首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
European beech (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.) and Silver fir (Abies alba Mill.) were exposed to low concentrations of ozone (O(3)) and sulfur dioxide (SO(2)), alone and combined, and simulated acid rain (pH 4.0) in sheltered open-top chambers in Hohenheim (Southwest Germany) for almost five years. The concentrations of O(3) and SO(2) used were related to annual ambient average found in southern West Germany. Two control chambers were ventilated with charcoal filtered air and rainfall was simulated at pH 4.0 and 5.0. Because of large dense plant growth in the chambers it was only possible to measure uncompleted growth of shoots in the upper canopy. Therefore, growth analysis was restricted to this area. The treatment with acidic precipitation decreased the annual shoot growth of beech and reduced leaf surface area of those trees. Exposure to SO(2), O(3) alone and in combination resulted in further reduction of shoot length and leaf surface area. Fumigation with SO(2) and O(3) + SO(2) caused insignificant decreases of shoot length, total dry weight and needle surface area of spruce. The lateral leader shoot growth of spruce exposed to O(3) was significantly reduced only in the last year of the experiment. Growth rates of the spruce exposed to charcoal filtered air and non-acidic precipitation were reduced more than those of beech and fir. Growth variables determined for fir reflected different rates of incremental change. Exposure to O(3) resulted in the largest dry matter production of all fir groups but those exposed to charcoal filtered air and non-acidic precipitation responded with the best lateral leader shoot growth, lowest specific leaf area (SLA) and leaf area ratio (LAR) respectively indicating best metabolic efficiency. At the conclusion of this study a classification of sensitivity was developed for the tree species.  相似文献   

2.
The effects of air pollution on the genetic structure of Norway spruce, European silver fir and European beech were studied at four polluted sites in Slovakia, Romania and Czech Republic. In order to reduce potential effects of site heterogeneity on the health condition, pair-wise sampling of pollution-tolerant and sensitive trees was applied. Genotypes of sampled trees were determined at 21 isozyme gene loci of spruce, 18 loci of fir and 15 loci of beech. In comparison with Norway spruce, fewer genetic differences were revealed in beech and almost no differentiation between pollution-tolerant and sensitive trees was observed in fir. In adult stands of Norway spruce, sensitive trees exhibited higher genetic multiplicity and diversity. The decline of pollution-sensitive trees may result thus in a gradual genetic depletion of pollution-exposed populations of Norway spruce through the loss of less frequent alleles with potential adaptive significance to altered stressing regimes in the future. Comparison of the subsets of sensitive and tolerant Norway spruce individuals as determined by presence or absence of discolorations ("spruce yellowing") revealed different heterozygosity at 3 out of 11 polymorphic loci.  相似文献   

3.
The fine roots and myocorrhizae of beech, spruce and fir trees exposed to ozone, sulphur dioxide and simulated acid precipitation in open-top chambers (OTC) were examined both in situ by rhizoscopy and in the laboratory using root samples from soil cores. Prior to measurements the trees were treated for about one year. During the second year of treatment the fine root production of all three tree species was determined rhizoscopically. The OTC experiments were concluded after an additional three years at which time fine root and small root dry matter as well as the absolute and relative frequencies of mycorrhizae of spruce and fir were determined from soil cores. The vitality of spruce mycorrhizae was examined by fluorescein diacetate staining. In addition total contents of essential cations of spruce mycorrhizae were measured. Long-term exposure to SO(2), SO(2) + O(3), and simulated acid precipitation led to an increased mycorrhizal production by fir. On spruce, a decreased number of mycorrhizae was found in the chambers polluted with SO(2), but a high proportion of dead fine roots indicated an increased root production with an intensified turnover or a delayed decomposition of spruce mycorrhizae. The cation analyses showed an accumulation of Ca(2+) and Zn(2+) in the mycorrhizae of spruce exposed to ozone.  相似文献   

