首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary We compared the ability of an insectivorous weaver bird species, Ploceus bicolor, and a granivorous weaver species, Euplectes hordeaceus to learn time-place patterns of food availability. ln the laboratory both species learned to visit four different feeding places, each at a different fixed time of day. This learned feeding pattern persisted even when every feeding place provided food over the whole day. We found differences in the performance between the two species in phase shift (6 h advance) and blocking (4 h food deprivation) experiments. Unlike the insectivorous species, the granivorous species did not show the learned time-place pattern under these conditions. We suggest that this difference might reflect a difference between the species in the strength of the linkage between time and place. Correspondence to: H. Falk  相似文献   

2.
There is a large literature dealing with daily foraging routines of wild birds during the non-breeding season. While different laboratory studies have showed that some bird activity patterns are a persistent property of the circadian system, most of field studies preclude the potential role of an endogenous circadian rhythm in controlling bird’s foraging routines. In this study we compared the patterns of diurnal foraging activity and intake rates of migrating black-tailed godwits, Limosa limosa (radio-tagged and non-tagged individuals) at two stopover sites (habitats) with different environmental characteristics, aiming at identifying proximate factors of bird activity routines. To gain insights into the role of food availability in control of such foraging routines, we also estimated foraging activity patterns in captive godwits subjected to constant food availability. Captive and wild black-tailed godwits showed a persistent bimodal activity pattern through daylight period. Food availability had a significant effect on the intake rates, but had a subtler effect on foraging and intake rate rhythms. Temperature and wind speed (combined in a weather index) showed non-significant effects on both rhythms. Although we could not discard a role for natural diurnal changes in light intensity, an important timing cue, our findings support the idea that an endogenous circadian rhythm could be an important proximate factor regulating foraging activity and food items taken per unit time of wild black-tailed godwits during migration.  相似文献   

3.
Estimates of daily feeding rates were obtained for two groups of herbivorous labroid fishes, one confined to cold water and the other to tropical reef environments. These were the family Odacidae, represented by Odax pullus from New Zealand waters, (Goat Island Bay: Latitude 36° South; on the northeastern coast of New Zealand) and the family Scaridae, represented by Scarus rivulatus, S. schlegeli and S. sordidus from the northern Great Barrier Reef (Lizard Island; a mid-shelf reef at 14° South latitude). Observations on the odacid were made in 1984 and in 1992, and on the scarids in 1984 and 1988. O. pullus displayed a diurnal feeding pattern in which the rates (expressed as bites min-1) are greatest early in the day. The mean combined feeding rate for three size groups (juveniles, subadults and adults) peaked (average of 2.9 bites) from 06.00 to 08.00 hrs and declined fourfold to a combined average of 0.7 bites min-1 by midday. The greatest mean feeding rate recorded was 3.7 bites min-1, with an overall mean of 1.8 bites min-1. For subadults and adults there were consistent trends in feeding, with subadults feeding at a greater rate than adults and both groups displaying a decline in feeding rate during the day. The change in feeding rate with time of day was statistically significant in both groups. The pattern for juvenile O. pullus was different from that in the two larger size groups in that juveniles did not show a uniform decline in feeding with time of day. For scarids, the daily feeding rate varied by site, but the pattern was similar for all species, characterised by initial low rates increasing to higher but variable levels by midday. The influence of both site of feeding and time of day on feeding rate was confirmed by analysis. The overall mean values for each species were 20.1 bites min-1 for S. rivulatus, 19.7 bites min-1 for S. schlegeli and 14.9 bites min-1 for S. sordidus. For scarids, the peak feeding rates varied from 19.3 to 32.8 bites min-1, with overall rates from 14.9 to 21.1 bites min-1. Estimates of activity and movement patterns during feeding were obtained for O. pullus. Distance moved per unit time was highly variable, 0.1 to 47.5 m min-1, with a mean of 8.5 m min-1 (SD=9.9). Trends in movement among sexes and size classes were obscured by the variable movement patterns of individual fishes.  相似文献   

