecosystems may have a limited threshold for retaining and removing nutrients delivered by certain types of land use. Nitrogen enrichment was studied in a Rocky Mountain watershed undergoing rapid expansion of population and residential development. Study sites were located along a 30-km transect from the headwaters of the Blue River to Lake Dillon, a major source of drinking water for Denver, Colorado. Ground water in residential areas with septic systems showed high concentrations of nitrate-N (4.96 +/- 1.22 mg/L, mean +/- SE), and approximately 40% of wells contained nitrate with delta15N values in the range of wastewater. Concentrations of dissolved inorganic nitrogen (DIN) in tributaries with residential development peaked during spring snowmelt as concentrations of DIN declined to below detection limits in undeveloped tributaries. Annual export of dissolved organic nitrogen (DON) was considerably lower in residential streams, suggesting a change in forms of N with development. The seasonal delta15N of algae in residential streams was intermediate between baseline values from undeveloped streams and stream algae grown on wastewater. Between 19% and 23% of the annual N export from developed tributaries was derived from septic systems, as estimated from the delta15N of algae. This range was similar to the amount of N export above background determined independently from mass-balance estimates. From a watershed perspective, total loading of N to the Blue River catchment from septic and municipal wastewater (2 kg x ha(-1) x yr(-1)) is currently less than the amount from background atmospheric sources (3 kg x ha(-1) x yr(-1)). Nonetheless, nitrate-N concentrations exceeded limits for safe drinking water in some groundwater wells (10 mg/L), residential streams showed elevated seasonal patterns of nitrate-N concentration and ratios of DIN to total dissolved phosphorus, and seasonal minimum concentrations of nitrate-N in Lake Dillon have increased exponentially to 80 microg/L over the last decade from an initial value near zero. Results suggest that isotopic ratios in autotrophs can be used to detect and quantify increases in N enrichment associated with land use change. The biotic capacity of headwater ecosystems to assimilate increases in inorganic N from residential development may be insufficient to prevent nitrogen enrichment over considerable distances and multiple aquatic ecosystems downstream.  相似文献   

4.
水稻不同时期吸收的氮素的行为   总被引:1,自引:0,他引:1  
为研究水稻不同时期吸收的氮素在其体内的行为,作者利用^15NH^4+和^15NO3^-双标记,对Indica水稻亚种(品种Hinohikari)进行水培,在分蘖期、幼穗分化期、开花期施用,将培养液卢州)20mg/L的NH4NO3换成相同质量浓度的^15TH4NO3或NH4^15NO3;部分水稻在一周后收获,其他分别在分蘖期、幼穗分化期、开花期、成熟期收获。植株分成根系、地上部的底部、地上部的顶部、旗叶和穗部,对各自的全氮、^15N进行测定,计算植物的总吸收量。从施用量、植株总吸收量以及三部分总和的植株氮残存量的比较来研究氮素在两种水稻亚种中的行为。研究结果表明,各个时期的^15NH4NO3或NH4^15NO3处理下水稻的N吸收总量上没有差别,但1周后收获的^15NH4-N处理的水稻中^15N的含量比^15NO3-N要高得多,直到成熟期收获的水稻都有同样的结果,这意味着各个时期吸收的NH4-N和NO3-N有着不同的损失量,吸收的NO3-N比NH4-N要损失得多。水稻叶片的氮素损失可能以N2O和NH3的形式。不同氮肥形态的处理下转移到穗部的氮素的量和来源也不相同,在NH4^15NO3的处理中穗部的^15N主要来自地上部的底部,而在^15NH4NO3的处理中穗部的^15N主要来自分蘖期吸收的^15N,少量来自成熟期并且^15N主要来自植株的各个部分。  相似文献   

