首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SEAMISTTM is an innovative technology that facilitates measurements of contaminants in both vertical and horizontal boreholes. The essence of SEAMISTTM is an airtight membrane liner pneumatically emplaced inside the borehole and maintained with positive pressure. Sampling ports, absorbent collectors, and various in-situ measuring devices can be fabricated into the liner. Small instruments and cameras can be guided through the borehole to obtain real-time data. This article reports on the cost and performance effectiveness of this new technology. In this report, SEAMISTTM is evaluated as a tool for obtaining data on volatile organic compounds, semivolatile organic compounds, other water-borne contaminants, and radionuclides. SEAMISTTM is also compared to traditional borehole casing, to conventional soil vapor probes, and to conventional pore-fluid collecting lysimeters. The most cost- and performance-effective applications of SEAMISTTM are shown to be those applications for which multiple characterization requirements can be combined into one SEAMISTTM membrane system.  相似文献   

2.
Treatment of waste containing EDTA by chemical oxidation   总被引:3,自引:0,他引:3  
Ethylenediaminetetraacetic acid (EDTA) is a chelating agent that has been extensively used to enhance the solubilization of heavy metal cations and release of EDTA contributes to environmental problems. EDTA is recalcitrant to microbial metabolism and chemical oxidation is considered a possible method of remedial treatment. The use of the commercially available process of MIOX Corporation generates mixed oxidants on site and this solution is markedly effective in the destruction of the chelating characteristic and the decarboxylation of EDTA. When measuring the release of C-14 from carboxyl labeled EDTA, the mixed oxidant solution was comparable to the Fenton's reaction over a broad pH range. The presence of Mn2+, Cr3+, or Fe3+ at levels equal to that of EDTA stimulated the rate of EDTA decomposition; however, the rate of EDTA breakdown was inhibited when the concentration of Cr3+ or Mn2+ exceeded the concentration of EDTA. The treatment of Co2+–EDTA or Cu2+–EDTA with mixed oxidants in the presence of ultra violet light resulted in the loss of chelation ability of EDTA. In the absence of chelated metals, over 75% of the chelation property of a 70 mM EDTA solution was destroyed in 45 min. The reaction products resulting from the use of mixed oxidants added to EDTA were non-toxic to bacteria and should not contribute to additional environmental problems.  相似文献   

3.
Current knowledge and recent advances in the area of microbial reductive dechlorination of polychlorinated organic compounds are summarized. Factors which may limit the efficacy of the dechlorination process for the in situ bioremediation of contaminated soil and sediment systems are identified. Results of recent studies on the anaerobic biotransformation of soil-sorbed chlorinated ethenes and sediment-sorbed chlorinated benzenes are provided to illustrate how low contaminant bioavailability may control the rate and extent of dechlorination in subsurface systems, especially those with long-term contamination. Use of nonionic, polysorbate surfactants as the sole electron donors of a mixed, methanogenic culture supported the microbial sequential reductive dechlorination of either free or sediment-bound hexachlorobenzene (HCB) to primarily 1,3-dichlorobenzene, but did not enhance the bioavailability of sediment-bound HCB as compared to microcosms, which used glucose. Because current knowledge on the interactions of dechlorinating populations with other microbial populations in the presence of alternative terminal electron acceptors (e.g., nitrate, Fe3+ , Mn4+) is limited, such interactions and their effect on the dechlorination process in subsurface systems need to be further explored to improve our understanding of the reductive dechlorination process in complex environmental systems and lead to the development of more efficient in situ bioremediation technologies and strategies.  相似文献   

