首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
生物过滤塔、生物滴滤塔降解苯和甲苯的性能比较   总被引:5,自引:0,他引:5  
  相似文献   

2.
用生物滴滤塔净化有机废气研究   总被引:1,自引:0,他引:1  
化工制药行业往往会产生有机废气,严重污染环境、危害人类健康.废气的生物净化技术具有适用性强、运行费用低、无二次污染等优点.在化工制药公司建立了净化以甲苯为主要成分的有机废气的生物滴滤塔(BTF),废气量约为5 000 m3/h,有机废气的总质量浓度为140 ~ 250 mg/m3,甲苯的质量浓度为120 ~220 mg/m3.BTF经过21 d完成启动.在启动之后的调试期间,进口的有机废气的总质量浓度为164 ~ 236 mg/m3,进口的甲苯的质量浓度为137 ~196 mg/m3,BTF对有机废气的去除率保持在90%左右,对甲苯的去除率保持在87%左右,废气达标排放.  相似文献   

3.
应用生物滴滤塔处理甲基叔丁基醚废气,研究其挂膜启动及稳定运行阶段的降解性能,并考察了稳定期该系统的生物群落结构.结果表明,生物滴滤塔在停留时间为60 s,进气质量浓度为100 mg·m~(-3)的条件下,运行23 d后完成挂膜,填料上的生物量明显增加,去除率可维持在70%以上.反应器稳定运行时,去除负荷可达13.47 g·(m3·h)~(-1),矿化率可达68%;用Haldane模型拟合生物滴滤塔中去除负荷的变化趋势,获得理论ECmax为21.03 g·(m3·h)~(-1),KS为0.16 g·m~(-3),KI为0.99g·m~(-3).运用高通量测序技术分析生物膜中的微生物群落结构,发现其中优势菌属为Methylibium sp.和Blastocatella sp.,分别占11.33%和9.95%.  相似文献   

4.
通过生物滴滤塔(biotrickling filter,BTF)净化硫化氢(H2S)、四氢呋喃(THF)、二氯甲烷(DCM)混合废气,研究其挂膜启动和稳定运行条件下的降解性能.结果表明,混合废气H2S、THF、DCM浓度分别为200、100和100 mg·m-3,空床停留时间(empty bed retention time,EBRT)50~20 s的条件下,H2S和THF的去除率分别能够维持在99%和60%左右,而DCM的去除率随EBRT的缩短从90%逐渐降低至37%左右.利用Michaelis-Menten动力学模型分析得到,理论降解效果为H2S>THF>DCM.  相似文献   

5.
生物滴滤塔净化含低浓度苯乙烯废气的研究   总被引:2,自引:1,他引:2  
利用菌丝体热解炭作为填料,采用两座相同实验室规模的生物滴滤塔,分别填装热解炭-木屑混合填料和木屑单一填料,并联操作,进行微生物净化含苯乙烯废气的实验,研究并对比了两座生物滴滤塔的净化性能.结果表明,由于热解炭具有比表面积大、孔隙率高等特点,热解炭-木屑混合作为生物滴滤塔填料,比单一的木屑填料挂膜速度快,净化效果好,停运恢复能力强.适宜操作条件为:入口气体浓度50~ 450mg·m-3,停留时间21.6~43.2 s,气液比110.7 ~55.3,净化效率92% ~ 100%,最大去除负荷可达153.1 g·m-3· h-1.整个实验过程中,系统的压降始终维持在0~255 Pa,动力消耗小.研究发现,循环液中氨氮(NH4+-N)浓度只需能够保证微生物正常的生命活动即可,不宜过量或不足.生物滴滤塔循环液的紫外吸光度(UV254)与苯乙烯去除率具有一定的相关性,可通过测定循环液UV254,了解生物滴滤塔的运行状况.  相似文献   