5.
Many studies have shown that intensive agricultural practices significantly increase the nitrogen concentration of stream surface waters, but it remains difficult to identify, quantify, and differentiate between terrestrial and in-stream sources or sinks of nitrogen, and rates of transformation. In this study we used the delta15N-NO3 signature in a watershed dominated by agriculture as an integrating marker to trace (1) the effects of the land cover and agricultural practices on stream-water N concentration in the upstream area of the hydrographic network, (2) influence of the in-stream processes on the NO3-N loads at the reach scale (100 m and 1000 m long), and (3) changes in delta15N-NO3 signature with increasing stream order (from first to third order). This study suggests that land cover and fertilization practices were the major determinants of delta15N-NO3 signature in first-order streams. NO3-N loads and delta15N-NO3 signature increased with fertilization intensity. Small changes in delta15N-NO3 signature and minor inputs of groundwater were observed along both types of reaches, suggesting the NO3-N load was slightly influenced by in-stream processes. The variability of NO3-N concentrations and delta15N signature decreased with increasing stream order, and the delta15N signature was positively correlated with watershed areas devoted to crops, supporting a dominant effect of agriculture compared to the effect of in-stream N processing. Consequently, land cover and fertilization practices are integrated in the natural isotopic signal at the third-order stream scale. The GIS analysis of the land cover coupled with natural-abundance isotope signature (delta15N) represents a potential tool to evaluate the effects of agricultural practices in rural catchments and the consequences of future changes in management policies at the regional scale.  相似文献   

6.
本研究以太湖流域常见的菱角、水葫芦、梭鱼草、圆币草等水生植物和人工水草、塑料立体弹性填料为生态强化载体,构建"水生植物-载体生物膜-菌藻"复合型生态系统,研究了稻田排水中的氮、磷等营养元素的去除特性,构建氮、磷污染物的降解动力学模型,并调查了沟渠内"微生物-藻类"生物相特征.结果表明,生态沟渠运行期间,随着水稻进入不同的生长阶段,系统内氮、磷等营养元素的去除率都呈普遍下降趋势,总磷、氨氮、总氮、硝态氮平均去除率分别达到87.1%、92.3%、77.5%、88.6%,其中氨氮的去除率最高,化学需氧量(CODMn)的去除效果并不显著,各实验周期的污染物降解趋势均符合一级动力学降解模型.经生物相分析揭示:随着复合生态系统运行延续,系统内微生物、藻类的种类及Shannon-Weiner index等多样性指数呈不断增长趋势,表明复合生态系统水质改善后更适于多种类细菌与藻类生存与繁殖;复合生态系统中的菌、藻、水生植物及其表面附着的生物膜对污染物的去除具有协同作用,强化了生态沟渠的自净能力.  相似文献   

7.
Interrelations exist in the terrestrial ecosystems between the plant type and characteristics of nutrient uptake. Annual net nitrogen mineralization in soils of different plant communities in the high altitude zone of Spil mountain located in the Mediterranean phytogeographical region of Turkey was investigated throughout one year by field incubation method. Seasonal fluctuations resulting from field incubation were markedly higher in autumn and spring than summer. These are mainly associated with the changes in soil moisture being at minimum in the Mediterranean summer. A significant correlation was developed between the net Nitrate (kg NO3(-)-N ha week(-1)) production and soil water content (p<0.05; r = 0.316 in soil of 0-5 cm; r = 0.312 in soil of 5-15 cm). The results showed that the annual productivity of nitrogen mineralization shows different values depending on communities. Annual net ammonium (NH4(+)-N) production in the soils of each community was negatively estimated. However annual net nitrate (NO3(-)-N) production (0-15 cm) was higher in grassland (27.8 kg ha y(-1)) and shrub (25.0 kg ha y(-1)) than forest (12.4 kg ha y(-1)) community. While annual net N(min) values were close to each other in grassland (14.5 kg ha y(-1)) and shrub (14.1 kg ha y(-1)), but negative in forest community (-3.6 kg ha y(-1)). The reasons for these differences are discussed.  相似文献   