4.
Environmental impacts associated to different waste treatments are of interest in the decision-making process at local, regional and international level. However, all the environmental burdens of an organic waste biological treatment are not always considered. Real data on gaseous emissions released from full-scale composting plants are difficult to obtain. These emissions are related to the composting technology and waste characteristics and therefore, an exhaustive sampling campaign is necessary to obtain representative and reliable data of a single plant. This work proposes a methodology to systematically determine gaseous emissions of a composting plant and presents the results obtained in the application of this methodology to a plant treating source-separated organic fraction of municipal solid waste (OFMSW) for the determination of ammonia and total volatile organic compounds (VOC). Emission factors from the biological treatment process obtained for ammonia and VOC were 3.9 kg Mg OFMSW−1 and 0.206 kg Mg OFMSW−1 respectively. Emissions associated to energy use and production were also quantified (60.5 kg CO2 Mg OFMSW−1 and 0.66 kg VOC Mg OFMSW−1). Other relevant parameters such as energy and water consumption and amount of rejected waste were also determined. A new functional unit is presented to relate emission factors to the biodegradation efficiency of the composting process and consists in the reduction of the Respiration Index of the treated material. Using this new functional unit, the atmospheric emissions released from a composting plant are directly related to the plant specific efficiency.  相似文献   

5.
Originated from a recognized need for significantly more effective technologies for soil cleanup, the LasagnaTM project provides an interesting case study in which industry, government, and academia successfully collaborated to rapidly advance the technology from the laboratory to the field. Called LasagnaTM because of its layered configurations, the technology combines electrically induced contaminant transport in soils, treatment in place, and geotechnical methods to achieve completely in situ clean-up of contaminated soils. Experiences with respect to the partnership, the development of technology and its current commercialization status are described.  相似文献   

6.
In situ chemical oxidation (ISCO) typically delivers oxidant solutions into the subsurface for contaminant destruction. Contaminants available to the oxidants, however, are limited by the mass transfer of hydrophobic contaminants into the aqueous phase. ISCO treatments therefore often leave sites with temporarily clean groundwater which is subject to contaminant rebound when sorbed and free phase contaminants leach back into the aqueous phase. Surfactant Enhanced In situ Chemical Oxidation (S‐ISCO®) uses a combined oxidant‐surfactant solution to provide optimized contaminant delivery to the oxidants for destruction via desorption and emulsification of the contaminants by the surfactants. This article provides an overview of S‐ISCO technology, followed by an implementation case study at a coal tar contaminated site in Queens, New York. Included are data points from the site which demonstrate how S‐ISCO delivers desorbed contaminants without uncontrolled contaminant mobilization, as desorbed and emulsified contaminants are immediately available to the simultaneously injected oxidant for reaction. ©2016 Wiley Periodicals, Inc.  相似文献   

7.
This study focuses on the electrodeposition of Ni and Ni–Fe alloys from synthetic solutions similar to those obtained by the dissolution of electron gun (an electrical component of cathode ray tubes) waste. The influence of various parameters (pH, electrolyte composition, Ni2+/Fe2+ ratio, current density) on the electrodeposition process was investigated. Scanning electron microscopy (SEM) and X-ray fluorescence analysis (XRFA) were used to provide information about the obtained deposits’ thickness, morphology, and elemental composition. By controlling the experimental parameters, the composition of the Ni–Fe alloys can be tailored towards specific applications. Complementarily, the differences in the nucleation mechanisms for Ni, Fe and Ni–Fe deposition from sulfate solutions have been evaluated and discussed using cyclic voltammetry and potential step chronoamperometry. The obtained results suggest a progressive nucleation mechanism for Ni, while for Fe and Ni–Fe, the obtained data points are best fitted to an instantaneous nucleation model.  相似文献   

