首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 578 毫秒
1.
基于分形理论的6A02铝合金腐蚀损伤评估   总被引:7,自引:6,他引:1  
铝合金在环境中会被腐蚀,对其使用寿命造成影响。基于数字处理技术,利用分形理论对腐蚀试件表面图像进行处理,得到了腐蚀试件表面孔蚀率。涉及的方法具有一定的操作性和工程价值。  相似文献   

2.
目的 对比研究人工涂盐方法和盐雾试验方法沉积盐膜对TC11钛合金热腐蚀行为的影响规律。方法 对人工涂盐和盐雾试验沉积盐膜的TC11钛合金试样500℃高温热盐腐蚀形貌、腐蚀动力学和腐蚀机理进行对比分析。结果 2种不同盐膜沉积方式的TC11钛合金试样表面盐分的分布形态存在明显的区别,盐雾腐蚀试样表面的盐分存在局部聚集现象,人工涂盐试样盐分分布较为均匀。2种方式沉积盐分试样热盐腐蚀试验后,从腐蚀较严重面积S大小角度对比,人工涂盐试样>盐雾试验试样;从局部腐蚀最大深度D看,盐雾试验试样盐分集中区域>人工涂盐试样>盐雾试验试样盐分较少区域。腐蚀动力学均遵从抛物线规律,盐雾试验试样和人工涂盐试样的热盐腐蚀抛物线速率常数分别比未沉积盐试样氧化抛物线速率常数提高了26倍和63倍。2类盐沉积试样的热盐腐蚀机理相同,失效模式相近。结论 人工涂盐方法可以代替盐雾试验进行钛合金热盐腐蚀实验室加速试验,但需要注意腐蚀形态特征上存在一定的差异性。  相似文献   

3.
目的研究飞机某结构模拟试样加速腐蚀试验与自然暴露试验的相关性。方法选取飞机某结构模拟试样分别进行实验室加速腐蚀试验和海南西沙外场自然暴露试验,以宏/微观形貌、失光率、色差等级、腐蚀产物成分等作为评价指标,对试样表面涂层的腐蚀损伤情况进行长期观测和对比研究,对加速腐蚀2个周期和户外暴露2年的疲劳试样疲劳寿命和疲劳断口形貌进行对比分析。结果加速腐蚀试验2个周期和自然暴露试验2年试样的试验过程色差变化规律一致,色差变化等级均为2级,光泽度变化规律一致,加速腐蚀试验后为3级,户外自然暴露户外为4级、棚下为3级,在螺钉边缘均出现面漆剥落现象。7B04铝合金试样疲劳寿命断口的韧窝和孔洞的数量都没有发生明显的变化,在显著度为0.05时,两组疲劳寿命的t检验量为1.6971,疲劳寿命无显著差异。结论加速腐蚀试样表面涂层的腐蚀程度介于户外和棚下暴露试样之间,这一结果与加速环境谱的编制原则相一致,也进一步表明加速试验环境谱正确性。疲劳寿命无显著差异,表明加速腐蚀试验可以较好地模拟飞机实际工作环境对试样疲劳性能造成的影响。  相似文献   

4.
不同港口海域铝合金腐蚀行为研究   总被引:2,自引:2,他引:0       下载免费PDF全文
目的获得1060铝合金和5083铝合金在不同港口海域的腐蚀规律。方法采用实海试验方法获得材料表面的腐蚀形貌及腐蚀速率,并利用腐蚀图像处理技术分析海生物覆盖状态。结果不同海域铝合金试样表面附着海生物种类不同,青岛海域试样表面主要附着牡蛎,舟山海域试样主要附着藤壶和海藻,三亚海域主要附着藤壶和牡蛎。1060铝合金和5083铝合金在不同海域海水中以点蚀和缝隙腐蚀为主,海生物附着对铝合金腐蚀有明显影响,较严重的腐蚀点出现在牡蛎或藤壶下面及边缘。三海域中两种铝合金在舟山海域的腐蚀速率最大,三亚海域次之,青岛海域最小。不同海域铝合金试样表面海生物覆盖面积不同,三亚海域试样表面海生物覆盖面积百分比最大,青岛海域次之,舟山海域最小。结论由于海水环境不同,青岛、舟山及三亚海域铝合金试样表面海生物种类以及海生物覆盖面积明显不同,海生物的附着在一定程度上减缓了铝合金的腐蚀,另外也使得铝合金更易产生缝隙腐蚀和点蚀。  相似文献   