8.
The amount of atmospheric nitrogen (N) deposited on the land surface has increased globally and by nearly five times in China from 1901 to 2005. Little is known about how elevated reactive N input has affected the carbon (C) sequestration capability of China's terrestrial ecosystems, largely due to the lack of reliable data on N deposition. Here we have used a newly developed data set of historical N deposition at a spatial resolution of 10 km x 10 km in combination with other gridded historical information on climate, atmospheric composition, land use, and land management practices to drive a process-based ecosystem model, the dynamic land ecosystem model (DLEM) for examining how increasing N deposition and its interactions with other environmental changes have affected C fluxes and storage in China's terrestrial ecosystems during 1901-2005. Our model simulations indicate that increased N deposition has resulted in a net C sink of 62 Tg C/yr (1 Tg = 1012 g) in China's terrestrial ecosystems, totaling up to 6.51 Pg C (1 Pg = 10(15) g) in the past 105 years. During the study period, the N-induced C sequestration can compensate for more than 25% of fossil-fuel CO2 emission from China. The largest C sink was found in southeast China, a region that experienced the most significant increase of N deposition in the period 1901-2005. However, the net primary productivity induced by per-unit N deposition (referred to as ecosystem N use efficiency, ENUE, in this paper) has leveled off or declined since the 1980s. This indicates that part of the deposited N may not be invested to stimulate plant growth, but instead leave the ecosystem by various pathways. Except shrubland and northwest/southwest China, signs of N saturation are apparent in the rest major biome types and regions, with ENUE peaking in the 1980s and leveling off or declining thereafter. Therefore, to minimize the excessive N pollution while keeping the N-stimulated C uptake in China's terrestrial ecosystems, optimized management practices should be taken to increase N use efficiency rather than to keep raising N input level in the near future.  相似文献   

9.
为研究水田土壤中氮的行为,施给15NH4 或15NO3-标记的硝胺(NH415NO3或15NH4NO3)的沙壤土(Shirasu soil)添充在根箱里,对Japonica水稻(品种Hinohikari)进行温室栽培6周.收割后,水稻植株分地上部和根部,对各自的全氮,15N atom%进行测定.根箱各区域的土壤按着鲜土形态进行采取后,对此全氮,NO3-N,水溶性NH4-N,KCl抽出NH4-N和其各自的15N atom%进行测定.研究结果表明,土壤全氮含量与栽培前相比,在非根际明显降低,但在根际比非根际要高,保持了与栽培前相同的水平.土壤NO3-N浓度从非根际到根际递增,但与其栽培前相比显著地降低,在整个根箱里,施给NO3-N的79%为因脱氮而损失.土壤中NO3-N的大部分来自于土壤氮化合物,来自施肥的比例却较低,尤其是在根际.反而,施给NO3-N的残存率约仅为16%左右,但其中有机态氮所占的比率在非根际里55%~86%,在根际却达到了93%.土壤水溶性NH4-N和KCl抽出NH4-N浓度靠近根际逐渐降低,而且在非根际两者匀由1∶10的比例存在,但在根际里水溶性NH4-N没被检索到.在非根际里,土壤KCl抽出NH4-N的35%~66%为来自施肥,但其比例在根际里却降到15%左右.在土壤中残存的来自施给NH4-N的氮化合物之中,有机态氮所占的比例在非根际里约为11%~65%,但在根际却达到了92%.以上结果表明,在水稻根际,氮的无机化和有机化的活性比非根际显著.  相似文献   

10.
In-situ experiments were performed during different seasons to determine uptake rates of PO 3- 4 , NH + 4 and NO - 3 within ecologically representative ranges of nutrient concentrations, of dominant macroalgae in the Baltic Sea. Uptake rates were governed by nutrient concentrations, water temperature and thallus morphology, but not by the phylogenetic affinity of the species. Nitrogen uptake rates were always higher than those of phosphorus at the same concentrations, and NH + 4 –N uptake rates exceeded those of NO - 3 –N. The lowest uptake rates occurred among the late successional, long-lived, coarse species with low surface: volume ratios (Fucus vesiculosus, Furcellaria lumbricalis andPhyllophora truncata). The highest uptake rates were measured for short-lived, opportunistic algae, filamentous or with numerous hairs, (Cladophora glomerata, Enteromorpha ahlneriana, Scytosiphon lomentaria, Dictyosiphon foeniculaceus andCeramium tenuicorne). The latter group also had the highest Vmax:kmax ratios, which indicates a more competitive advantage for nutrient uptake at low concentrations.  相似文献   