8.
An integrated composting-vermicomposting system has been developed for stabilization of waste activated sludge (WAS) using matured vermicompost as bulking material and Eisenia fetida as earthworm species. Composting was considered as the main processing unit and vermicomposting as polishing unit. The integrated system was optimized by successive recycling and mixing of bulking material with WAS during composting and examining the effects of environmental condition (i.e. temperature: 10-30 °C and relative humidity: 50 and 90%) and stocking density (0-5 kg/m2) on vermicomposting. The composting stage resulted in sufficient enrichment of bulking material with organic matter after 20 cycles of recycling and mixing with WAS and produced materials acceptable for vermicomposting. Vermicomposting of composted material caused significant reduction in pH, volatile solids (VS), specific oxygen uptake rate (SOUR), total carbon (TC), total organic carbon (TOC), C/N ratio and pathogens and a substantial increase in electrical conductivity (EC), total nitrogen (TN) and total phosphorous (TP). The environmental conditions (i.e. temperature: 10-30 °C and relative humidity: 50 and 90%) and stocking density (0-5 kg/m2) have profound effects on vermicomposting. Temperature of 20 °C with high humidity is the best suited environmental condition for vermicomposting employing E. fetida. The favorable stocking density range for vermiculture is 0.5-2.0 kg/m2 (optimum: 0.5 kg/m2) and for vermicomposting is 2.0-4.0 kg/m2 (optimum: 3.0 kg/m2), respectively. The integrated composting-vermicomposting system potentially stabilizes and converts the hazardous WAS into quality organic manure for agronomic applications without any adverse effects.  相似文献   

9.
Only limited data are available on the diffusion of volatile organic solvents through flexible membrane liners (FMLs) used for lining impoundments and landfills. To expand this database, a rapid, inexpensive method is needed to measure the diffusion coefficients of volatile organic solvents through FML materials. An absorption method has been developed to determine the diffusion coefficients of volatile organic solvents through FML materials. The method is based on the depletion of an organic compound from an aqueous solution due to absorption by a submerged sample of FML. A numerical solution of Fick's second law of diffusion was used to develop a graph which can be used to determine the diffusion coefficient from the time dependent concentration data. The diffusion coefficients obtained from the absorption tests were validated by comparing them with coefficients determined using a two chamber diffusion cell. The diffusion coefficients determined for toluene and xylene in high density polyethylene (HDPE) were 5.1 × 10−9 cm2s−1 and 1.0 × 10−9 cm2s−1 by the two methods, respectively. The data indicate that the coefficient of distribution (Kd) between the FML and the organic solution, a value which is needed to calculate the diffusion coefficient from the data, can be estimated from the log of the octanol-water partition coefficient (Kow), a commonly measured and reported value for many chemicals.  相似文献   

10.
Life cycle assessment (LCA) was carried out by SimaPro 7.3 to study the environmental impact of a lab-scale batch subcritical water decomposition operation for a kilogram of Perfluorooctane sulfonic acid (PFOS) waste treatment in this study, a proven process for the decomposition of PFOS pollutants with high concentration. This LCA focuses on not only the main environmental factors from emissions of toxic pollutants, but also the influence from technical characteristics of the iron-induced subcritical water technology including energy and substances consumption during the subcritical water decomposition treatment process. The IMPACT 2002+ environmental model was used to evaluate the 15 midpoint and 4 end-point environmental damages. It was found that the energy consumption to sustain the high temperature (350 °C) and high pressure (23 MPa) in the subcritical water process contributes 99.8 % of the damages. The total negative impact of the SCWD process for 1 kg of PFOS waste treatment to human health, ecological quality, climate change and resources amounts to 1.11 × 10?3, 8.43 × 10?5, 9.76 × 10?4, 9.05 × 10?4 Pt, respectively. And the improvement of energy efficiency and catalytic effectiveness are two important factors to reduce the environmental impact from the SCWD process for the treatment of PFOS waste.  相似文献   