5.
目的 对比3D打印铝合金液冷板材料经不同表面处理后在冷却液中的静态腐蚀情况,并预测静态腐蚀速率。方法 通过pH值测试、腐蚀表面形貌分析来监测冷却液和铝合金的变化,通过电化学方法测试样件的腐蚀动力学参数,通过质量损失试验测量材料的腐蚀速率和年腐蚀深度,通过EDS分析腐蚀产物。结果 所有试验组冷却液pH均整体呈下降趋势。在试样表面可以观测到明显的腐蚀现象,集中发生于试样表面的缺陷位置。不同表面处理的样件,其腐蚀速率不同,差异最大可达16倍。冷却液中的有效缓蚀成分参与了试样表面腐蚀产物膜的形成,在表面沉积了P、Ca等元素。结论 3D打印成形铝合金材料在冷却液中的年腐蚀深度整体较小,其耐蚀性良好,进行液态磨粒抛光或酸洗处理能降低研究材料在冷却液中的静态腐蚀速率。  相似文献   

6.
目的研究304和316L不锈钢在我国不同港口海水全浸区浸泡不同周期后的腐蚀规律。方法进行港口海域实海全浸试验,利用三维视频拍摄、质量损失分析及图像处理等手段,对比分析不锈钢在青岛、舟山、三亚港口海水全浸区的腐蚀形貌、腐蚀速率、腐蚀深度和海生物附着面积。结果两种不锈钢表面以点蚀和缝隙腐蚀为主,304不锈钢表面还产生严重的隧道腐蚀。不同港口海水中,304和316L不锈钢的腐蚀速率均较低,316L不锈钢的耐蚀性优于304不锈钢。三港口海域不锈钢表面形貌的差异明显,三亚试样表面海生物附着最多,舟山试样表面附着大量泥沙,三亚港口海域不锈钢的腐蚀速率小于舟山港口海域。结论不同港口海水环境对不锈钢表面海生物种类及附着面积的影响显著,而不锈钢表面状态直接影响其腐蚀形貌。  相似文献   

7.
基于腐蚀图像包含大量腐蚀信息的客观现实,将数字图像技术和不变矩理论应用于腐蚀图像预处理和特征提取,用腐蚀图像的7个不变矩特征值来描述腐蚀形貌特征,利用概率神经网络模式识别技术,建立了以不变矩为特征参数的概率神经网络模式识别模型,实现了金属材料腐蚀等级的评定。以铝合金材料在EXCO溶液中加速腐蚀等级评定为例,分析表明,不变矩作为一种高度浓缩的图像特征,能够表示腐蚀形貌与腐蚀特征的映射关系,该方法简单易行,识别率可达到87.95%,满足工程应用要求。  相似文献   

8.
西沙海洋大气环境中典型材料腐蚀形貌识别   总被引:6,自引:6,他引:0       下载免费PDF全文
目的获得西沙海洋大气环境中典型材料的表面腐蚀形貌参数,分析其腐蚀规律。方法采用室外大气暴露试验,研究5052铝合金、304不锈钢和EH36低合金钢在西沙海洋大气环境中的腐蚀形貌及腐蚀规律,并采用图像数字处理方法识别试样表面腐蚀特征。结果 EH36钢的大气腐蚀形貌以均匀腐蚀和腐蚀坑为主,而5052铝合金以及304不锈钢以点蚀为主,EH36低合金钢的腐蚀速率明显高于5052铝合金和304不锈钢。三种典型材料腐蚀面积百分比与腐蚀坑面积百分比的变化趋势相同,5052铝合金和EH36低合金钢的腐蚀面积百分比和腐蚀坑面积百分比与二者腐蚀速率变化规律一致,而304不锈钢的腐蚀面积百分比和腐蚀坑面积百分比与其腐蚀速率变化规律相反。5052铝合金和EH36低合金钢1年周期试样的腐蚀坑数目均大于2年周期试样,而对于304不锈钢,1年周期试样的腐蚀坑数目与2年周期试样差别不大。结论西沙大气环境中,三种典型材料的腐蚀速率、腐蚀面积百分比、腐蚀坑面积百分比均有明显不同,对同一种材料,其正面的腐蚀面积百分比、腐蚀坑面积百分比、腐蚀坑数与背面也有较大差别。  相似文献   

