首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study was conducted to investigate fenhexamid (FEX) behavior in soil and in water. FEX proved to be rather stable at acid pH but showed slight degradation at neutral and alkaline pH. After 101 days of FEX spiking of a soil sample, 94% at pH 4, 12% at pH 7 and 23% at pH 9 of the active ingredient was still present. In natural water the rate of FEX disappearance appeared to be slow which may be due to abiotic rather than biotic processes. The soil degradation tests showed low persistence of the active ingredient if a good microflora activity is guaranteed (DT50 about 1 day). Moreover, in absence of microorganisms, FEX proved to be stable. Humidities of 25 and 50% of Water Holding Capacity (WHC) influenced in equal measure the rate of degradation. From the same soil, a bacterium was isolated and identified as Bacillus megaterium, which was able to metabolize FEX with the hydroxylation of the cyclohexane ring. Moreover, FEX showed an elevated affinity for humic acid (73%), smectite (31%), and ferrihydrite(20%) and low affinity for vermiculite (11%) and kaolinite (7%).  相似文献   

2.
Ptaquiloside (PTA) is a carcinogenic norsesquiterpene glucoside produced by Bracken in amounts up to at least 500 mg m(-2). The toxin is transferred from Bracken to the underlying soil from where it may leach to surface and groundwater's impairing the quality of drinking water. The objectives of the present study were to characterize the solubility, degradation and retention of PTA in soils in order to evaluate the risk for groundwater contamination. PTA was isolated from Bracken. The logarithmic octanol-water and ethyl acetate-water partitioning coefficients for PTA were -0.63 and -0.88, respectively, in agreement with the high water solubility of the compound. PTA hydrolysed rapidly in aqueous solution at pH 4 or lower, but was stable above pH 4. Incubation of PTA with 10 different soils at 25 degrees C showed three different first order degradation patterns: (i) rapid degradation observed for acid sandy soils with half life's ranging between 8 and 30 h decreasing with the soil content of organic matter, (ii) slow degradation in less acid sandy soils with half-lives of several days, and (iii) fast initial degradation with a concurrent solid phase-water partitioning reaction observed for non-acid, mostly clayey soils. The presence of clay silicates appears to retard the degradation of PTA, possibly through sorption. Degradation at 4 degrees C was generally of type (iii) and degradation rates were up to 800 times lower than at 25 degrees C. Sorption isotherms for the same set of soils were almost linear and generally showed very low sorption affinity with distribution coefficients in the range 0.01-0.22 l kg(-1) at a solution concentration of 1 mg l(-1) except for the most acid soil; Freundlich affinity coefficients increased linearly with clay and organic matter contents. Negligible sorption was also observed in column studies where PTA and a non-sorbing tracer showed almost coincident break-through. Leaching of PTA to the aqueous environment will be most extensive on sandy soils, having pH >4 and poor in organic matter which are exposed to high precipitation rates during cold seasons.  相似文献   

3.
对微波修复氯丹污染土壤进行研究,重点考察了含水率、微波辐射时间、碱浓度、活性炭添加量和土壤量对其中氯丹降解的影响。结果表明:(1)总体上,氯丹降解率随着含水率的增加而先增加后减少,随着微波辐射时间的延长而增加。当含水率为20%、微波辐射15min后,α-氯丹和γ-氯丹的降解率分别增加到65%和56%。(2)总体上,氯丹降解率随着微波辐射时间的延长而不断增加,7min后氯丹的降解过程基本趋于平衡。10mol/L氢氧化钠溶液存在条件下氯丹降解效果最好,15min时α-氯丹和γ-氯丹的降解率分别为94%和82%。(3)氢氧化钠溶液最佳摩尔浓度为10mol/L。(4)添加1.0g活性炭条件下,氯丹降解率随着微波辐射时间延长而迅速增加,15min时α-氯丹和γ-氯丹的降解率分别为98%和94%。(5)当土壤和活性炭的质量比固定为15∶1时,随着土壤量的增加,氯丹降解率明显增加。  相似文献   

4.
This research was carried out with the aim of obtaining information regarding the possible environmental impact of Chlorpyrifos-methyl, an organophosphoric insecticide used in agriculture for its phytoiatric action against Hemiptera, Lepidoptera, Coleoptera, and Diptera. Studies relating to the degradation kinetics of the insecticide in two soils and one sediment have shown a rapid degradation process in all three. The prevalent form of degradation would appear to be the chemical type, because the degradation kinetics in a sterile soil have not demonstrated that micro-organisms play a significant part. The adsorption isotherms showed that the insecticide has a greater affinity for the sediment (Kf=143) as opposed to the soils (Kf=65) and that the adsorption process is practically irreversible. Moreover, hydrolysis tests in buffered solutions at pH 4, 7, and 9 revealed that the molecule is particularly unstable with a basic pH.  相似文献   

