首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
汞(Hg)是一种具有生物毒性、易挥发的有害金属元素。在大气中主要以气态单质汞Hg0的形态存在,具有较长的大气滞留时间,能随大气环流扩散到全球。多尺度监测大气Hg0的浓度对于评估《关于汞的水俣公约》履行效果极为关键。由于操作简易且不易受恶劣环境影响,被动采样器是现有大气Hg0主动监测技术的有效补充。近期研究表明被动采样器(MerPAS)采集到的大气Hg0可以同时应用于汞浓度与稳定汞同位素的分析。鉴于MerPAS在大气汞的研究中的广泛应用前景,本文对MerPAS的结构、原理以及其在大气Hg0浓度和同位素研究方面的进展进行综述,并通过实地采集天津市市区的大气汞来验证其汞浓度和同位素测试的可靠性。结果显示:MerPAS能够准确地监测大气汞的浓度,并很好地保存大气Hg0的同位素信号,特别是非质量分馏信号。  相似文献   

2.
探讨被动采样器监测环境空气质量的可比性   总被引:1,自引:0,他引:1  
对被动采样器与空气自动站监测环境空气质量进行了全年的对比实验,并对大量的监测数据进行了规范的处理分析,结果表明:被动采样器在环境条件基本满足采样条件且相对稳定时,被动采样器与自动站监测结果无显著性差别;在环境条件基本满足采样条件但不稳定时,需要根据实际对被动采样器的采样速率和监测空白进行修正,才能与自动站监测结果可比。  相似文献   

3.
哈尔滨市大气气相中多环芳烃的研究   总被引:6,自引:3,他引:3  
在哈尔滨地区8个采样点同时安装了PUF大气被动采样器,研究了该地区2007年春季(1月末~4月末)大气气相中多环芳烃的含量和分布特征.结果表明,PUF大气被动采样器主要采集了大气气相中三环和四环的多环芳烃,占总量的91.22%~96.37%,PAHs的浓度具有明显的功能区差异,依次为:市区(356.49 ng/d),郊区(162.65 ng/d),农村(278.35 ng/d),偏远地区(183.99 ng/d),市区大气中多环芳烃的浓度是农村的2倍,偏远地区的3倍.污染源是影响大气中多环芳烃含量高低的主要因素,通过特征分子含量比值法对该地区大气中多环芳烃的来源进行了初步研究,结果表明,哈尔滨地区城市大气中多环芳烃主要来自于燃煤,农村大气中的多环芳烃主要来自于农作物秸秆的燃烧.利用毒性当量因子法对该地区大气气相中多环芳烃的健康风险进行了评价,具有与浓度分布类似的功能区差异,表明市区和农村地区大气中PAHs对于人们的健康存在较大潜在威胁.通过安装平行采样器,PUF被动采样器具有很好的重现性,研究表明,可以用于城市尺度多个采样点大气中多环芳烃的同时研究.  相似文献   

4.
被动式采样器在大区域大气VOC监测中的应用   总被引:1,自引:2,他引:1  
应用VOC被动式采样器监测了地中海东部塞浦路斯岛大气中挥发性有机化合物(volatile organic compounds,VOC)的浓度。通过岛上设置的80个VOC采样点对苯,甲苯,对、邻、间二甲苯(Benzene、Toluene、o-xylene、m,p-xylene,BTX)数次采样及分析结果表明,其被动采样器中BTX回收率>95%,BTX平行实验的相对标准偏差<6.28%,采样和分析方法准确。得到的污染物分布图较准确地反映了塞浦路斯岛实际污染情况。  相似文献   

5.
为了切实履行《关于汞的水俣公约》,落实美丽中国建设战略,我国亟待加强对大气环境及各涉汞行业的监管.采用文献调研、分类梳理的方法,系统地分析和总结了近年来国内外常用的大气汞监测技术现状与问题,并探讨了未来技术发展方向.结果表明:为了满足大气环境中低浓度多形态汞的监测需求,越来越多功能的大气汞监测技术被研发,当前基于AFS(原子荧光光谱)和AAS(原子吸收光谱)等方法的监测技术对Hg0(元素汞)可实现ng/m3的检出限,对Hg2+(氧化态汞)和Hgp(颗粒态汞)有着低至pg/m3的检出限.自动化采样监测技术是未来汞监测的发展趋势,当前技术对大气中Hg0有着2.5~5.0 min水平的时间分辨率,对大气中Hgp可达到1~2 h的时间分辨率,同时可实现远程传输数据.人工采样监测和被动采样监测技术虽然时间分辨率较差,但在Hg2+和Hgp的监测方面有着一定优势.研究显示,完善大气汞监测管理体系,除了需要研发更强大的Hg2+和Hgp测定技术用于理解相关迁移转化过程,还亟待在相应的标定方法上实现技术革新,并应用这些技术组建地区和全球大气汞监测网络.   相似文献   