4.
Needles from spruce and fir trees were analyzed for histological changes induced by long-term exposure in open-top chambers to SO(2) and/or O(3) combined with acid rain. Light and electron microscopical evaluation revealed initial structural changes in the vascular bundle of fir needles, with an increased number of crushed sieve cells in the phloem. In addition the walls of young, adaxial sieve cells lacked the typical thickening usually observed in naturally aged needles. These findings may indicate restricted assimilate translocation. The presence of SO(2) in any treatment led to thylakoidal swellings and membrane reductions in the chloroplasts of mesophyll cells near the vascular bundle. This damage pattern resembled alterations caused by nutrient deficiency rather than by the direct action of gaseous pollutants. In general, fir appears to be more sensitive to environmental stress than spruce; this substantiates the findings of previous studies.  相似文献   

5.
Enzymatic activity (peroxidase, glutamate dehydrogenase, glutamine synthetase), foliage buffering capacity, soluble protein and nitrogen content were measured in current and previous year needles from young spruce (Picea abies) and fir (Abies alba). The trees were exposed to low levels of SO(2) and/or O(3) and simulated acidic precipitation (pH 4.0) in open-top chambers from 1983 through 1988. Needle samples were taken during March 1988 at the end of the five-year fumigation period. Exposure to SO(2) substantially increased sulphur content in both needle age classes of spruce and fir, and concomitantly reduced the foliage buffering capacity index (BCI), whereas the combined fumigation with SO(2) and O(3) had no effect on BCI. Peroxidase activity was markedly higher in year-old needles compared to current-year needles. However, trees from the SO(2) and SO(2) + O(3) treatments exhibited statistically significant stimulated peroxidase activities. Similarly, changes in the activities of the nitrogen-metabolizing enzymes indicated an altered cellular function of the trees after the long-term pollution stress. Levels of activity of both glutamate dehydrogenase and glutamine synthetase were increased by exposure to SO(2), especially in spruce. Although glutamate dehydrogenase in spruce was affected by all treatments, such changes in activity were found in fir only with the SO(2) treatment. The highest activity of glutamine synthetase, however, occurred in the older needles of trees exposed to SO(2) + O(3). Total nitrogen concentration was either unaffected by the pollutant treatments or decreased in spruce compared to the controls. No statistically significant changes due to the fumigation were found in soluble protein concentrations. Results indicated that chronic exposure to air pollutants lead to alterations in metabolic processes in conifer needles, detectable either by changes in typical stress indicating values or by increases in ammonium assimilation capacity.  相似文献   

6.
The effects of industrial pollution on allelic and genotypic structures of Norway spruce. European silver fir and European beech were investigated by means of isozyme analysis. In a mixed Norway spruce-silver fir forest stand in an area heavily polluted by sulphur dioxide and heavy metals in the region of Spis (eastern Slovakia), pairs of neighbouring damaged and apparently healthy trees were selected in two replicates (44 and 69 pairs in a heavily and moderately damaged stand, respectively). Pairwise sampling of trees with contrasting vitality was applied to reduce potential effects of site heterogeneity on the vitality of sampled trees. No significant differences in allelic and genotypic frequencies were found between sets of healthy and declining trees. There were differences in the single-locus heterozygosities, but these were not consistent between the replicates. However, the set of damaged trees exhibited higher levels of genetic multiplicity and diversity, possibly due to the deleterious effect of rare alleles under the conditions of air pollution. Consequently. following the decline of pollutant-sensitive trees, the remaining stand will be depleted of a part of alleles with unknown adaptive value to future selection pressures.  相似文献   