5.
Huwe J  Hakk H  Lorentzsen M 《Chemosphere》2007,67(2):259-266
Cyanogenic glycosides are common plant toxins. Toxic hydrogen cyanide originating from cyanogenic glycosides may affect soil processes and water quality. In this study, hydrolysis, degradation and sorption of dhurrin (4-hydroxymandelonitrile-beta-d-glucoside) produced by sorghum has been studied in order to assess its fate in soil. The log K(ow) of dhurrin was -1.18+/-0.08 (22 degrees C). Hydrolysis was a first-order reaction with respect to dhurrin and hydroxyl ion concentrations. Half lives ranged from 1.2h (pH 8.6; 25 degrees C) to 530d (pH 4; 25 degrees C). The activation energy of hydrolysis was 112+9kJ. At pH 5.8 and room temperature, addition of humic acids (50gl(-1)) increased the rate of hydrolysis tenfold, while addition of kaolinite or goethite (100-250gl(-1)) both decreased the rate considerably. No significant sorption to soil components could be observed. The degradation rates of dhurrin in top and subsoils of Oxisols, Ultisols, Alfisols and Mollisols were studied at 22 degrees C (25mgl(-1), soil:liquid 1:1 (w:V), pH 3.8-8.1). Half-lives were 0.25-2h for topsoils, and 5-288h in subsoils. Hydrolysis in solution explained up to 45% of the degradation in subsoils whereas the contribution in topsoils was less than 14%, indicating the importance of enzymatic degradation processes. The highest risk of dhurrin leaching will take place when the soil is a low activity acid shallow soil with low content of clay minerals, iron oxides and humic acids.  相似文献   

6.
Aromatic sulfonates (R-SO(3)(-)) can be used as sulfur sources by sulfate-starved bacteria in laboratory cultures and the corresponding phenols are excreted from the cells. The present study was conducted to demonstrate whether such desulfonation reactions also occur in sulfate-leached agricultural soil, where desulfonation of organic sulfur compounds may have agronomic importance as a S source for plants. Xenobiotic linear alkylbenzene sulfonates (LAS) were added to nominal concentrations of 0, 10 and 100 mgkg(-1) dry weight in a sandy soil that was depleted in sulfate by leaching the soil with water (sulfate depletion, approximately 75%). The soil was incubated at 20 degrees C in duplicate 3-dm(3) mesocosms for 8 weeks. Primary degradation of LAS was rapid with half-lives of 1-4 days. Sulfophenylcarboxylates were identified and quantified as intermediates, whereas linear alkylphenols (the expected primary desulfonation products) were not detected by high-pressure liquid chromatography coupled with both fluorescence and electrospray ionization-mass spectrometry. Thus, LAS was used by the bacteria as a source of energy and carbon, rather than as a source of sulfur. Measurements of soil pH, fluorescein diacetate (FDA) hydrolysis and arylsulfatase activity showed that stable microbial conditions prevailed in the soil mesocosms. FDA hydrolysis (a measure of total microbial activity) was transiently inhibited at the highest LAS concentrations. Arylsulfatase activity (i.e., hydrolysis of aromatic sulfate esters) was not significantly affected by the soil incubation, although arylsulfatases may be upregulated in sulfate-starved bacteria. However, an increased production of arylsulfatase may be difficult to detect due to the background of extracellular arylsulfatases stabilised in the soil. Therefore, the present data does not exclude a regulatory response to sulfate depletion by the soil microorganisms. However, the importance of desulfonation reactions in natural environments still needs to be demonstrated.  相似文献   