6.
极性有机物一体化采样器(POCIS)是一种富集检测水体中极性有机化合物的被动采样技术,能够比较客观地反映某段时间内水体中污染物的时间加权平均浓度。该研究利用多壁碳纳米管(MWCNT)作为POCIS采样器的吸附材料,探讨了不同水环境条件下MWCNT-POCIS采样器对6种典型抗生素采样速率(RS)的影响。结果表明:水流流速是影响RS的主要因素,盐度和溶解性有机质对RS影响不显著。将MWCNT-POCIS采样器应用于水体中抗生素浓度的监测,并与传统的主动采样方法进行对比,发现MWCNTPOCIS采样器测定的抗生素浓度与主动采样测定的浓度基本一致。  相似文献   

7.
被动采样技术在监测大气有机氯污染物中的应用   总被引:11,自引:3,他引:8       下载免费PDF全文
为了研究大气被动采样技术的可行性,评价其技术性能、特色和应用价值,采用以XAD-2树脂为吸附介质的被动采样器,对北京市和四川卧龙自然保护区大气中的典型持久性有机氯污染物分别进行了为期5个月和半年的样品采集,利用气相色谱-高分辨质谱方法对HCB,HCHs,DDTs和PCBs等进行了测定.结果表明:数据重现性良好,检测下限的范围为0.2~8.0 pg/m3;北京市有机氯污染物检出质量浓度相对较高,其中ρ(HCB)最高,为1 910 pg/m3,ρ(p,p′-DDT)最低,为21 pg/m3;卧龙自然保护区有机氯污染物检出质量浓度相对较低,其中ρ(HCB)最高,为254 pg/m3,ρ(PCB52)最低,为1.3 pg/m3.初步表征、比较了北京市和四川卧龙自然保护区大气中HCB,HCHs,DDTs和PCBs等化学组成特征.以XAD-2树脂为吸附介质的大气被动采样器,可以应用于城市和边远地区持久性有机氯污染物的长期采样和监测.   相似文献   

8.
珠江三角洲地区大气中多环芳烃的被动采样观测   总被引:7,自引:4,他引:3  
研究了珠江三角洲地区大气中多环芳烃的含量与分布.利用大气被动采样装置,在包括香港在内的珠江三角洲地区共设立了21个大气被动采样点,样品采集时间为2005-08-15—10-14.结果表明,除主要存在于气相中的2~3环PAHs与部分4环PAHs外,聚氨酯泡沫材料(PUF)被动采样器也可在一定程度上采集大气颗粒物中的5~7环PAHs.珠江三角洲地区大气PAHs的含量与组成存在较大差异,珠江三角洲内地采样点PAHs的含量远远高于香港采样点,这主要是受采样点所处的地理位置、气候条件以及能源消费结构的影响.初步研究表明,PUF大气被动采样器可较好地运用于区域大气PAHs污染分布与特征对比研究.   相似文献   

9.
环境监测     
X8312(X) 203194汞在北京大气中细颗粒物上的分布/王文华(_h海交通大学环境科学与工程学院),二//上海文通大学学报/上海交通大学一2(X犯,36(l)一1抖一137 环图N一42 为了解汞在北京大气中细颗粒上的分布,用AN一2佣型安德森冲击式分级采样器于1997年11月30日一1998年2月8日(采暖期),在北京3个采样点同步采取不同粒径(4 .7一10.1、1一4.7和0.43一1.1脚)的颗粒物,测定了其上汞的质量浓度。影响大气中颗粒态汞的因素较多,释放源是其中之一。3个采样点中最大颗粒物态汞浓度并未在工业区出现,表明北京市大气中颗粒态汞的环境行为复杂,可能具有…  相似文献   