6.
生物滴滤塔净化氯代烃混合废气的研究   总被引:1,自引:3,他引:1  
应用生物滴滤塔进行了二氯甲烷和1,2-二氯乙烷混合废气净化的研究,使用制药厂活性污泥挂膜,35 d后挂膜完成,对二者的去除率可分别维持在80%和75%以上.对二氯甲烷和1,2-二氯乙烷的最大去除负荷分别为13 g·(m3·h)-1和10g·(m3·h)-1.CO2的产生负荷与混合废气的去除负荷呈线性关系,生物滴滤塔对混合废气的矿化率维持在61.2%.对混合废气中二氯甲烷和二氯乙烷相互作用考察发现两者存在一定的抑制作用,同时考察了反应器运行过程中生物量的变化情况.  相似文献   

7.
生物滴滤塔净化低浓度苯乙烯废气的研究   总被引:5,自引:1,他引:5  
在生物滴滤塔中进行低浓度苯乙烯废气的生物净化实验,建立动力学模型,测定苯乙烯实验数据并定性定量检测生物膜微种群。当进口气体浓度为200~1000mg/m3、气体流量0.2~0.25 L/h、液体喷淋量10×10-3~12×10-3m3/h、停留时间50~65s、循环液体pH6.5~7.5时,净化效率为90%~99%。动力学模型的模拟计算值与实验值之间有很好的相关性,相关系数R为0.96~0.99。湿润生物膜微群落的优势菌种群包括恶臭假单胞菌、梭形芽胞杆菌、罗非氏不动杆菌等。恶臭假单胞菌的最大活菌数为5.5×107CFU/g,并随生物滴滤塔运行时间延长有减少趋势。  相似文献   

8.
罗斯君 《环境》2006,(Z1):6-7
文章阐述了采用P.E.生物滴滤塔工艺处理小区生活污水,出水水质达到综合排放二级标准.  相似文献   

9.
采用改进聚乙烯醇法制成的固定化活性污泥颗粒填充生物滴滤池,考察在不同的进气流量和进气浓度时,生物滴滤塔对乙硫醇恶臭气体的净化效率、抗冲击负荷能力以及连续运行稳定性.结果表明,当气体流量低于0.1 m3/h时,生物滴滤塔对乙硫醇的净化效率可达99.9%以上.当气体流量为0.2 m3/h时,净化效率只有60%.当进气流量为0.05 m3/h及0.1 m3/h时,乙硫醇的净化效率不随进气浓度的变化而变化,当气体流量为0.15 m3/h时,乙硫醇净化效率随着进气浓度的提高先降低后增加,出气浓度随进气浓度的增加而增加.生物滴滤塔对气体浓度变化造成的冲击负荷有较强的缓冲能力,连续运行情况稳定.  相似文献   

10.
周炜煌 《环境科技》2009,22(4):28-33
生物滴滤塔处理舍NH3与H2S臭气最佳的生态条件为:在温度为25℃、营养盐喷淋量为8.0L/h、气体通气量为0.4m^3/h,NH3进气质量浓度为435.74~802.32mg/m^3 H2S进气质量浓度为723.44~952.18mg/m^3,pH值在7.0—8.0之间的条件下.去除效率可达90%以上。填料高度与气体的净化效率存在一定的关系,H2S进气质量浓度在670.20—960.88mg/m^3时.下层填料净化效率可达50%~60%;下、中两层填料的净化效率则可达90%以上,在下半部分填料层就能去除大部分气体污染物。  相似文献   

11.
板式生物滴滤塔高效净化硫化氢废气的研究   总被引:2,自引:5,他引:2  
采用营养液分层喷淋、pH分别在线控制(pH 2.5、 4.5、 6.5)的板式生物滴滤塔(plate type-biotrickling filter, PTBTF)净化H2S废气,考察PTBTF于挂膜启动及稳定运行阶段对H2S的降解性能.结果表明,PTBTF系统在14 d内即完成挂膜,对浓度为188.6mg·m-3的H2S去除率达到100%;在进口浓度100~1000mg·m-3、空床停留时间(EBRT)28~4 s的条件下,H2S的去除率可达到99%以上;当H2S去除率≥90%时, PTBTF系统的最大去除负荷随EBRT(3.3~6 s)的增加而增大,EBRT 6 s的最大去除负荷达到1019.0g·(m3·h)-1;上、中、下3层填料对H2S的去除负荷随进口H2S负荷的波动呈显著变化;通过荧光染色观察填料上的细胞数,发现在挂膜阶段微生物数量增长明显,第125 d上层、中层和下层填料上的菌落数(以干填料计)分别达到了1.29×107、 5.47×108和1.07×109个·g-1;采用扫描电镜观察填料表面的生物膜,可见上填料层和下填料层的优势菌分别为杆菌和丝状菌;利用变性梯度凝胶电泳初步揭示了系统运行过程中生物群落的演替规律;通过对产物的分析,确定该PTBTF系统降解H2S后主要产生SO2-4和单质硫.  相似文献   