4.
We re-evaluated the "diel feeding hypothesis" by measuring diel variation in starch, protein, and floridoside in three algal "types" collected from a fringing coral reef at Lizard Island, Great Barrier Reef, Australia. Samples of two species of rhodophyte algae, Gracilaria arcuata and Acanthophora spicifera, and the turf assemblage from the territories of the herbivorous pomacentrid Stegastes nigricans were collected at four time periods through the day: 0630-0730, 1000-1100, 1330-1430, and 1630-1730 hours. We also measured the ability of several species of marine fish (the herbivores Acanthurus nigricans, A. lineatus, A. olivaceus, and Parma alboscapularis and the detritivore Ctenochaetus striatus) to hydrolyse floridoside by estimating !-galactosidase activity in tissue from the anterior intestine. We detected no diel pattern in protein content of the algae but found a significant steady increase in starch content throughout the day. Floridoside content increased in the morning and decreased in the afternoon, a pattern that may be driven by midday photoinhibition of the algae. All the fishes tested could utilise floridoside. Our results support the diel feeding hypothesis. Although floridoside content decreased in the afternoon, our results suggest floridoside was used during the day by the algae to synthesise starch. Thus the algae increased in nutritional value until photoinhibition occurred at midday then subsequently maintained their nutritional value during the afternoon. This pattern of algal nutrients increasing to a midday peak and remaining relatively constant throughout the afternoon correlates well with the diel feeding pattern in many species of marine herbivorous fish.  相似文献   

5.
Abstract: The consequences of rapid rainforest clearance on native avifauna are poorly understood. In Southeast Asia, Singapore, a newly developing country, has had 95% of its native lowland rainforest cleared. Most of the rainforest was lost in the mid- to late-nineteenth century. We compared avifauna checklists from 1923, 1949, and 1998 to determine the extent of extinctions between 1923 and 1998 in Singapore. Of 203 diurnal bird species, 65 were extirpated in Singapore in the past 75 years. Four of these species were nonforest- dependent species, whereas 61 (94%) were forest bird species dependent on the primary or old secondary forest to survive. Twenty-six forest bird species became extinct between 1923 and 1949, whereas 35 forest species disappeared after 1949. We compared the body lengths, feeding guilds, and vertical feeding zones between extinct and extant forest bird species to determine whether extinction patterns were dependent on these characteristics. Larger forest bird species went extinct between 1923 and 1949. Body sizes, however, did not affect the loss of forest bird species between 1949 and 1998. We observed high losses of insectivorous birds; the insectivore-carnivore and insectivore-granivore guilds lost> 80% of the species present in 1923. The highest losses were among birds that fed in the canopy. None of the forest bird species are currently common (>100 individuals/species) within Singapore. Our study shows that more than half the forest avifauna became locally extinct after extensive deforestation. Based on this fact, the countries within Southeast Asia should reconsider their heavy deforestation practices.  相似文献   

6.
Annual cycles in day length are an important consideration in any analysis of seasonal behaviour patterns, since they determine the period within which obligate diurnal or nocturnal animals must conduct all of their essential activities. As a consequence, seasonal variation in day length may represent an ecological constraint on behaviour, since short winter days restrict the length of the time available for foraging in diurnal species (with long summer days, and thus short nights, a potential constraint for nocturnal species). This paper examines monthly variation in activity patterns over a 4-year study of chacma baboons (Papio cynocephalus ursinus) at De Hoop Nature Reserve, South Africa. Time spent feeding, moving, grooming and resting are all significant positive functions of day length, even before chance events such as disease epidemics and climatically mediated home range shifts have been accounted for. These results provide strong support for the idea that day length acts as an ecological constraint by limiting the number of daylight hours and thus restricting the active period at certain times of year. Day length variation also has important implications across populations. Interpopulation variation in resting time, and non-foraging activity in general, is a positive function of latitude, with long summer days at temperate latitudes apparently producing an excess of time that cannot profitably be devoted to additional foraging or social activity. However, it is the short winter days that are probably of greatest importance, since diurnal animals must still fulfil their foraging requirements despite the restricted number of daylight hours and elevated thermoregulatory requirements at this time of year. Ultimately this serves to restrict the maximum ecologically tolerable group sizes of baboon populations with increasing distance from the equator. Seasonal variation in day length is thus an important ecological constraint on animal behaviour that has important implications both within and between populations, and future studies at non-equatorial latitudes must clearly be mindful of its importance.  相似文献   