7.
Mature beech trees (Fagus sylvatica) grown at two different altitudes in the Bavarian forest were compared with young beech trees grown at nearby field sites or in phytotrons for their macroscopic and physiological responses to different ozone (O(3)) exposures. Cumulative O(3) exposure expressed as the sum of hourly mean concentrations above the canopy ranged between 100 and 150 microl l(-1) h, with the vertical O(3) profiles at the higher altitude site being enhanced by 30%. O(3) profiles at all sites were reduced by up to 20% with increasing depth within and beneath the canopy. The leaf discoloration that developed in the absence of premature leaf loss was similar in the sun foliage of mature and young trees (including plant grown in the phytotron). Injury became apparent at low O(3) exposures, expressed as accumulated hourly means over a threshold of 40 nl l(-1) (AOT40 <3.5 microl l(-1) h) at the lower site in both the mature trees and the young beech at the field site, but only occurred when AOT40 values reached 7 microl l(-1) h at the upper site, and 6 microl l(-1) h in the phytotrons. However, the association between injury and O(3) exposure was improved when cumulative ozone uptake to sun leaves was the ozone index, used with values of about 3 mmol m(-2) resulting in visible injury in both mature and young beech growing in phytotrons. Under high ozone exposure levels of inositol were lowered, whilst concentrations of lignin-like materials were enhanced in mature beech. Similar responses were observed in young beech grown in phytotrons. As the sun foliage was affected by only a small and variable extent each year, the seasonal O(3) impact at high altitude did not appear to pose an acute risk to mature beech trees.  相似文献   

8.
Gas exchange was characterized in one- and two year-old spruce (Picea abies L. Karst.) and fir seedlings (Abies alba Mill.) which had been exposed to low levels of ozone, sulfur dioxide and simulated rain or a combination of all three variables in open top chambers from 1983 through 1988. The gas exchange measurements were carried out in March 1988 at the end of the five year experiment. The twigs examined did not exhibit any visible sign of injury, specifically no differences were apparent between trees under the treatments of simulated acidic rain at pH 5.0 and pH 4.0. The study of carbon dioxide response curves showed different effects of the pollutants on the tree species. One-Year-old spruce needles treated with O(3) and simulated acidic precipitation pH 4.0 showed noticeable reduction of net photosynthetic rate. Exposure to the combination O(3) and SO(2) at pH 4.0 resulted in a significant depression of photosynthesis in two-year-old needles Transpiration rate was not decreased to a similar extent. No changes either in photosynthesis or transpiration were found in spruce under fumigation with SO(2) alone. These results indicate that ozone is the principal cause of changes in photosynthetic performance of spruce. It alters mesophyll response rather than reducing stomatal conductance. The specific changes that occur in the mesophyll could be diagnosed as inactivation of a carbon fixing enzyme as well as damage of the electron transport system. Fir seem to be more tolerant to ozone. No changes in photosynthesis and transpiration following exposure to O(3) alone were found. However, SO(2) fumigation, alone or in combination with O(3), resulted in a marked decrease of photosynthetic performance. Particularly, carboxylation efficiency and also maximum carboxylation velocity were depressed indicating a reduction in carbon fixing enzyme activity. No differences between single and combined fumigation treatments regarding these variables were determined. However, parameters measured to determine changes in electron transport rate showed a higher depression in the presence of both pollutants. Transpiration also was reduced by SO(2).  相似文献   

9.
The term 'Waldsterben' was introduced in the early 1980s to describe the progressive death of forests that was believed to be occurring in Central Europe as a result of air pollution. Subsequent surveys and investigations have failed to confirm that forests are dying or are even declining over large areas of Central Europe, defined here as consisting of Germany, Switzerland, southeastern France (Alsace), the Czech Republic, northern Italy and Austria. Foliar injury by air pollutants, together with mortality, has occurred, but is generally restricted to specific locations in the Czech Republic and in eastern Germany, such as the Fichtelgebirge. Where foliar damage has been recorded, it can often be attributed to high concentrations of sulphur dioxide, often acting in combination with other stresses (e.g. frost or insects). Outside areas affected by local sources of pollution, there is little, if any, evidence that the crown condition of trees has been adversely affected by pollution over large areas. Instead, climate appears to have a major effect on the crown condition and growth of trees. Measurements and surveys have revealed a very different picture to that forecasted in the mid-1980s. Growth rates of trees and stands in Central Europe are currently higher than have been recorded at any time in the past; the reasons for this are uncertain, although increases in forest area have not substantially contributed to the observed trends. Although declines in individual species in specific areas have been recorded, past records indicate that these do not represent a new phenomenon. Consequently, the terms 'Waldsterben' (forest deaths) and 'neuartige Waldsch?den' (novel type of forest damages) should not be used in the context of the phenomenon reported in Central Europe in the 1980s. Instead, different problems should be described separately and the term forest decline used only when there is clear evidence of a general deterioration in the condition of all tree species within a forest.  相似文献   