10.
姜林  赵莹  钟茂生  付全凯 《环境科学研究》2017,30(11):1746-1753
污染场地中土壤气样品的采集是蒸气入侵风险评估的关键,目前最常用的主动土壤气采集技术包括真空苏玛罐和泵吸附管,其操作繁琐、成本高、易受多种因素影响、只能采集短时间的浓度.土壤气定量被动采样技术是一种新兴的采样技术,很好地克服了主动式采样存在的不足,是目前污染场地中土壤气调查的研究热点.通过总结现有研究,就定量被动采样技术的理论、被动采样器吸附剂和外壳材料的选择、被动采样器吸附速率的研究及定量被动采样在污染场地中的应用进行论述.综合研究发现,只要严格控制吸附速率,被动采样能够提供准确的定量土壤气浓度测量;采样器结构的设计、外壳材料的选择能够有效控制吸附速率;吸附速率受环境因素和土壤性质的影响,场地校正是获得准确结果的有效途径.我国在土壤气采样领域的研究刚刚起步,建议:加大高效、广谱型或混合型吸附材料及相应测试方法和设备的研发;加强吸附速率的影响因子及场地校准方法的研究;加强土壤钻孔内土壤气的补给速率的模型和场地实测研究;增加不同种采样器的现场应用比较研究;进行适合我国国情的技术标准的研究与制订.   相似文献   

11.
长春市大气颗粒汞污染特征及影响因子分析   总被引:12,自引:0,他引:12       下载免费PDF全文
应用大流量大气采样器采集的TSP样品测定了长春市4个功能区及一个对照点的大气颗粒汞浓度。结果表明,大气颗粒汞体积浓度(Cv)与单位重量颗粒物上的汞含量(Cm)在时间上呈相似的变化趋势,采暖期高于非采暖期。而在空间上则相反,Cv市区大于对照点,对Cm则对照点大于市区,说明了大气颗粒汞主要结合在细粒径的颗粒物上。TSP与大气颗粒汞浓度呈正相关关系,它是大气颗粒汞浓度的决定性因素;降水是影响大气颗粒汞的主要气象因子,燃煤与地面扬尘是大气颗粒汞的两个主要来源。  相似文献   

12.
对ACCU多通道自动采样器在环境空气污染物监测领域的应用进行了研究,并与颗粒物自动监测仪器进行了相应得对比。结果表明,ACCU自动多通道采样器可根据提前设定的程序进行特征性采样,并且ACCU多通道自动采样器得出的结果与颗粒物自动监测仪器的监测结果相关性较好,其采样滤膜可根据需要在实验室进行颗粒物组分的定性和定量分析。  相似文献   

13.
空气微生物采样方法的比较   总被引:8,自引:0,他引:8       下载免费PDF全文
对3种空气微生物采样方法进行了比较。结果表明,在室外自然条件下,大气细菌粒子的沉降量与大气细菌粒子的浓度、大气真菌粒子的沉降量与大气真菌粒子的浓度均呈显著的正相关关系。对大气细菌粒子,用平皿沉降法分别与A·S采样器法、THK-201采样器法测定的结果相比,有非常显著的差异。平皿沉降法测定结果比后二者方法高出2.9倍和4.0倍;A·S采样器和THK-201采样器测定结果之间没有显著性差异。对大气真菌粒子,A·S采样器法和平皿沉降法与THK-201采样器法均有非常显著性差异;平皿沉降法与A·S采样器法测定结果之间没有显著性差异。进一步用直线回归分析的方法,得出了大气细菌粒子浓度与大气细菌粒子沉降量及大气真菌粒子浓度与大气真菌粒子沉降量之间的关系式。  相似文献   