7.
Whether animals are active at night or during the day has profound consequences for many aspects of their behavioral ecology. Because of ecological and physiological trade-offs, most animals, including primates, are either strictly nocturnal or diurnal. However, a few primate species exhibit cathemeral activity, i.e., their activity is irregularly distributed throughout the 24-h cycle. Details and determinants of this unusual activity pattern are poorly understood because long-term 24-h observations are not feasible in the field. We therefore used small data loggers to record the activity of cathemeral redfronted lemurs (Eulemur fulvus rufus) from several neighboring groups quantitatively and continuously over a complete annual cycle in order to evaluate various proposed proximate and ultimate determinants of cathemeral activity. Activity data were examined for variation as a function of ambient temperature, time of day, lunar phase, and season. We found that cathemeral activity occurred year-round and that, on average, 3.5 times more activity occurred during the day. Total and diurnal activity increased during the long days of the austral summer. Nocturnal activity increased during the longer nights of the cool dry season. Irrespective of season, lunar phase had a significant effect on the distribution of activity across the 24-h cycle, with most nocturnal activity recorded during parts of the night with greatest brightness. These data indicate that light availability is the primary proximate determinant for the patterning of cathemeral activity. Several lines of evidence suggest that cathemerality in lemurs has evolved from nocturnal ancestors and that it represents a transitory state on the way to the diurnal niche.Communicated by F. Trillmich  相似文献   

8.
The study of activity rhythms, their potential zeitgebers and masking factors among free-ranging primates has received relatively little attention in the past. Most primates are diurnal, a few of them nocturnal, and even fewer are cathemeral. Owl monkeys (Aotus azarai azarai) regularly show diurnal, as well as nocturnal, activity in the Argentinean and Paraguayan Chaco. The goal of this study was to examine how changes in activity patterns in owl monkeys of Formosa, Argentina are related to daily, monthly, and seasonal changes in temperature, light and food availability . During 1 year, I collected activity data from five groups followed continuously from dawn to dusk, dusk to dawn or uninterruptedly during 24 or 36 h for approximately 1,500 h. I kept hourly and daily records of temperature and light conditions, and I gathered monthly information on the density, distribution and abundance of food resources available to the monkeys. I found that the area of study is highly seasonal, and characterized by significant fluctuations in rainfall, temperature, photoperiod, and food availability. Owl monkeys had on average 5 h of activity during the day and 4 h during the night. The amount of diurnal activity remained fairly constant through the year despite seasonal changes in exogenous factors. Owl monkeys did not show changes in their activity patterns that could be attributed to changes in food availability. Nocturnal activity increased as the amount of moonlight increased, whereas diurnal activity decreased following a full-moon night. Ambient temperature was a good predictor of activity only when the moon was full. These results argue convincingly for an interaction between ambient temperature and moonlight in determining the observed activity pattern. It is then highly advisable that any evaluation of diurnal activity in cathemeral animals be analyzed controlling for the possible effects of moonlight during the previous night.Communicated by P. Kappeler  相似文献   

9.
The costs and benefits of bird song are likely to vary among species, and different singing patterns may reflect differences in reproductive strategies. We compared temporal patterns of singing activity in two songbird species, the blue tit (Cyanistes caeruleus) and the great tit (Parus major). The two species live side by side year round, and they have similar breeding ecology and similar rates of extra-pair paternity. However, they differ in two aspects of reproductive strategy that may have an influence on song output: blue tits are facultatively polygynous and have a fairly short breeding season with almost no second broods, whereas great tits are socially monogamous but more commonly raise second broods. We found that great tit males continued singing at high levels during the egg-laying and incubation periods, while monogamously paired blue tit males strongly reduced singing activity after the first days of egg-laying by their female. Since males of both species sang much more intensely shortly before sunrise than after sunrise, at midday or in the evening, this difference was most conspicuous at dawn. No differences in singing activity were found within species when testing for male age. We suggest that in contrast to blue tits, great tit males continued singing after egg-laying to defend the territory and to encourage the female for a possible second brood.  相似文献   