10.
Five clones of 3-year old Norway spruce (Picea abies [L.] Karst), planted in a soil from the Bavarian Forest (pH 4.4) or a soil from the Calcareous Bavarian Alps (pH 6.9), were exposed for two successive vegetation periods, in closed environmental chambers, to a pollution treatment consisting of acidic mist (pH 3.0) plus ozone levels of 100 microg m(-3) with episodes of 130-360 microg m(-3); control trees were exposed to mist of pH 5.6 and ozone levels of 50 microg m(-3). Climatic and pollution protocols followed the diurnal and seasonal pattern characteristic for the Inner Bavarian Forest in Southern Germany, an area affected by the new-type forest decline. Biometric parameters were strongly related to clone and soil. Pollution treatment had a limited effect on only a few growth parameters. The stem diameter growth increment of two clones was reduced by pollution treatment in both soils, a third clone was affected in the acidic soil only. Two other clones were not affected at all. Stem volume increment of three clones, calculated as D(2)H, was reduced by pollution treatment in the neutral soil, a fourth clone was affected in the acidic soil only. Bud break was either delayed (two clones) or accelerated (two other clones) by treatment. Depending on soil and clone, needle yellowing was observed in previous years' needles in both treatment and control trees exposed to increased light intensities. The 'spotted' yellowing was not identical to symptoms found in forest decline areas and was most likely a consequence of nutrient deficiencies during the vegetation period preceding the experiment. The results of this experiment are discussed with regard to field observations and forest productivity. The complex pattern of growth responses resulting from interactions between air pollution, soil and genetic factors is considered to reflect different susceptibilities of trees to air pollutants.  相似文献   

11.
A review of ozone-induced effects on the forests of central Mexico   总被引:1,自引:0,他引:1  
The first report on oxidant-induced plant damage in the Valley of Mexico was presented over 30 years ago. Ozone is known to occur in the Mexico City Metropolitan Area and elsewhere as the cause of chlorotic mottling on pine needles that are 2 years old or older as observed in 1976 on Pinus hartwegii and Pinus leiophylla. Visible evidences for the negative effects of ozone on the vegetation of central Mexico include foliar injury expressed as chlorotic mottling and premature defoliation on pines, a general decline of sacred fir, visible symptoms on native forest broadleaved species (e.g. Mexican black cherry). Recent investigations have also indicated that indirect effects are occurring such as limited root colonization by symbiotic fungi on ozone-damaged P. hartwegii trees and a negative influence of the pollutant on the natural regeneration of this species. The negative ozone-induced effects on the vegetation will most likely continue to increase.  相似文献   

12.
Three-year-old clonal spruce trees, kept in growth chambers, were treated with ozone and acid mist during a period of 14 months. One half of the trees were grown on an acidic sandy soil, the other half on a calcareous soil rich in carbonate. At the end of the fumigation period, carbohydrates (glucose, fructose, sucrose, raffinose, starch, glucose-1-phosphate and fructose-6-phosphate) and parameters of the energy status (ATP-, AdN-(ATP + ADP + AMP)- levels, ATP/ADP-ratios and adenylate-energy-charge-(AEC)-values) were determined in the current-year's needles. The results indicate that the metabolic status of a plant tissue is not only influenced by the nature of the air pollutants. Soil factors play an important role in metabolic changes within the plant and are thus of relevance in the manifestation of damage symptoms.  相似文献   

13.
The response of Pinus maximartinezii Rzedowski to photochemical oxidant air pollution was examined using 100 trees, during a 1 year cycle, at Vivero de Coyoacán, a tree nursery located in the south central part of México City, where exposure to polluted air masses has been continuous. The tree response assessment method was based upon documented symptoms of pollutant injury on the foliage. The results showed a homogeneous pattern of health and vigor and only medium sensitivity (based on foliar injury) to photochemical oxidants, although the trees maintained their needles through a three and not the normal 5 year period as at its geographic location of origin (different habitat or environment). Nevertheless, these data suggest that this species of pine could be proposed as good planting material for reforestation in the urban metropolitan area of México city.  相似文献   