12.
利用新型组合填料的生物滴滤塔净化混合废气研究   总被引:1,自引:0,他引:1  
梅瑜  成卓韦  王家德  陆胤 《环境科学》2015,36(12):4389-4395
建立了生物滴滤中试装置,并将前期研发的纹翼多面球和空心多面柱作为组合填料,以甲苯和乙醇混合气为废气,研究了组合填料生物滴滤塔的污染物去除性能.结果表明,装有组合填料的生物滴滤塔能在8 d内完成挂膜,稳定运行时对甲苯和乙醇的去除负荷分别为97.14 g·(m3·h)~(-1)和113.10 g·(m3·h)~(-1).空床停留时间(EBRT)和进气浓度对甲苯去除效果影响明显,当EBRT为21.11 s,甲苯和乙醇最大去除负荷分别为123.34 g·(m3·h)~(-1)和206.36 g·(m3·h)~(-1);受营养液喷淋量影响不明显,本系统最佳液气比为6.82 L·m~(-3).模拟了不稳定工况对系统处理效果的影响,用Na OH溶液减轻填料层堵塞效果明显,并可以3 d内恢复对甲苯和乙醇的去除效果;停运10 d后继续运行,净化性能可迅速恢复.  相似文献   

13.
14.
针对生物滴滤塔系统脱硝效率偏低的问题,在原实验室装置基础上,对滴滤塔系统进行改进,并模拟燃煤烟气的特性,考察了重金属离子、氧气含量以及强化剂对净化效果的影响,并探究了生物滴滤塔系统对锅炉非稳定运行工况的适应性。结果显示:烟气内的重金属离子对微生物具有较强的抑制作用,其中As离子和Pb离子对体系微生物组成的毒性影响最大,Zn离子的影响最小;氧气含量对脱硝效率影响的研究结果表明,系统含氧量越低,脱硝效率降低幅度越大;强化剂组合结果表明,亚硝酸钠+Fe(II)EDTA的组合,强化效果最为明显;生物滴滤塔脱硝系统对锅炉非稳定运行工况适应能力较差,系统停运再启动,停运1周之内,系统经过10 d可以恢复至原来的性能,如果停运12 d以上,系统恢复则长达30 d。根据研究结果,为中试研究提出优化及研究方向建议。  相似文献   

15.
生物滴滤塔处理苯酚气体研究   总被引:3,自引:1,他引:3  
采用生物滴滤塔处理苯酚气体,考察了苯酚去除性能的影响因素.结果表明,生物滴滤塔能高效处理苯酚气体,苯酚去除效率可达99.5%,长期运行平均去除效率在98%左右.适宜的运行条件为:停留时间20.6 s,循环液pH值7.0,喷淋密度1.67 m3·(m2·h)-1.采用聚合酶链式反应-变性梯度凝胶电泳(PCR-DGGE)技术研究处理苯酚气体的生物滴滤塔填料表面的微生物,结果表明,生物滴滤塔内有5种降解苯酚的优势菌种:Polaromonas sp.、Acinetobacter sp.、Acidovorax sp.、Veillonella parvula和Corynebacterium sp..采用GC-MS分析出口气样,结果表明丙酮酸(CH3COCOOH)为生物降解苯酚的中间产物,并推测了苯酚生物降解的可能途径.  相似文献   

16.
生物滴滤净化VOCs进展   总被引:4,自引:0,他引:4  
生物滴滤净化挥发性有机污染物技术是近年来发展起来的一项新技术。介绍了生物滴滤技术的研究现状 ,包括净化机理 ,可以净化的污染物 ,起降解作用的微生物和它们需要的环境条件 ,及生物滴滤模型。目前生物滴滤技术在以下几方面需要完善和发展 :提高微生物的降解能力 ,改进生物滴滤填料 ,完善生物滴滤模型和开展实际废气的应用研究。  相似文献   