11.
影响雨生红球藻797株生长和虾青素积累的某些因素   总被引:7,自引:0,他引:7  
研究了雨生红球藻 (Haematococcuspluvialis) 797株的N源需求和营养盐吸收 ,并利用高光强和乙酸钠处理该藻 ,研究虾青素累积情况以及超氧化物歧化酶 (SOD)活性、营养盐、细胞状态的变化 .NH+ 4 N培养的生长速率明显高于NO-3 N培养 ,平均生长速率分别为 0 .2 79d-1和 0 .190d-1.NH+ 4 N培养所消耗的N、P营养盐比NO-3 N培养的消耗少 .两种N源下强光照处理 1d和 7d均导致雨生红球藻细胞数减少而静细胞比例增加 .在虾青素合成阶段 ,藻液N含量急剧下降而P含量基本保持稳定 ,说明虾青素合成对N的需要量大而对P的需要小 .在NO-3 N培养下 ,乙酸钠的加入则对虾青素的生产无显著影响 .在NH+ 4 N培养下SOD活性下降而虾青素含量升高 ;在NO-3 N培养下SOD活性与虾青素含量同时升高 .图 2表 4参 15  相似文献   

12.
由于缺乏合适的放射性同位素,生物对Cu的吸收以及Cu在生物体内的迁移转化等动力学研究一直较为匮乏.论文以大型溞(Daphniamagna)为受试生物,以稳定同位素65Cu作为示踪剂,研究了不同Cu浓度下,大型溞对水相中Cu的吸收.结果表明,在低浓度下,大型溞的吸收随着水相中Cu浓度的增加而增加.随着水相中Cu浓度的升高,大型溞的吸收逐渐趋于饱和.水相吸收速率和Cu的暴露浓度符合米氏方程(Michaelis-Menten Function),最大吸收速率Imax为14.6μg·g-1·h-1,米氏常数Km为3.2μg·L-1,平均水相吸收速率常数ku为1.23L·g-1·h-1.  相似文献   

13.
不同水分管理模式下水稻土氮素形态转化与N2O释放的关系   总被引:9,自引:0,他引:9  
李勇先  田光明 《生态环境》2003,12(2):157-159
在实验室培养条件下,对稻田土壤在4种水分管理模式下施用尿素后N素形态转化和N2O的释放情况进行测定。结果表明,N2O的释放峰值与NH4+-N浓度峰值同时出现,即尿素迅速水解为NH4+-N的同时N2O就大量释放。且不同水分管理模式都迅速达到N2O释放的高峰,但不同模式的峰值存在明显差异,其顺序为:干湿交替>临界饱和水>淹水管理>旱作管理。研究结果还表明,NO2--N浓度在第7天达到峰值时并没有出现相应的N2O释放峰,这可能与土壤的较高pH有关。60%WFPS处理以及干湿交替培养的落干期NO3--N浓度会持续增加,并随着NO3--N浓度峰值的出现,N2O的释放也出现一个峰值。  相似文献   

14.
The factors controlling spatial and temporal patterns in soil solution and streamwater chemistry are highly uncertain in northern hardwood forest ecosystems in the northeastern United States, where concentrations of reactive nitrogen (Nr) in streams have surprisingly declined over recent decades in the face of persistent high rates of atmospheric Nr deposition and aging forests. Reactive nitrogen includes inorganic species (e.g., ammonium [NH4+], nitrate [NO3-]) and some organic forms (e.g., amino acids) available to support the growth of plants and microbes. The objective of this study was to examine controls on the spatial and temporal patterns in the concentrations and fluxes of nitrogen (N) species and dissolved organic carbon (DOC) in a 12-year record of soil solutions and streamwater along an elevational gradient (540-800 m) of a forested watershed at the Hubbard Brook Experimental Forest (HBEF) in the White Mountains of New Hampshire, USA. Dissolved organic N and DOC concentrations were elevated in the high-elevation spruce-fir-white birch (SFB) zone of the watershed, while NO3- was the dominant N species in the lower elevation hardwood portion of the watershed. Within the soil profile, N retention was centered in the mineral horizon, and significant amounts of N were retained between the lower mineral soil and the stream, supporting the idea that near- and in-stream processes are significant sinks for N at the HBEF. Temporal analysis suggested that hydrologic flow paths can override both abiotic and biotic retention mechanisms (i.e., during the non-growing season when most hydrologic export occurs, or during years with high rainfall), there appears to be direct flushing of N from the organic horizons into the stream via horizontal flow. Significant correlations between soil NO3- concentrations, nitrification rates and streamwater NO3- exports show the importance of biological production as a regulator of inorganic N export. The lack of internal production response (e.g., mineralization, nitrification) to a severe ice storm in 1998 reinforces the idea that plant uptake is the dominant regulator of export response to disturbance.  相似文献   

