首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
2.
Commodore Solution Technologies, Inc. has developed an innovative total systems approach to environmental remediation that utilizes a patented chemistry called Solvated Electron Technology (SETTM). Solvated electron solutions are some of the most powerful reducing agents know. Formed by dissolving alkali and alkaline-earth metals in anhydrous liquid ammonia to produce a solution of metal cations and free electrons, solvated electron solutions are capable of providing reductants of great activity and uniqueness. They provide a highly useful mechanism for the reductive destruction of many organic molecules and are extremely effective in the dehalogenation of halogenated organic compounds. Commodore has received a nation-wide EPA operating permit for the nonthermal destruction of PCBs using this process. The SoLVTM process is a total solution approach that incorporates SETTM with pre-and post-treatments, when necessary, for environmental cleanup. It is applicable to a broad range of substrates including liquids, solids, soils, and job materials. This article presents results from several pilot, field, and commercial validation studies utilizing the SoLVTM process.  相似文献   

3.
Tetrachloroethylene, also known as perchloroethylene or PCE, is one of the most difficult to treat chlorinated solvents when present in groundwater. Unfortunately, this elusive and recalcitrant compound is also the most commonly used dry cleaning solvent. As a result, releases of PCE at dry cleaning sites are somewhat common. Regenesis Bioremediation Products, of San Clemente, California, has developed Hydrogen Release Compound (HRC), which has been successfully used to promote bioremediation of PCE in groundwater. This product is directly injected into contaminated groundwater to speed up the natural attenuation of PCE through an anaerobic, natural process known as reductive dechlorination. A key benefit of HRC is its ability to slowly release hydrogen over extended periods of time. Reductive dechlorination relies on a steady source and readily available supply of electron donors as part of the degradation process. Hydrogen is one of the best electron donors available, and thus, the application of HRC significantly enhances the rate of PCE degradation. For dry cleaners, this technology can substantially reduce major design, capital, and operating costs, allowing the implementation of a low‐impact application and remediation solution. This article discusses the use of the HRC to remediate PCE contamination and presents the results of two specific HRC‐treated dry cleaner sites. © 2002 Wiley Periodicals, Inc.  相似文献   

4.
To date, estimates of freshwater critical loads have beenbased on a single sample site within a given area, in theUK the `most sensitive' surface water in each 10 km gridsquare. The critical loads obtained are thus highlydependent on the sites chosen, and at a relatively coarsespatial resolution. To produce a higher resolutioncritical load assessment, the PEARLS (Prediction ofAcidification and Recovery on a Landscape Scale)procedure has been used to estimate critical loads acrossa large (248 km2), partially acid-sensitivecatchment in Southwest England. PEARLS utilises availablesoils and land-use databases, and sampled streamchemistry data, to derive characteristic runoffcompositions for a set of landscape types. Mixingequations are then used to calculate runoff chemistry,and subsequently critical loads, throughout the streamnetwork. Results show major spatial variability, withcritical loads lowest in streams draining peat-moorlandheadwaters, and generally increasing downstream asagricultural land contributes an increasing proportion ofrunoff. The 5th percentile freshwater critical loadfor the catchment is estimated at 0.29 keq H+ ha-1yr-1,and critical loads are exceeded for around 40% of totalstream length. The PEARLS methodology provides a novelopportunity to assess the spatial variability infreshwater critical loads, and to provide estimates ofexceedance at whole catchment scale. It has potentialapplication in the assessment of surface watersensitivity to acidification across wider areas in the UKand elsewhere.  相似文献   

5.
The potential effectiveness of a new composite-aggregate capping technology, AquaBlokTM—in physically isolating contaminated, fine-grained sediments derived from an Ohio, Lake Erie tributary—was evaluated in the laboratory. In particular, large-scale settling-column studies were conducted to determine the degree to which composite-aggregate material penetrates into and/or mixes with the sediment, perhaps affecting the degree to which sediment could be physically isolated through capping. Additionally, large-scale flume studies were conducted to determine resistance of the composite-aggregate material to significant and long-term, fluvial-like erosive forces; the resistance of other potential capping materials was also evaluated for comparison. Experimental results indicate that the composite-aggregate material effectively isolates sediment through the formation of a continuous and relatively erosion-resistant, hydrated capping layer atop the sediments.  相似文献   

6.
The U.S. Department of Energy is conducting a project to accelerate remediation through the use of monitored natural attenuation and enhanced attenuation for chlorinated ethenes in soils and groundwater. Better monitoring practices, improved scientific understanding, and an advanced regulatory framework are being sought through a team effort that engages technology developers from academia, private industry, and government laboratories; site cleanup managers; stakeholders; and federal and state regulators. The team works collaboratively toward the common goals of reducing risk, accelerating cleanup, reducing cost, and minimizing environmental disruption. Cutting‐edge scientific advances are being combined with experience and sound environmental engineering in a broadly integrated and comprehensive approach that exemplifies socalled “third‐generation R&D.” The project is potentially a model for other cleanup activities. © 2004 Wiley Periodicals, Inc.  相似文献   

7.
Journal of Material Cycles and Waste Management - Japan has been promoting 3R (reduce, reuse, and recycle) policies for several decades, but the recycling rate of the whole country has leveled off,...  相似文献   

8.
This work presents the use of two composts as filter media for the treatment by biofiltration of odors emitted during the aerobic composting of a mixture containing sewage sludge and yard waste. The chemical analysis of the waste gas showed that the malodorous compounds at trace level were the reduced sulfur compounds (RSCs) which were dimethyl sulfide (Me2S), methanethiol (MeSH) and hydrogen sulfide (H2S). Laboratory tests for biofiltration treatment of RSCs were performed in order to compare the properties of two filter media, consisted of a mature compost with yard waste (YW) and a mixture of mature compost with sewage sludge and yard waste (SS/YW). The maximum elimination capacity (EC) values obtained with the YW mature compost as packing material were 12.5 mg m?3 h?1 for H2S, 7.9 mg m?3 h?1 for MeSH and 34 mg m?3 h?1 for Me2S, and the removal efficiency decreased in the order of: H2S > MeSH > Me2S. Moreover, the YW compost filter medium had a better behavior than the filter medium based on SS/YW in terms of acclimation of the microbial communities and moisture content. According to these results, a YW mature compost as packing material for an industrial biofilter were designed and this industrial biofilter was found effective under specified conditions (without inoculation and addition of water). The results showed that the maximum EC value of RSCs was 935 mg m?3 h?1 (100% removal efficiency, RE) for an inlet loads (IL) between 0 and 1000 mg m?3 h?1. Thus, YW compost medium was proven efficient for biofiltration of RSCs both at laboratory and industrial scale.  相似文献   

9.
10.
Journal of Material Cycles and Waste Management - The pandemic of COVID-19 has disrupted every human life by putting the global activities at halt. In such a situation, people while staying at home...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号