14.
Four non-filtered and four charcoal-filtered open-top chambers were employed to determine the effects of ambient levels of gaseous air pollutants at Braunschweig, FRG, on growth and yield of potted plants of winter and spring barley. During the exposure period (November 1985-August 1986) monthly mean values of gaseous air pollutants (microg m(-3)) ranged between 34 and 127 for SO(2), 34 and 52 for NO(2) and 12 and 33 for O(3) in winter (November-March), and 16 to 26 for SO(2), 20 to 33 for NO(2) and 42 to 53 for O(3) in spring-summer (April-August). Monthly 2% percentile values for these gases reached (microg m (-3)) 561 for SO(2), 140 for NO(2) and 170 for O(3). The filtering efficiencies of the charcoal filters used averaged 60% for SO(2), 50% for NO(2) and 70% for O(3). All plants of winter barley from the unchambered plot were killed by severe frost periods in winter, 1986. Little frost damage occurred on plants grown in the chambers. Air filtration resulted in higher numbers of plants of winter barley per pot, i.e. a higher number of individuals per area, and a higher dry weight of whole plants and ears compared to the non-filtered atmosphere. In the experiments with spring barley, fresh and dry weight of whole plants were lower and dry weight of leaves were higher in the filtered open-top chambers. These effects could not be observed at all harvests which were carried out during the growing season. Grain yield and sulphur content of the leaves of both barley cultivars were not affected by the air filtration. Production of biomass of spring barley grown in ambient air was higher than of that grown in open-top chambers.  相似文献   

15.
Foliar markings on vegetation have proven a highly sensitive criterion for the presence of many air pollutants; proper evaluation of such effects can serve as a valuable and inexpensive tool for delineating an air pollution condition. Injury symptoms from fluoridt, sulfur dioxide, photochemical oxidants and other pollutants have been described and can be recognized by experienced observers. Field studies provide a valuable technique for appraising an air pollution problem when diagnosis is not confused by other factors. Careful inspection can avert difficulties arising in diagnosis where similar symptoms are produced by agents other than air pollutants. Several factors must be considered in appraising injury. These include a knowledge of the relative sensitivity of plant species to various pollutants, the syndrome of injury on a number of plants and species, and distribution and geographic relation of affected plants to the suspected source. Background information on cultural, environmental, disease and insect conditions which might be responsible for, or modify, foliar markings or chronic effects in question must also be understood. For some pollutants a chemical analysis of foliage and air may prove helpful. When these factors are studied, the presence, distribution and magnitude of an air pollution situation can be evaluated, thus providing a sensitive criterion of air quality.  相似文献   

16.
In the Retezat Mountains concentrations of O3, NO2 and SO2 in summer season 2000-2002 were low and below toxicity levels for forest trees. While NH3 concentrations were low in 2000, the 2001 and 2002 concentrations were elevated indicating possibility for increased N deposition to forest stands. More than 90% of the rain events were acidic with pH values <5.5, contributing to increased acidity of soils. Crown condition of Norway spruce (Picea abies) and European beech (Fagus sylvatica) was good, however, defoliation described as >25% of foliage injured increased from 9.1% in 2000 to 16.1% in 2002. Drought that occurred in the southern Carpathians between fall 2000 and summer 2002 and frequent acidic rainfalls could cause the observed decline of forest condition. Both Norway spruce and European beech with higher defoliation had lower annual radial increments compared to the trees with low defoliation. Ambient O3 levels found in the Retezat did not affect crown condition of Norway spruce or European beech.  相似文献   

17.
Decline of sacred fir (Abies religiosa) trees in the high elevation forest park, Desierto de los Leones, located south of Mexico City, is described. Trees located in the windward zone (exposed to air masses from Mexico City) were the most severely affected, especially trees at the distal ends of ravines. Examination of tree growth rings indicated decreases in ring widths for the past 30 years. Polluted air from Mexico City may be an important causal factor in fir decline. Drought, due to excessive removal of soil water, insects, mites and pathogens, and poor forest management are possible contributing and interactive factors in fir decline.  相似文献   