17.
以陶粒为填料,用分别负载2种单一降解甲苯的优势菌种S1、S2的生物滴滤塔净化高浓度甲苯废气的性能进行对比实验研究,实验结果表明:虽然2种优势菌种同为芽孢杆菌,但是菌种S1在降解能力以及停用后恢复等各项指标中均明显高于菌种S2。当甲苯进口浓度低于5.81 mg/L时,S1菌种的去除率始终保持在90%以上,最高的进口浓度达到10.00 mg/L时,甲苯的去除率也可以达到59.78%。对于S2菌种而言,当最高进口浓度达到5.72 mg/L,甲苯的降解率仅可以达到65.65%。两个滴滤塔在停用后恢复运行时,菌种S1可以在极短的时间内恢复,菌种S2则是规律性的在恢复初期出现降解率最低点,且甲苯降解效率只能恢复到70%~80%。  相似文献   

18.
间歇喷淋营养液对生物滴滤塔净化甲苯的影响   总被引:2,自引:0,他引:2  
为探索间歇喷淋营养液对生物滴滤塔的影响,以净化甲苯为研究对象,应用FX1N-14MR-001型可编程逻辑控制器(PLC),实现生物滴滤塔的间歇喷淋营养液操作,研究了环境温度、ρ(TN)、营养液喷淋密度和喷/停时间对净化甲苯能力的影响,并对机理进行了分析. 结果表明:当生物滴滤塔系统的气体停留时间为40.70s时,营养液最佳喷淋密度为4.5L/(m2·min),最佳喷/停时间为2min/4min. 当甲苯系统进口负荷小于88.29g/(m3·h)时,甲苯的去除率可达95.0%以上;当进口负荷为186.04g/(m3·h)时,甲苯的去除率为87.6%,系统对甲苯的最大去除能力由连续喷淋时的169.63g/(m3·h)升至248.85g/(m3·h).   相似文献   

19.
利用甲硫醚(DMS)降解菌Alcaligenes sp.SY1和丙硫醇(PT)降解菌Pseudomonas putida.S-1强化生物滴滤塔(BTF)处理DMS和PT的混合废气,研究了其挂膜启动及稳定运行阶段的降解性能,并考察了该系统同时去除H2S的能力.结果表明,BTF在DMS和PT进口浓度均为50 mg·m-3,EBRT为30 s的条件下,运行11 d即可完成挂膜启动,填料上的生物量明显增加,DMS、PT的去除率分别可达到90%和100%.系统稳定运行时,DMS和PT的最大去除负荷分别为8.7 g·(m~3·h)~(-1)和12.4 g·(m~3·h)~(-1),PT的去除效果更佳.DMS和PT混合废气在降解过程中,PT对DMS的降解有较明显的抑制作用,当PT进气浓度大于51 mg·m-3时,DMS的去除效率下降.BTF还能同时有效去除H2S,当混合废气中H2S浓度达到230 mg·m-3时,H2S去除率仍能高达98%,但是115 mg·m-3以上的H2S会对DMS的降解产生不利影响.  相似文献   

20.
生物滴滤塔反硝化净化NO 废气的启动   总被引:6,自引:0,他引:6       下载免费PDF全文
采用低浓度NO 废气作为气相氮源、硝酸钠作为液相氮源,在序批式活性污泥法反应器(SBR)中的NO 反硝化菌驯化成熟的基础上,研究了生物滴滤塔的启动过程.结果表明,在室温、NO 进气浓度(160mg/m3)、停留时间(EBRT)113s 的条件下,接种驯化成熟种污泥的生物滴滤塔在9d 内完成挂膜.硝酸盐是影响驯化过程中NO 净化效果和N2O 产生量的重要因素,添加适量硝酸盐有助于NO 反硝化菌的正常生长,提高NO 净化效率;但硝酸盐过多时会导致中间产物N2O 的累积.在滴滤塔挂膜启动期间,循环液吸光度、填料层压力损失与NO 净化效率呈正相关性,可作为衡量生物滴滤塔挂膜启动完成的重要指标.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号