9.
目的对Cl~-作用下AerMet100钢在盐雾环境中的腐蚀和微区电化学行为进行研究。方法通过开展盐雾腐蚀试验,对AerMet100钢的腐蚀形貌和腐蚀产物进行研究分析。盐雾试验不同时间后,通过SKP测试,得到试样的表面电位分布,通过Gauss拟合,对试样表面扫描开尔文电位的分布和变化情况进行分析。结果 AerMet100钢在盐雾腐蚀试验过程中的腐蚀行为从点蚀开始,逐渐发展为均匀腐蚀。腐蚀产物分为内外两层,外层疏松,内层致密。由于腐蚀反应过程中生成大量铁的氧化物及羟基氧化物,因此,内外层腐蚀产物中含有大量的Fe、O元素;内外锈层中均含有少量的Cl元素,表明Cl~-参与了腐蚀反应过程;内外锈层中Cr、Co、Ni等合金元素的存在,使得锈层具有离子选择性、致密性,加速了锈层的产生。未腐蚀的试样表面电位分布比较均匀,集中程度较高,即电位差较小,总体电位差为152 mV,有少量表面活性点随机分布,此时试样表面阴极和阳极分布不规则。盐雾试验3天后,试样表面电位正移,分布趋于分散,电位差增大,总体电位差为270m V,产生较为明显的阴极区和阳极区,由于吸附在试样表面活性点附近的Cl~-破坏了表面的氧化膜,腐蚀情况逐渐发生。盐雾试验6天后,试样表面电位进一步升高,分布更为分散,电位差略有减小,总体电位差为180 mV,由于腐蚀产物层的不断扩展,试样表面已经分为明显的较大面积的阴极区和阳极区。结论 Cl~-的侵蚀作用破坏了基体表面的氧化膜,使得AerMet100钢的腐蚀在夹杂物处发生。腐蚀产物能够阻碍Cl~-的渗透,对基体具有保护作用。  相似文献   

10.
目的研究超高强度钢表面无氰镀镉-钛层在循环湿热条件下的腐蚀变化规律。方法对超高强度钢表面无氰镀镉-钛层试样进行循环湿热试验,对各个加速时间段的试样进行宏观照片及微观照片的拍摄,并运用电化学测试分析的方法研究试样在加速试验各时间段的腐蚀变化规律。结果超高强度钢表面无氰镀镉-钛层经历384 h的循环湿热试验后,镀层首先开始出现腐蚀现象。试样的腐蚀失质量损失随试验时间的延长逐渐增加,且呈现出在试验初期(≤384 h)的增量相对较小,试验中后期(384 h)的增量相对较大的特征,腐蚀动力学方程和曲线的特征也表明,试样在循环湿热试验后期的腐蚀速率相对较大。经历1536 h循环湿热试验的试样在0.01 Hz处的阻抗模值下降为10~2?。结论循环湿热条件下,在加速试验初期,超高强度钢表面无氰镀镉-钛层试样表面镀层开始发生腐蚀,中期腐蚀现象减缓,后期腐蚀现象明显。质量损失数据与试验时间关系的幂函数拟合方程为D(t)=0.013t~(1.2095),相关指数R~2=0.9879。  相似文献   

11.
介绍了分形图像压缩理论,传统DCT变换算法和四叉树分形图像压缩算法,改进的分形图像压缩方法,分形与小波相结合的图像压缩算法,彩色图像压缩算法以及对分形图像压缩未来发展的展望.  相似文献   

12.
纤维束直接过滤积泥结构的分形分析及其应用   总被引:6,自引:0,他引:6       下载免费PDF全文
用阳离子型聚丙烯酰(PAM)和聚合铝(PAC)作混凝剂进行了纤维束直接过滤实验,对纤维束上积泥进行了扫描电镜照像及图象分析,得出了积泥孔隙周界曲线的分维数,探讨了分维数与过滤过程的关系,指出了在直接过滤中阳离子型PAM较PAC效果好的原因所在。  相似文献   

13.
铝合金表面腐蚀损伤面积等效方法分析   总被引:1,自引:1,他引:0  
目的研究铝合金表面腐蚀损伤面积等效的方法。方法利用KH-7700三维光学显微镜进行腐蚀图像处理,通过椭圆等规则几何图形修正腐蚀损伤面积,并结合Gumbel、正态、双参数威布尔及对数正态四种分布模型行对腐蚀损伤修正面积进行分布检验分析。结果对比相关系数,得出腐蚀损伤修正面积服从正态分布模型优于Gumbel、对数正态及双参数威布尔三种分布模型。结论矩形内切椭圆能较真实地反映腐蚀损伤的面积,可为工程实践使用腐蚀损伤定量分析时,提供技术支持。  相似文献   