18.
Air pollution can have direct effects on trees. It can cause visible injury to foliage and a disruption of physiological processes, such as photosynthesis and carbon allocation, leading to losses in growth and productivity. This review suggests that of equal or greater importance is the potential of air pollutants to indirectly affect tree growth and vitality by predisposing them to injury from other abiotic and biotic stresses. Predisposition by air pollutants can be the result of a disruption in biochemical processes, such as enzyme activity or production, or physiological factors (e.g. stomatal closure, carbon allocation). Air pollutants such as SO(2), O(3) and acidic mists have been implicated as predisposing agents to two of the most important of these stresses: low temperature and soil moisture. Probable mechanisms, as well as implications of predicted changes in global climate will be discussed.  相似文献   

19.
Over the last decades much of the work on the impact of air pollution on forests in Europe has concentrated on central and northern countries. The southern part of Europe has received far less attention, although air pollutants-especially the photochemical ones-can reach concentrations likely to have adverse effects on forest vegetation. Although international forest condition surveys present serious problems where data consistency is concerned, they reveal considerable year-by-year species-specific fluctuations rather than a large-scale forest decline. Cases of obvious decline related to environmental factors are well circumscribed: (1) the deterioration of some coastal forests due to the action of polluted seaspray; (2) the deterioration of reforestation projects, especially conifers, mainly due to the poor ecological compatibility between species and site; and (3) the decline of deciduous oaks in southern Italy and of evergreen oaks in the Iberian peninsula apparently due to the interaction of climate stresses and pests and diseases. However, besides obvious deterioration, changes in environmental factors can provoke situations of more subtle stress. The most sensitive stands are Mediterranean conifer forests and mesophile forests of the Mediterranean-montane plane growing at the edges of the natural ecological distribution. Evergreen sclerophyllous forests appear less sensitive to variations in climatic parameters, since they can adapt quite well to both drought and the action of UV-B rays. Several experiments were carried out to test the sensitivity of Mediterranean forest species to air pollutants. Most of those experiments used seedlings of different species treated with pollutant concentrations too high to be realistic, so it is difficult to derive adequate information on the response of adult trees in field conditions. Ozone has been proved to cause foliar injury in a variety of native forest species in different Southern European countries, while the effects of other pollutants (e.g. nitrogen, sulphur, acidic deposition) are less obvious and likely to be very localized. In the case of ozone, visible symptoms were almost completely missed by large-scale surveys and-at the same time-non-visible symptoms are suspected to be even more widespread than the visible ones. Owing to this and to the complex relationships existing between species sensitivity, ozone exposure and doses, length of the vegetative periods, influence of climatic and edaphic condition on the tree's response, the impacted areas are yet to be identified. Therefore, the large-scale impact of air pollutants on the forests of Southern Europe remains largely unknown, until more specific investigations are carried out.  相似文献   

20.
From 1983-88 the long-term effects of low level exposure with O(3), SO(2) and simulated acid rain on mineral cycling in model ecosystems with spruce, fir and beech seedlings were investigated. Systems consisting of open-top chambers built above lysimeters were protected against the intrusion of ambient rain and dust. As part of the investigations on mineral cycling the fluxes of elements with water input and output of the canopy and soil compartments are presented. During the 5 year duration of the experiment, pronounced effects on canopy deposition and cation leaching were observed. Most noticeable were throughfall enrichment with sulfate through dry deposition of SO(2) as influenced by duration of needlewetting and factors promoting SO(2) oxidation. Depending on sulfur deposition, leaching of calcium, magnesium, manganese, zinc and ammonium from canopies was elevated, in total leading to enhanced soil input of acid. After 15 months, the water percolating the soils in the lysimeters of these treatments was acidified, with elevated flowrates of sulfate, manganese, calcium and magnesium. The results on canopy/soil leaching are compared to those from old conifer stands in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号