7.
Vertical and horizontal spatial variability in the biodegradation of the herbicide bentazone was compared in sandy-loam soil from an agricultural field using sieved soil and intact soil cores. An initial experiment compared degradation at five depths between 0 and 80 cm using sieved soil. Degradation was shown to follow the first-order kinetics, and time to 50% degradation (DT(50)), declined progressively with soil depth from 56 d at 0-10 cm to 520 d at 70-80 cm. DT(50) was significantly correlated with organic matter, pH and dehydrogenase activity. In a subsequent experiment, degradation rate was compared after 127 d in sieved soil and intact cores from 0 to 10 and 50 to 60 cm depth from 10 locations across a 160x90 m portion of the field. Method of incubation significantly affected mean dissipation rate, although there were relatively small differences in the amount of pesticide remaining in intact cores and sieved soil, accounting for between 4.6% and 10.6% of that added. Spatial variability in degradation rate was higher in soil from 0 to 10 cm depth relative to that from 50 and 60 cm depth in both sieved soil and intact core assessments. Patterns of spatial variability measured using cores and sieved soil were similar at 50-60 cm, but not at 0-10 cm depth. This could reflect loss of environmental context following processing of sieved soil. In particular, moisture content, which was controlled in sieved soil, was found to be variable in cores, and was significantly correlated with degradation rate in intact topsoil cores from 0 to 10 cm depth.  相似文献   

8.
TBT and TPhT persistence in a sludged soil   总被引:1,自引:0,他引:1  
Marcic C  Le Hecho I  Denaix L  Lespes G 《Chemosphere》2006,65(11):2322-2332
The persistence of tributyltin (TBT) and triphenyltin (TPhT) in soils was studied, taking into consideration the quantity of sewage sludge, TBT and TPhT concentrations in soil as well as the soil pH. The organotin compounds (OTC) were introduced into the soil via a spiked urban sludge, simulating agricultural practise. OTC speciation was achieved after acidic extraction of soil samples followed by gas chromatography–pulsed flame photometric analysis (GC–PFPD). Leaching tests conducted on a spiked sludge showed that more than 98% of TBT are sorbed on the sludge. TBT persistence in soil appeared to depend on its initial concentration in sludge. Thus, it was more important when concentration is over 1000 μg(Sn) kg−1 of sludge. More than 50% of the initial TBT added into the soil were still present after 2 months, whatever the experimental conditions. The main degradation product appeared to be dibutyltin. About 90% of TPhT were initially sorbed on sludge, whatever the spiking concentration in sludge was. However, TPhT seemed to be quantitatively exchangeable at the solid/liquid interface, according to the leaching tests. It was also significantly degraded in sludged soil as only about 20% of TPhT remain present after 2 months, the monophenyltin being the main degradation product. pH had a significant positive effect on TBT and particularly TPhT persistence, according to the initial amounts introduced into the soil. Thus, at pH over 7 and triorganotin concentration over 100 μg(Sn) kg−1, less than 10% of TBT but about 60% of TPhT were degraded. When the sludge was moderately contaminated by triorganotins (typically 50 μg(Sn) kg−1 in our conditions) the pH had no effect on TBT and TPhT persistence.  相似文献   

9.
The ability of a sodium montmorillonite (CLONa) and two commercial available organoclays having interlayer organic cations possessing different functional groups (CLO20A and CLO30B) was investigated for adsorbing two pesticides namely fenexamid (FEX) and pyrimethanyl (PMT). The two organoclays displayed a higher affinity with the pesticides than the unmodified clay, but the improvement in adsorption capacity varied according to the characteristics of the pesticide and the interlayer organic cation. FEX was adsorbed to a greater extent than PMT by both organoclays, which may be due to the higher hydrophobicity of FEX thereby indicating considerable hydrophobic interaction between the adsorbent/adsorbate systems. Our findings may find application in the removal of water-soluble pesticides from aquifers.  相似文献   

10.
Experiments were conducted to determine the factors responsible for the loss (adsorption, chemical hydrolysis, microbial degradation, etc.) of dichlorvos (2,2-dichlorovingl 0,0-dimethyl phosphate) in soil perfusion systems of Houston Black clay. The rate of disappearance from the perfusate (hence the rate of dichlorvos degradation in soil) was related directly to the presence of Bacilluscereus in the perfusion system, the pH of the system, and the extent of dichlorvos adsorption. Gas liquid chromatographic analyses of the perfusates showed that dichlorvos disappearance was rapid when B. cereus was added to a previously sterilized soil perfusion system (50% in 3.9 days). Under sterile conditions, 50% of the added dichlorvos was recovered after 10 days. When B. cereus was added to a mineral salts medium containing dichlorvos as sole ccrbon source, 49% of the initial dichlorvos concentration was degraded in 4 days. The organism was not capable of utilizing dichlorvos as a sole phosphorus source. Chemical hydrolysis of dichlorvos in aqueous, buffered, soil-free systems showed that hydrolysis did not occur in very acid systems (<pH 3.3), but increased with increasing pH values (26% in 4 days at pH 6.9), and was rapid at pH 9.3 (> 99% in 2 days). The extent of dichlorvos adsorption was determined by comparing the initial loss of dichlorvos in a sterile, soil-free extract solution with the initial loss in a sterile soil perfusion system. The rapid initial disappearance of dichlorvos in the presence of sterilized soil was attributed to soil adsorption of the pesticide. After 10 days both systems contained equal concentrations (50%) of dichlorvos. Non-biological mechanisms accounted for 70% of the total degradation of dichlorvos, while bacterial degradation accounted for 30% in the soil perfusion systems.  相似文献   