15.
为研究甜椒根际土壤中氮的行为,与既报同样的方法进行研究,即,利用15NH4+,15NO3-双标记的硝胺(NH,4>15NO3,15NH4NO3),在温室里对甜椒进行6周的根箱栽培.收割后,对土壤全氮,NO3-N,水溶性NH4-N,KCl抽出NH4-N和其各自的15N atom%进行测定.结果表明,土壤全氮从非根际到根际逐渐增加,与栽培前相比,土壤全氮在非根际中减少,却在根际中增大.土壤NO3-N浓度朝根际增加到离根际2 mm处,然后激减到根际.NO3-N的来自施给NO3-N的比例靠近根际逐渐升高,在根际达到了69%,反而,来自施给NH4-N的比例靠近根际逐渐降低,在根际将至7%左右.水溶性NH4-N和KCl抽出NH4-N浓度靠近根际逐渐降低,而且,从非根际到根际,二者匀保持3∶10的比例.KCl抽出NH4-N的来自施给NO3-N的比例靠近根际逐渐升高,但在根际仍低于3%,反而,其来自施给NH4-N的比例在非根际约为47%~55%,在根际降到41%.在整个根箱里,施用NO3-N的有機率达到62%,但其值在根际比非根圈要低.相反,施用NH4-N的有機率仅11%左右,但其值在根际比非根际要高.以上结果表明,在甜椒根际土壤中氮的无机化-有机化活性与水稻相比显著低.  相似文献   

16.
氨氮废水的厌氧氨氧化生物脱氮研究   总被引:1,自引:0,他引:1  
利用从厌氧污泥中筛选和驯化的厌氧氨氧化(Anammox)菌直接启动UASB反应器,通过缩短水力停留时间(HRT)提高系统运行负荷,探讨水力停留时间对模拟废水脱氮性能的影响。结果表明,(1)富含Anammox菌的颗粒污泥能够快速启动反应器(只需14d)。(2)连续91d的HRT测试期间,系统具有良好的脱氮性能,且随着HRT的缩短,系统的脱氮效率具有波动上升的特点。NH4+-N、NO2--N和TN(总氮)的平均去除率超过70.0%。(3)系统总氮容积负荷(TNLR)和总氮去除负荷(TNRR)最大值(以N计)分别为2.04kg·m-3·d-1和1.56kg·m-3·d-1。(4)系统能够比较好的遵循Anammox生物脱氮的理论途径:NH4+-N、NO2--N的去除速率与NO3--N的生成速率的比例为1?1.15?0.22,与其相应理论值(1?1.32?0.26)非常接近。  相似文献   

17.
双氰胺在四川3种主要土壤上的硝化抑制作用   总被引:1,自引:0,他引:1  
采用室内培养试验方法,在不同浓度双氰胺(DCD)处理条件下,对四川3种主要土壤(紫色土、黄壤、灰潮土)的N2O释放量,NH4+-N及NO3--N含量动态变化进行了研究.结果表明,DCD对3种土壤N2O释放及土壤NO3--N含量有明显抑制作用,随DCD浓度增加,其抑制效果越显著.DCD同时能推迟NO3--N含量达到高峰,使土壤NH4+-N含量在较长时间保持相对较高水平,提高氮肥利用率,减少氮素流失.DCD在3种土壤上硝化抑制效果存在差异,表现为紫色土>灰潮土>黄壤.同时提出DCD在3种土壤上的适宜添加量,紫色土上为普通碳铵施入量的0.5%,黄壤和灰潮土上为0.3%.  相似文献   