10.
Animals show specific morphological, physiological and behavioural adaptations to diurnal or nocturnal activity. Cathemeral species, i.e. animals with activities distributed over the 24-h period, have to compromise between these specific adaptations. The driving evolutionary forces and the proximate costs and benefits of cathemerality are still poorly understood. Our goal was to evaluate the role of predator avoidance, food availability and diet quality in shaping cathemeral activity of arboreal mammals using a lemur species as an example. For this, two groups of collared lemurs, Eulemur collaris, were studied for 14 months in the littoral forest of southeastern Madagascar. Data on feeding behaviour were collected during all-day and all-night follows by direct observation. A phenological transect containing 78 plant species was established and monitored every 2 weeks to evaluate food availability during the study period. Characteristics of food items and animal nutritional intake were determined via biochemical analyses. The ratio of diurnal to nocturnal feeding was used as response variable in the analyses. The effects of abiotic environmental variables were removed statistically before the analyses of the biotic variables. We found that diurnal feeding lasted longer during the hot–wet season (December–February), whereas nocturnal feeding peaked during the hot–dry and cool–wet seasons (March–August). Although the lemurs foraged mostly in lower forest strata during daylight and used emergent trees preferably at night, the variables which measured animal exposure to birds of prey failed to predict the variation of the ratio of diurnal/nocturnal feeding. Ripe fruit availability and fiber intake are the two variables which best predicted the annual variation of the lemur diurnality. The data indicate that feeding over the whole 24-h cycle is advantageous during lean periods when animals have a fibre-rich, low-quality diet.  相似文献   

11.
Accumulating and maintaining sufficient energy reserves is critical for winter survival of birds. Because high fat levels are assumed to be associated with higher risk of predation, birds have been hypothesized to regulate their body mass as a trade-off between risk of starvation and risk of predation. Theoretical models of energy management in birds typically assume that predation risk is constant throughout the day. However, this important assumption has little empirical support, and there is some evidence suggesting that it might not always be correct and that predation risk may vary during the day. Because predation risk is a critical component of the predation-starvation trade-off, any change in its value through the day might have a profound effect on birds' optimal daily tactics of energy accumulation. We used a dynamic optimization model to investigate how changes in predation risk might affect birds' energy management decisions. Daily patterns of fat accumulation and feeding activity were predicted to change with predation risk in a manner consistent with previous models (lower mass gain and less feeding when predation risk is high). Our more counterintuitive results concern daily patterns of food caching and cache retrieval. When predation risk was assumed to peak at midday, birds were predicted to cache primarily in the afternoon and not in the morning even though predation risk was identical in the morning and afternoon. With other temporal patterns of predation risk, caching intensity was highest when predation risk was lowest. Surprisingly, the daily pattern of cache retrieval was predicted to be unaffected by daily patterns of predation risk: birds were always predicted to retrieve their caches primarily during the late afternoon with a small peak in the morning. Highest mortality was predicted with predation risk decreasing from morning to evening whereas lowest mortality was predicted with predation risk increasing from morning to evening. Our model helps explain large variations in observed daily patterns of energy management in birds and provides testable predictions that could help us understand the daily dynamics of predation risk and how birds should respond to it.  相似文献   