11.
Spatial variability in the degradation rate of isoproturon in soil   总被引:2,自引:0,他引:2  
Thirty samples of soil were taken at 50-m intersections on a grid pattern over an area of 250 x 200 m within a single field with nominally uniform soil characteristics. Incubations of isoproturon (3-(4-isopropylphenyl)-1,1-dimethylurea) under standard conditions (15 degrees C; -33 kPa soil water potential) indicated considerable variation in degradation rate of the herbicide, with the time to 50% loss (DT50) varying from 6.5 to 30 days. The kinetics of degradation also varied between the sub-samples of soil. In many of them, there was an exponential decline in isoproturon residues; in others, exponential loss was followed by more rapid rates of decline; in a few soil samples, rapid rates of loss began shortly after the start of the incubations. In more detailed studies with soils from a smaller number of sub-sites (20), measurements were again made of isoproturon degradation rate, and the soils were analysed for organic matter content, pH, and nutrient status (N, P, K). Measurements were also made of isoproturon adsorption by the soils and of soil microbial biomass. Patterns of microbial metabolism were assessed using 95 substrates in Biolog GN plates. Soils showing rapid biodegradation were generally of higher pH and contained more available potassium than those showing slower degradation rates. They also had a larger microbial biomass and greater microbial metabolic diversity as determined by substrate utilisation on Biolog GN plates. The implications of the results for the efficacy and environmental behaviour of isoproturon are discussed.  相似文献   

12.
Martins JM  Mermoud A 《Chemosphere》1999,38(3):601-616
This paper presents a study on degradation, sorption and transport of the sulfonylurea herbicide rimsulfuron and its major metabolites in alluvial soil columns. The formulation of rimsulfuron was found to strongly affect its degradability. Hydrolysis of pure rimsulfuron takes place rapidly in distilled water (t(1/2)=2.2 days) or indeed instantaneously in alkaline solution. The formulated rimsulfuron (Titus, 25% rimsulfuron, Du Pont De Nemours) is more persistent in alluvial soil suspensions (t(1/2)=7.5 days). The study of sorption of Titus and its two major metabolites (1 and 2) revealed that these three chemicals are potentially highly mobile in the studied soil: in suspension distribution coefficients of 0.0028, 0.125 and 0.149 cm3 g(-1) were obtained respectively. Given the instability of rimsulfuron in alkaline solutions, the pH effect was evaluated with metabolite 2 in water saturated Fontainebleau sand columns at pH 6, 8 and 10. Transport was found to be strongly dependent on pH; a linear relationship was obtained between pH and the retardation factor or the dispersion coefficient. In alluvial soil columns, rimsulfuron from Titus was found to be very mobile (R=1.2) and rapidly degraded into metabolites 1 and 2, which were transported at a similar velocity. Nevertheless, the risks of groundwater contamination by rimsulfuron seem very low, as it is rapidly degraded under dynamic conditions (t(1,2)=1.4 days). On the other hand the relatively stable metabolite 2 seems likely to persist in the soil and to be transported to the groundwater. Special attention should thus be given to this compound at least as long as its harmlessness is not demonstrated.  相似文献   