14.
城市大气环境由于受人为活动影响,具有较高大气汞浓度和时空分布不均一特征。植被叶片虽具有较强富集大气汞的能力,但能否指示城市大气汞时空变化,目前尚有存疑。本文通过连续监测新疆乌鲁木齐市区内6个采样点5种常见树种叶片,在生长季(2019年5~10月)内的汞浓度,分析树叶汞浓度的时空分布变化特征,进而寻找潜在的最优树种叶片,反演乌鲁木齐大气汞污染程度。结果表明,城市内的局地污染能够显著提高叶片汞浓度;树种叶片对大气汞浓度的敏感性存在明显差异(P<0.01);落叶阔叶树的叶汞浓度与叶片生长时间呈显著正相关关系(P<0.01),即叶片在整个生长期不断积累大气汞;而针叶汞浓度一年之内与生长时间无显著关系。考虑到圆冠榆叶片对大气汞浓度敏感性较高且分布范围更广,圆冠榆作为乌鲁木齐城市大气汞的生物监测器较为合适。本研究为研究城市大气汞浓度生物监测提供了典型的案例与借鉴。  相似文献   

15.
被动采样法观测研究京津冀区域大气中气态污染物   总被引:5,自引:3,他引:2  
吴丹  王跃思  潘月鹏  辛金元  唐贵谦 《环境科学》2010,31(12):2844-2851
为了对京津冀区域的大气污染物进行观测,揭示污染物浓度和组分的时空分布和变化规律,深入了解区域复合型污染,从2007年12月开始使用造价低、操作简捷的被动采样方法对区域10个站点大气中的SO2、NO2、O3和NH3等主要污染物进行了监测,对被动采样方法的区域适用性进行了比较全面的评估并根据监测结果对污染物的浓度水平和区域分布进行了研究.方法适用性评估表明被动采样方法在污染较严重的京津冀区域能进行长时间采样,采样频率设定为每月1次;平行采样结果显示,SO2、NO2、O3和NH3的变异系数分别为6.4%、7.1%、4.2%和3.9%,方法表现出良好的稳定性;每月1次的被动采样浓度结果与主动采样仪器观测结果月平均值相比具有较好的一致性,SO2、NO2和O3这2种方法监测结果的相关系数达到0.91、0.88和0.93,拟合曲线斜率分别为1.25、0.98和0.93,平均相对标准偏差分别为23.3%、14.9%和8.5%,能基本满足大气采样的要求,NH3的短时监测也表明2种方法具有可比性.评估结果说明被动采样方法是一种可靠的大气污染监测方法,可用于区域污染的监测.2008年夏季京津冀区域10个站点SO2、NO2、O3和NH3的被动采样平均浓度分别(12.3±6.3)×10-9、(13.2±7.0)×10-9、(40.5±9.5)×10-9和(24.0±13.7)×10-9.浓度区域分布显示SO2和NO2在城市站点具有较高浓度,而NH3在农业站点的浓度较高,SO2、NO2和NH3的大气浓度水平明显受局地排放影响,浓度分布较直观的反应了站点的局地源排放;而O3除了背景站兴隆,在北京和天津周边的大小城市,平均浓度都在40×10-9左右,表现出区域协同污染特征.  相似文献   

16.
利用PUF大气被动采样技术监测中国城市大气中的多环芳烃   总被引:12,自引:11,他引:1  
利用PUF大气被动采样技术,分冬、春2个季度,对中国32个城市大气中的多环芳烃(PAHs)进行了观测.结果表明,除主要存在于气相中的2~3环PAHs与部分4环PAHs外,PUF被动采样器也可一定程度地采集大气颗粒物中的5~7环PAHs.中国城市大气PAHs的浓度与组成,主要受城市所处的地理位置、气候条件以及能源消费结构的影响.西北、华北、西南和华中地区部分城市大气中PAH总量和高环PAH浓度均较高,华南和东南沿海一带城市则相对较低.在季节变化上,表现为冬季浓度高、春季低.可能是陆源有机质在土壤中早期成岩作用的产物,春季浓度升高反映了土壤颗粒物对大气颗粒物的贡献,与扬尘天气相对应;而芴的浓度在燃煤较多的城市大气中显著增加,与其主要属燃煤成因相一致.研究表明,PUF大气被动器可很好地运用于区域大气PAH污染分布与特征对比研究.  相似文献   

17.
人工大气采样是环境监测工作中对大气质量进行调查的一个重要手段,我国目前仅有少数的大气地面自动采样系统能局部替代人工采样,绝大部分地区的大气质量调查仍依赖于手工采样,因此在采样中采气流量的稳定是采样质量的保证措施之一。本人在长期的大气环境监测工作中发现和探索了人工大气采样中流量不稳定问题和规律。虽然我们在每次大气采样前对采样仪器进行了一系列的常规校验,如大气采样器、KB—120泵等的流量校准,对U型吸收管的筛板阻力进行了测试筛选。但在整个采样过程中仍会因各种因素产生一些有规律的变化,主要是采样中仪器流…  相似文献   