12.
Madagascar is characterised by pronounced annual climatic and ecological seasonality and harbours a radiation of closely related sympatric primates (Lemuriformes) that exhibit diurnal, nocturnal and cathemeral activity patterns. We collected continuous activity data over a complete annual cycle from wild diurnal Verreauxs sifakas (Propithecus v. verreauxi) to contribute detailed and comparative data: (1) to characterise their diel and seasonal activity rhythms, (2) to identify factors shaping variation in activity rhythms, and (3) to help reconstruct the evolutionary transition from nocturnal to diurnal activity. We fitted eight adult sifakas from seven different groups living in Kirindy forest with an accelerometer/data logger device and recorded their activity in 5-min bins for a total of 12 months. We characterise P. verreauxi as a strictly diurnal species with a pronounced bimodal activity pattern that briefly changed to a more unimodal pattern during their annual mating season (January to March). We documented significant annual variation in total daily activity, activity time, and activity level, as well as in most parameters characterising their bimodal activity pattern. Despite a significant positive correlation of the animals activity time with day length, pronounced annual variation in the phase position of onset and end of activity in relation to sunrise and sunset times could also be discerned. Minor enhancing effects of moonlight on nocturnal activity were only found for the first 3 h of the inactivity period. Bimodality of the activity pattern and the additional reduction of activity time during the cold and dry winter months associated with reduced food availability can be interpreted as flexible behavioural adaptations to reduce energy expenditure. We therefore propose that energetic and thermoregulatory benefits are important factors shaping these primates activity pattern.Communicated by C. Nunn  相似文献   

13.
Spatial and temporal feeding patterns (determined from an index of gut fullness) are described for 10 typical species of calanoid copepods collected from the North Pacific central gyre (September 1968 to June 1977), an area where the zooplankton is food limited and there were a-priori reasons to suspect that feeding and competition for food were important in regulating zooplankton community structure. Over 100 samples from 11 cruises to the eastern part of the gyre were examined, and patterns of gut fullness were related to environmental variables and the copepod species structure. The copepods studied all tended to be omnivores and food generalists. Males had lower indices of gut fullness than females but both males and females of a species had similar spatial and temporal feeding patterns. Guts were usually fuller at night than during the day, even in nonmigrating species; however, within nighttime depth distributions, no depths were preferred for feeding. There were also differences between species in mean gut fullness, but different species tended to have similar spatial and temporal feeding patterns. There was considerable spatial variability, and locales could be identified in which most species had higher indices of gut fullness. The copepods were not necessarily more abundant in these locales, nor did these tend to be areas of above average chlorophyll concentration. These patterns were consistent with relatively nonselective feeding, and there was no evidence that these species separate their niches by feeding at differing places or times.  相似文献   

14.
During two field studies the macrofauna associated with wrack stranded on a tropical sandy shore was analysed. During the first period all animals present in small wrack deposits were randomly collected with cores. During the second field study active animals were sampled in larger wrack deposits for an entire lunar period, and tube traps were used. After a comparison between the two studies, only the data from the tube traps were examined from a temporal and spatial point of view. The aim of the present work was to gain information on how, when and where wrack was colonised by invertebrates, keeping in mind cyclical aspects such as lunar, diel and tidal phases. Predatory taxa, such as Staphylinoidea and the amphipods Talorchestia martensii, were most abundant, whereas Diptera larvae and Tenebrionidae were scarce. Successional changes of beach wrack colonisation were evident throughout a semi-lunar period, with molluscs invading wrack during the first days of deposition and histerids during the last ones. Strictly nocturnal or diurnal surface-active species were found to be active in the wrack during both the day and the night. The analysis of the tidal component of species activity in the wrack showed that some species moved at ebbing tide, and others moved at rising tide. Differences were found also in the mean hours of tidal activity, calculated separately during day and night periods. The study of the zonation of each species showed that in some cases wrack deposits were closely followed by the fauna as their position changed during the semi-lunar phase. In other cases differences occurred between species zonation during day and night periods and tidal phases. Cluster analysis indicates that most species exploit the wrack in different ways (as refuges and/or feeding site), both in space and in time. Received: 11 July 1999 / Accepted: 20 January 2000  相似文献   