13.
The phenylurea herbicide isoproturon, 3-(4-isopropylphenyl)-1,1-dimethylurea (IPU), is widely used to control pre- and post-emergence of grass and broad-leaved weeds in cereal crops. Its degradation in soils is a key process for assessing its leaching risk to groundwater resources. The degradation properties of various samples from surface and subsurface soil (down to 1m depth) of a heterogeneous agricultural field were studied using (14)C-IPU. Laboratory incubations were carried out at 22 and 10 degrees C and at water contents 90% and 50% of the estimated water holding capacity (eWHC) corresponding to water potentials between -56 kPa and -660 MPa. Degradation was found to be more sensitive to water content variations than to temperature variations in the ranges that we used. For surface layers, at 10 and 22 degrees C, the degradation half-life increased by a factor 10 and 15, respectively, when water content decreased from 90% to 50% eWHC. Under optimal degradation conditions (i.e. 22 degrees C and 90% eWHC), 3-(4-isopropylphenyl)-1-methylurea (MDIPU) was the main metabolite in surface samples. At subsurface depths, IPU half-lives were larger than 100 d, IPU was the main compound after 92 d of incubation and the main metabolite was an unidentified polar metabolite. These results suggest a metabolic pathway involving hydroxylations for subsurface materials. IPU degradation was largely affected by water availability in both surface and subsurface horizons. Clay content seemed to play a major role in degradation processes in subsurface soil by determining through sorption IPU availability in soil solution and/or by limiting water availability for microorganisms.  相似文献   

14.
Although the use of endosulfan to control cotton pests has declined, this insecticide still has widespread application in agriculture and can contaminate riverine systems as runoff from soil or by aerial deposition. The degradation of endosulfan in pure water at different pH values of 5, 7 and 9 and in river water from the Namoi and the Hawkesbury rivers of New South Wales (NSW), Australia, was studied in the laboratory. Endosulfan transformation into endosulfan sulfate in river water using artificial mesocosms was also investigated. The results show endosulfan is stable at pH 5, with increasing rates of disappearance at pH 7 and pH 9 by chemical hydrolysis. Incubation of endosulfan with river water at pH 8.3 resulted in the disappearance of endosulfan and the formation of endosulfan diol due to the alkaline pH as well as formation of endosulfan sulfate. Although the degradation of endosulfan by Anabaena, a blue-green alga, did not result in the transformation of endosulfan to endosulfan sulfate, we conclude that other microorganisms catalyzed the formation of the sulfate. Significant conversions of endosulfan into endosulfan sulfate were also reported from associated field studies using artificial mesocoms containing irrigation water from rivers inhabitated by micro-macro fauna. From these results, we conclude that the presence of endosulfan sulfate in river water cannot be used to distinguish contamination by runoff from soil from contamination by aerial drift or redeposition.  相似文献   

15.
CuO / 过硫酸氢钾体系催化氧化苯酚   总被引:1,自引:0,他引:1  
本论文通过直接沉淀法制备了CuO催化剂,结合过硫酸氢钾,在常温常压下催化氧化处理苯酚模拟废水。采用电子显微镜(SEM)、X射线粉末衍射(XRD)对催化剂进行了表征,并研究了反应过程中各影响因素对降解效率的影响。实验结果表明,在催化剂用量为0.2 g/L,氧化剂浓度为0.25 g/L,pH值为7,反应时间为60 min的条件下,浓度为50 mg/L的苯酚降解率可达100%,TOC去除率达84%。进一步实验表明,催化剂具有良好的重复使用能力。最后,通过自由基捕捉实验,考察了体系中的自由基种类,并根据实验结果,讨论了CuO/过硫酸氢钾体系的催化降解机理。  相似文献   

16.
The behavior and fate of triasulfuron (TRS) in water and soil systems were examined in laboratory studies. The degradation of TRS in both buffer solution and soil was highly pH-sensitive. The rate of degradation could be described with a pseudo first-order kinetic and was much faster at pH 4 than at pH 7 and 9. Aqueous hydrolysis occurred by cleavage of the sulfonylurea bridge to form 2-(2-chloroethoxy) benzenesulfonamide (CBSA) and [(4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino] (AMMT). AMMT was unstable in aqueous solutions in any pH condition but it degraded more quickly at pH 4 and 9. CBSA did not degrade in aqueous solutions or in enriched cultures but it underwent a quick degradation in the soil. The rates of TRS degradation in sterile and non-sterile soils were similar, suggesting that microorganisms played a minimal role in the breakdown process. This hypothesis is supported by the results of studies on the degradation of TRS by enriched cultures during which the molecule underwent a prevalently chemical degradation.  相似文献   