18.
研究了珠江三角洲地区大气中多氯联苯的含量与分布.利用大气被动采样装置,共设立了包括香港在内的珠江三角洲21个大气被动采样点,样品采样时间为2005-08-15~2005-10-14.结果表明,珠三角内地的佛山(2000pg·m-3)是PCBs的高污染地区,内地采样点PCBs含量范围260~2000pg·m-3,平均值670pg·m-3.香港PCBs含量范围170~470pg·m-3,平均值300pg·m-3.香港每个采样点的PCBs含量都接近平均值,含量比较低.珠三角大气中PCBs含量与世界其它地区相比属中度污染区域.结果也表明,PUF大气被动采样器可很好地运用于区域大气PCBs污染分布与特征的对比研究.  相似文献   

19.
博斯腾湖流域大气多环芳烃污染特征、干沉降通量及来源   总被引:1,自引:1,他引:0  
本研究使用大气被动采样器(PAS-PUF)和干沉降被动采样器(PAS-DD),分别于2016年采暖期和2017年非采暖期对新疆博斯腾湖流域及周边地区15种USEPA优控多环芳烃(PAHs)大气浓度和干沉降进行了观测,并对其污染特征和来源进行了研究.结果表明,采暖期和非采暖期博斯腾湖流域PAHs大气浓度范围分别为6. 38~245. 43 ng·m~(-3)和2. 33~74. 76ng·m~(-3);采暖期与非采暖期均呈现出居民区湖泊周边塔中的空间分布.采暖期和非采暖期PAHs大气干沉降通量范围分别为0. 45~18. 10μg·(m~2·d)-1和0. 25~8. 15μg·(m~2·d)-1;采暖期居民区PAHs干沉降通量比湖泊周边和塔中采样点高,但在非采暖期塔中采样点高于其它采样点.整体而言,博斯腾湖流域大气及干沉降中PAHs在采暖期显著高于非采暖期,在采暖期与非采暖期均以菲(Phe)、芴(Flu)、荧蒽(Flua)和芘(Pyr)等3~4环PAHs为主.比值法源解析结果显示,博斯腾湖流域大气和干沉降中PAHs主要来源于煤炭和生物质燃烧; HYSPLIT前向和后向轨迹模拟结果表明,非采暖期居民区较高PAHs排放通过大气传输到达博斯腾湖区,经大气干沉降进入水体,可能会对博斯腾湖水生环境造成影响.  相似文献   

20.
本研究使用大气被动采样器(PAS-PUF)和干沉降被动采样器(Pas-DD),分别于2016年采暖期和2017年非采暖期对新疆博斯腾湖流域及周边地区15种USEPA优控多环芳烃(PAHs)大气浓度和干沉降进行了观测,并对其污染特征和来源进行了研究。结果表明,采暖期和非采暖期博斯腾湖流域PAHs大气浓度范围分别为6.38~245.43 ng·m-3和2.33~74.76 ng·m-3;采暖期与非采暖期均呈现出居民区湖泊周边塔中的空间分布。采暖期和非采暖期PAHs大气干沉降通量范围分别为0.45~18.10μg·(m2·d)-1和0.25~8.15μg·(m2·d)-1;采暖期居民区PAHs干沉降通量比湖泊周边和塔中采样点高,但在非采暖期塔中采样点高于其它采样点。整体而言,博斯腾湖流域大气及干沉降中PAHs在采暖期显著高于非采暖期,在采暖期与非采暖期均以菲(Phe)、芴(Flu)、荧蒽(Flua)和芘(Pyr)等3~4环PAHs为主。比值法源解析结果显示,博斯腾湖流域大气和干沉降中PAHs主要来源于煤炭和生物质燃烧;HYSPLIT前向和后向轨迹模拟结果表明,非采暖期居民区较高PAHs排放通过大气传输到达博斯腾湖区,经大气干沉降进入水体,可能会对博斯腾湖水生环境造成影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号