15.
Diel swimming behaviors of juvenile anchovies (Anchoa spp.) were observed using stationary hydroacoustics and synoptic physicochemical and zooplankton profiles during four unique water quality scenarios in the Neuse River Estuary, NC, USA. Vertical distribution of fish was restricted to waters with DO greater than 2.5 mg O2 l−1, except when greater than 70% of the water column was hypoxic and a subset of fish were occupying water with 1 mg O2 l−1. We made the prediction that an individual fish would select a swim speed that would maximize net energy gain given the abundance and availability of prey in the normoxic waters. During the day, fish adopted swim speeds between 7 and 8.8 bl s−1 that were near the theoretical optimum speeds between 7.0 and 8.0 bl s−1. An exception was found during severe hypoxia, when fish were swimming at 60% above the optimum speed (observed speed = 10.6 bl s−1, expected = 6.4 bl s−1). The anchovy is a visual planktivore; therefore, we expected a diel activity pattern characteristic of a diurnal species, with quiescence at night to minimize energetic costs. Under stratified and hypoxic conditions with high fish density coupled with limited prey availability, anchovies sustained high swimming speeds at night. The sustained nighttime activity resulted in estimated daily energy expenditure over 20% greater than fish that adopted a diurnal activity pattern. We provide evidence that the sustained nighttime activity patterns are a result of foraging at night due to a lower ration achieved during the day. During severe hypoxic events, we also observed individual fish making brief forays into the hypoxic hypolimnion. These bottom waters generally contained higher prey (copepod) concentrations than the surface waters. The bay anchovy, a facultative particle forager, adopts a range of behaviors to compensate for the effects of increased conspecific density and reduced prey availability in the presence of stratification-induced hypoxia.  相似文献   

16.
L. Vail 《Marine Biology》1987,93(4):551-560
Periods of emergence of nine species (88 individuals) of crinoids (Comanthus parvicirrus, Clarkcomanthus albinotus, Comaster multifidus, Oxycomanthus comanthipinna, Oligometra serripinna, Comanthus gisleni, Comanthus wahlbergi, Comatula purpurea, and Oxycomanthus exilis) were monitored at Lizard Island, Queensland, over seven days in March 1983. One species (O. serripinna) was fully exposed and the others partially exposed. Two patterns of emergence were species-specific: emergent both day and night, and emergent only at night. Intraspecific exposure patterns were generally synchronous in six species and asynchronous in three species. The number of species visible was relatively constant during all dives, while at least twice as many individuals were visible at night compared to day. Degree of emergence was determined as the number and length of arms extended into the water column. Except for species fully exposed, degree of crinoid emergence was generally minimal at midday and maximal at twilight and night. Increases in both number of crinoids visible, and the amount of an individual's emergence, corresponded to decreasing light intensities, even during daytime. It is suggested that the patterns of exposure are a response to increased prey abundance at twilight and night, and also a means of avoiding diurnal predators. Gonads on the longest arms of some partially exposed crinoids were not extended into the water, thus protecting the gonads from predators.  相似文献   

17.
Activity patterns of animals often relate to environmental variables such as food availability and predation pressure. Technological advances are providing us with new tools to monitor and better understand these activity patterns. We used animal-attached data loggers recording acceleration and depth to compare activity patterns and vertical habitat use of whale sharks (Rhincodon typus) at Ningaloo Reef, Western Australia. Whale sharks showed a moderate reverse diel vertical migration but exhibited a clear crepuscular pattern in locomotory activity. Peak activity occurred at sunset, whereas vertical movement peaked prior to this. Typical ram surface filter feeding could be identified and occurred primarily during sunset and the first hours of night. At such times, direct observations indicated whale sharks were feeding on tropical krill swarms. Kinematic analysis of postural data and data from vertical movement suggests that whale sharks at Ningaloo spend ~8 min per day actively ram surface filter feeding. Considering the high biomass present in krill schools, it is estimated that whale sharks at Ningaloo have a similar energy intake as those at other aggregation sites. Diel patterns in activity and diving behaviour suggest that whale sharks have tuned their diving behaviour in anticipation of the formation of these high-density patches which appear to only be periodically, but predictably available at sunset. Our results confirm that diel patterns in vertical habitat selection and vertical movements do not necessarily reflect patterns in activity and foraging behaviour. Direct quantification of activity and behaviour is required in gaining accurate representation of diel activity patterns.  相似文献   