17.
Sajiki J  Yonekubo J 《Chemosphere》2004,55(6):861-867
In this study, (1) the change in the concentration of bisphenol A (BPA) leached from polycarbonate plastic (PCP) tube to water samples containing phosphate, sodium barbital, glycine, methionine or albumin at 37 degrees C as a function of time, and (2) the degradation rate of BPA leached from PCP tube to amino acid solutions in the presence of radical oxygen species (ROS) were investigated. The BPA leaching velocity (BPA-LV) from PCP tube to 50 mM glycine at pH 6 or 7 was twice that to control water, and the leaching was enhanced above pH 8. At pH 11, BPA-LV was significantly higher in 50 mM glycine and methionine solutions than in 50 mM NaOH. These results indicate that basic pH and amino acids contained in water could accelerate BPA leaching. The BPA-LV in phosphate buffer was different from the BPA-LVs in other buffers (barbital and glycine) at the same pH. BPA leached to the glycine or methionine solutions at pH 11 was degraded time dependently in a similar manner as the control water in the presence of ROS. The degradation of leached BPA was inhibited in the glycine solution, but was accelerated in the methionine solution. However, degradation of BPA added to freshly prepared methionine was inhibited in a similar manner to BPA in glycine. BPA degradation could be influenced by some kinds of amino acids, but glycine and methionine might be involved in BPA degradation in different ways.  相似文献   

18.
The behavior and fate of triasulfuron (TRS) in water and soil systems were examined in laboratory studies. The degradation of TRS in both buffer solution and soil was highly pH-sensitive. The rate of degradation could be described with a pseudo first-order kinetic and was much faster at pH 4 than at pH 7 and 9. Aqueous hydrolysis occurred by cleavage of the sulfonylurea bridge to form 2-(2-chloroethoxy) benzenesulfonamide (CBSA) and [(4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino] (AMMT). AMMT was unstable in aqueous solutions in any pH condition but it degraded more quickly at pH 4 and 9. CBSA did not degrade in aqueous solutions or in enriched cultures but it underwent a quick degradation in the soil. The rates of TRS degradation in sterile and non-sterile soils were similar, suggesting that microorganisms played a minimal role in the breakdown process. This hypothesis is supported by the results of studies on the degradation of TRS by enriched cultures during which the molecule underwent a prevalently chemical degradation.  相似文献   

19.

Although the use of endosulfan to control cotton pests has declined, this insecticide still has widespread application in agriculture and can contaminate riverine systems as runoff from soil or by aerial deposition. The degradation of endosulfan in pure water at different pH values of 5, 7 and 9 and in river water from the Namoi and the Hawkesbury rivers of New South Wales (NSW), Australia, was studied in the laboratory. Endosulfan transformation into endosulfan sulfate in river water using artificial mesocosms was also investigated. The results show endosulfan is stable at pH 5, with increasing rates of disappearance at pH 7 and pH 9 by chemical hydrolysis. Incubation of endosulfan with river water at pH 8.3 resulted in the disappearance of endosulfan and the formation of endosulfan diol due to the alkaline pH as well as formation of endosulfan sulfate. Although the degradation of endosulfan by Anabaena, a blue-green alga, did not result in the transformation of endosulfan to endosulfan sulfate, we conclude that other microorganisms catalyzed the formation of the sulfate. Significant conversions of endosulfan into endosulfan sulfate were also reported from associated field studies using artificial mesocoms containing irrigation water from rivers inhabitated by micro-macro fauna. From these results, we conclude that the presence of endosulfan sulfate in river water cannot be used to distinguish contamination by runoff from soil from contamination by aerial drift or redeposition.  相似文献   

20.
Acephate was resistent to hydrolysis in distilled, buffered water at pH 4.0 to 6.9, but not at pH 8.2, held for 20 days at 20 or 30 degrees C. The maximum conversion to methamidophos was 4.5% of the added acephate at pH 8.2 and 20 degrees C. The persistence of acephate in two natural waters, held at 9 degrees C for up to 42 and 50 days varied: 80% were recovered from pond water after 42 days, and 45% from creek water after 50 days. Rates of acephate degradation increased greatly when treated water samples were incubated in the presence of sediments, but not if water and sediment were autoclaved prior to treatment and incubation. The greatest conversion to methamidophos, 1.3% of the added acephate, had occurred after 42 days in pond water without sediment. Under the same conditions, carbaryl was less persistent than acephate in the natural waters: 18 to 20% were recovered from pond water after 42 days, and 37 to 40% from creek water after 50 days. The presence of sediment did not affect its degradation significantly. But more than 55% were recovered after 50 days if water and sediment were autoclaved prior to treatment and incubation. Neither acephate, methamidophos, nor carbaryl could be shown to escape from water into the atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号