18.
Tank JL  Rosi-Marshall EJ  Baker MA  Hall RO 《Ecology》2008,89(10):2935-2945
Given recent focus on large rivers as conduits for excess nutrients to coastal zones, their role in processing and retaining nutrients has been overlooked and understudied. Empirical measurements of nutrient uptake in large rivers are lacking, despite a substantial body of knowledge on nutrient transport and removal in smaller streams. Researchers interested in nutrient transport by rivers (discharge >10000 L/s) are left to extrapolate riverine nutrient demand using a modeling framework or a mass balance approach. To begin to fill this knowledge gap, we present data using a pulse method to measure inorganic nitrogen. (N) transport and removal in the Upper Snake River, Wyoming, USA (seventh order, discharge 12000 L/s). We found that the Upper Snake had surprisingly high biotic demand relative to smaller streams in the same river network for both ammonium (NH4+) and nitrate (NO3-). Placed in the context of a meta-analysis of previously published nutrient uptake studies, these data suggest that large rivers may have similar biotic demand for N as smaller tributaries. We also found that demand for different forms of inorganic N (NH4+ vs. NO3-) scaled differently with stream size. Data from rivers like the Upper Snake and larger are essential for effective water quality management at the scale of river networks. Empirical measurements of solute dynamics in large rivers are needed to understand the role of whole river networks (as opposed to stream reaches) in patterns of nutrient export at regional and continental scales.  相似文献   

19.
Rates of biogeochemical processes often vary widely in space and time, and characterizing this variation is critical for understanding ecosystem functioning. In streams, spatial hotspots of nutrient transformations are generally attributed to physical and microbial processes. Here we examine the potential for heterogeneous distributions of fish to generate hotspots of nutrient recycling. We measured nitrogen (N) and phosphorus (P) excretion rates of 47 species of fish in an N-limited Neotropical stream, and we combined these data with population densities in each of 49 stream channel units to estimate unit- and reach-scale nutrient recycling. Species varied widely in rates of N and P excretion as well as excreted N:P ratios (6-176 molar). At the reach scale, fish excretion could meet >75% of ecosystem demand for dissolved inorganic N and turn over the ambient NH4 pool in <0.3 km. Areal N excretion estimates varied 47-fold among channel units, suggesting that fish distributions could influence local N availability. P excretion rates varied 14-fold among units but were low relative to ambient concentrations. Spatial variation in aggregate nutrient excretion by fish reflected the effects of habitat characteristics (depth, water velocity) on community structure (body size, density, species composition), and the preference of large-bodied species for deep runs was particularly important. We conclude that the spatial distribution of fish could indeed create hotspots of nutrient recycling during the dry season in this species-rich tropical stream. The prevalence of patchy distributions of stream fish and invertebrates suggests that hotspots of consumer nutrient recycling may often occur in stream ecosystems.  相似文献   

20.
Norby RJ  Iversen CM 《Ecology》2006,87(1):5-14
The Progressive Nitrogen Limitation (PNL) hypothesis suggests that ecosystems in a CO2-enriched atmosphere will sequester C and N in long-lived biomass and soil organic pools, thereby limiting available N and constraining the continued response of net primary productivity to elevated [CO2]. Here, we present a six-year record of N dynamics of a sweetgum (Liquidambar styraciflua) stand exposed to elevated [CO2] in the free-air CO2 enrichment (FACE) experiment at Oak Ridge, Tennessee, USA. We also evaluate the concept of PNL for this ecosystem from the perspective of N uptake, content, distribution, and turnover, and N-use efficiency. Leaf N content was 11% lower on a leaf mass basis (NM) and 7% lower on a leaf area basis (NA) in CO2-enriched trees. However, there was no effect of [CO2] on total canopy N content. Resorption of N during senescence was not altered by [CO2], so NM of litter, but not total N content, was reduced. The NM of fine roots was not affected, but the total amount of N required for fine-root production increased significantly, reflecting the large stimulation of fine-root production in this stand. Hence, total N requirement of the trees was higher in elevated [CO2], and the increased requirement was met through an increase in N uptake rather than increased retranslocation of stored reserves. Increased N uptake was correlated with increased net primary productivity (NPP). N-use efficiency, however, did not change with CO2 enrichment because increased N productivity was offset by lower mean residence time of N in the trees. None of the measured responses of plant N dynamics in this ecosystem indicated the occurrence of PNL, and the stimulation of NPP by elevated [CO2] was sustained for the first six years of the experiment. Although there are some indications of developing changes in the N economy, the N supply in the soil at this site may be sufficient to meet an increasing demand for available N, especially as the roots of CO2-enriched trees explore deeper in the soil profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号