14.
AF1410高强度钢大气腐蚀试验研究   总被引:3,自引:2,他引:1       下载免费PDF全文
目的研究AF1410高强度铜在北京地区大气环境中腐蚀特点和腐蚀规律。方法通过AF1410高强度铜的自然大气暴露试验,利用质量损失分析、断面分析、表面分析和电化学分析等方法分析试样。结果AF1410高强度钢在北京大气环境中腐蚀速率在腐蚀初期随腐蚀产物厚度的增加而逐步减小;随着暴露时间的延长,腐蚀产物由于厚度增加,以及其它环境因素的综合作用,导致其开裂直至脱落,腐蚀速率增加;之后又随腐蚀产物厚度增加,腐蚀速率减小。试样在暴露5年后,腐蚀产物厚度增加,腐蚀开裂、脱落现象明显加重。结论AF1410高强度钢在北京大气环境中腐蚀速率呈现反复升降的过程。  相似文献   

15.
目的 针对大气腐蚀中腐蚀数据复杂多变且不易于分析的问题,提出一种基于小波的相关分析框架,挖掘腐蚀的变化特征及其影响因素.方法 首先采用小波功率谱确定腐蚀数据的周期波动特征,然后应用小波相干谱分析腐蚀和环境因素的相关强度、超前滞后及正反相关系,最后利用平均小波相干和显著相干百分比筛选出与腐蚀相关程度较高的环境因素.然后以青岛碳钢腐蚀数据为具体对象,挖掘了温度、相对湿度、降雨和污染物对碳钢初期腐蚀行为的影响.结果 在腐蚀初期,碳钢的腐蚀具有很强的日波动特征,温度和相对湿度是导致其波动的主要环境因素;腐蚀在降雨时刻呈现间歇性波动特征,且降雨超前于腐蚀;污染物浓度较低使得其对碳钢的腐蚀影响较弱.结论 基于小波的相关分析框架有效展现了复杂腐蚀数据的变化特征及其与环境因素的关系,为深入理解大气腐蚀规律提供了一种新的途径.  相似文献   

16.
目的 针对发动机钛合金部件在热盐环境与工作载荷下的寿命衰减问题,开展TC11钛合金热盐腐蚀疲劳与应力腐蚀试验,研究腐蚀环境下TC11的高温寿命衰减规律与失效机理。方法 利用喷盐法制备TC11钛合金试验件,研究不同温度与应力水平对TC11腐蚀疲劳以及应力腐蚀的影响规律。利用SEM等观测手段,开展腐蚀疲劳以及应力腐蚀试样断口与表面的形貌分析,分析腐蚀环境下的失效机理。结果 热盐腐蚀环境导致TC11的寿命显著降低,对比450 ℃下无腐蚀寿命,腐蚀疲劳寿命下降了2个数量级,应力腐蚀寿命下降到不足1%,且分散性较大。观察腐蚀疲劳和应力腐蚀的试样可以发现,表面有明显的腐蚀坑,腐蚀坑底发现裂纹。结论 热盐环境下,TC11腐蚀疲劳寿命和应力腐蚀寿命都会明显下降。由于腐蚀导致钛合金试样表面产生许多腐蚀坑,在腐蚀坑局部形成近似缺口,缺口部位的应力集中是导致腐蚀疲劳寿命衰减的重要因素。腐蚀疲劳的寿命低于Kt=1的无腐蚀疲劳寿命,但是要大于Kt=3的无腐蚀疲劳寿命。  相似文献   

17.
基于数字处理技术的航空铝合金材料孔蚀率计算研究   总被引:2,自引:2,他引:0  
通过航空LD2材料的加速腐蚀试验,获取该材料试件不同腐蚀周期的腐蚀形貌图像,对腐蚀形貌图像进行基于数字处理技术的一系列处理,最终通过二值特征提取方法得到二值化腐蚀图像,并依据二值化结果计算LD2材料不同腐蚀周期的孔蚀率。计算结果表明,此种方法得到的孔蚀率变化规律与该材料的电化学腐蚀机理较为吻合,并且该方法克服了传统方法计算孔蚀率精确性差的问题,为航空铝合金的孔蚀率计算及相关分析提供了新思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号