18.
Coarse woody debris (CWD) is a key habitat for many species in forest ecosystems. To ensure the long-term survival of such species, forest management regimes must include measures that promote dead wood dynamics similar to those of natural forests. Thus, information on CWD dynamics under natural conditions is required, including data pertaining to the underlying agents of disturbance. This study examines modes of mortality, decay rates, and temporal patterns in the availability of Picea abies logs in a Swedish old-growth forest affected by internal, small-scale disturbance. All 684 logs in a 6.6-ha plot were mapped and classified into one of six decay classes. Logs in the early stages of decay were examined for the presence of heart-rot fungi. Six years later all logs were re-inventoried, including newly formed logs. Matrix models based on the transition rates between decay classes showed that it took about 60 years for 90% of the logs to decay beyond class 6 (a deformed trunk with soft wood). Large logs (> 26 cm) decayed 40% more slowly than small logs (< 25 cm). The initial volume of logs was 37.6 m3/ha but increased to 44.8 m3/ha after six years. In addition, there was a large shift in the decay-class distribution. The volume of logs in early and late decay classes increased by 71% and 45%, respectively, while the volume of logs in the intermediate decay classes decreased by 32%. The fluctuations appear to result from pulses in mortality, driven by a combination of strong winds and the heart-rot fungus, Phellinus chrysoloma, which was present in more than 30% of all logs at an early stage of decay. These results show that large temporal fluctuations in dead wood also occur in the absence of large-scale disturbance, and that heart-rot fungi are important factors driving the overall dynamics of dead wood. Since many wood-inhabiting species are naturally rare and have very specific substrate demands, such temporal variability in dead wood availability may have effects on biodiversity and should be taken into account when designing small, protected forest areas.  相似文献   

19.
Thyroid and adrenal activities are closely associated with reproductive cycle and any alteration in these endocrine functions may cause changes in the pituitary-gonadal axis. To understand this interrelationship during testicular senstive phase (month of April) male birds were injected with metapyrone(corticosterone synthesis blocks 1 microg/bird/day & 10 microg/bird/day) and newmercazol (thyroxine synthesis blocks 10 microg/bird/day) over a period of 12 weeks. During late breeding phase (month of August) two sets of birds having large gonad (photosensitive) and regressed gonad (photorefractory) were injected with metapyrone (10 microg/bird/alternate day). Results indicate that decreased activity of both adrenal and thyroid, extended the breeding phase but rate of regression decreased only in the case of bird receiving higher level of metapyrone.However,in the second group rate of gonadal regression was slow only in those bird where treatment was started during photosensitive phase. It may be suggested that optimum level of activity of adrenal and thyroid function are essential for termination of reproduction and any alteration in these function may alter seasonal pattern of neuroendocrine gonadal axis.  相似文献   

20.
Limiting similarity theory predicts that competing species must segregate along one or more dimensions of their ecological niche in order to coexist. In predator communities, interspecific interactions are influenced by a diversity of factors; therefore, the behavioural patterns of composing species will differ due to locally adapted interactions. We deployed 32–41 camera-traps in five study areas across the Iberian Peninsula to investigate the temporal relations between mesocarnivores in SW Europe. The selection for a period of the diel cycle and plasticity in activity patterns was evaluated using the Jacobs Selection Index (JSI) and the coefficient of activity overlap (?1). Furthermore, we investigated whether temporal shifts can facilitate coexistence by reducing activity overlap. Seven species of mesocarnivores were detected and were assigned into one of three behaviourally distinct groups: diurnal (JSIday?≥?0.8), strictly nocturnal (JSInight?≥?0.8) or facultative nocturnal species (0.4?≥?JSInight?>?0.8). Most species exhibited substantial flexibility, which allowed them to locally adapt their foraging strategies (intraspecific ?1?=?0.70–0.77). Mean Δ1 from all interspecific pairwise comparisons was negatively correlated with the number of carnivore species with ≥10 detections (r ?0.76, p?=?0.02). Our results suggest that temporal segregation is likely to play an important role in facilitating mesocarnivore coexistence, especially with increasing community complexity, where most species’ activity peaks were asynchronous. These results contribute to understanding the dynamics and behavioural strategies of coexisting mesocarnivores, crucial for forecasting the possible outcomes of conservation or management actions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号