11.
Total organic carbon (TOC) concentrations and fluxes in throughfall, forest floor leachate, soil solution (15 and 35 cm depths), and groundwater for coniferous forest sites in the boreal zone throughout Finland are described. Eight upland forest stands and one peatland forest stand are included in the study and the samples were collected during 1991–1997. Carbon (C) pools in the living tree biomass and soil compartments are presented, and the hydrophobic/hydrophilic and acidic components of dissolved organic carbon (DOC) in samples collected in autumn 1999 and spring 2000 from two of the sites are compared. Biomass (aboveground and belowground) pools of C averaged 88 Mg ha-1 and soil (humus layer + 20 cm soil layer) averaged 55 Mg ha-1. Stand throughfall TOC monthly mean concentrations ranged from 4.0 to 18.6 mg L-1 and annual fluxes averaged 4.0 g m-2 yr-1. TOC concentrations in the water passing through the forest floor and soil decreased with depth. Plot mean concentrations at 35 cm depth values ranged from 4.1 to 21.2 mg L-1 and fluxes averaged 3.7 g m-2 yr-1. Throughfall TOC concentrations were lowest during the winter, snowfall period and highest during the growing season. No monotonic trends in throughfall TOC concentrations over the 1991–1997 period were found. Soil solution TOC concentrations varied considerably, both within and between years. DOC in throughfall, forest floor, and soil solutions and in both autumn and spring seasons was dominated by hydrophobic fractions, particularly acids. Spruce canopies and litter appear to be important sources of soluble organic carbon, particularly acidic and hydrophobic compounds. Further studies on the nature and dynamics of organic carbon fluxing through coniferous, boreal forest ecosystems are needed.  相似文献   

12.
Particularly in the UK, there is potential for use of large-scale anaerobic digestion (AD) plants to treat food waste, possibly along with other organic wastes, to produce biogas. This paper presents the results of a life cycle assessment to compare the environmental impacts of AD with energy and organic fertiliser production against two alternative approaches: incineration with energy production by CHP and landfill with electricity production. In particular the paper investigates the dependency of the results on some specific assumptions and key process parameters. The input Life Cycle Inventory data are specific to the Greater London area, UK. Anaerobic digestion emerges as the best treatment option in terms of total CO2 and total SO2 saved, when energy and organic fertiliser substitute non-renewable electricity, heat and inorganic fertiliser. For photochemical ozone and nutrient enrichment potentials, AD is the second option while incineration is shown to be the most environmentally friendly solution. The robustness of the model is investigated with a sensitivity analysis. The most critical assumption concerns the quantity and quality of the energy substituted by the biogas production. Two key issues affect the development and deployment of future anaerobic digestion plants: maximising the electricity produced by the CHP unit fuelled by biogas and to defining the future energy scenario in which the plant will be embedded.  相似文献   

13.
The combination of electrokinetic and zero‐valent iron (ZVI) treatments were used to treat soils contaminated with chlorinated solvents, including dense nonaqueous phase liquid (DNAPL), at an active industrial site in Ohio. The remediation systems were installed in tight clay soils under truck lots and entrances to loading docks without interruption to facility production. The electrokinetic system, called LasagnaTM, uses a direct current electrical field to mobilize contaminant via electroosmosis and soil heating. The contaminants are intercepted and reduced in situ using treatment zones containing ZVI. In moderately contaminated soils around the LasagnaTM‐treated source areas, a grid of ZVI filled boreholes were emplaced to passively treat residual contamination in decades instead of centuries. The remediation systems were installed below grade and did not interfere with truck traffic during the installation and three years of operation. The LasagnaTM systems removed 80 percent of the trichloroethylene (TCE) mass while the passive ZVI borings system has reduced the TCE by 40 percent. The remediation goals have been met and the site is now in monitoring‐only mode as natural attenuation takes over. © 2014 Wiley Periodicals, Inc.  相似文献   

14.
The liquid-to-solid ratio (L/S) of semi-solid Fenton process (SSFP) designated for hazardous solid waste detoxication was investigated. The removal and minimization effects of o-nitroaniline (ONA) in simulate solid waste residue (SSWR) from organic arsenic industry was evaluated by total organic carbon (TOC) and ONA removal efficiency, respectively. Initially, Box-Behnken design (BBD) and response surface methodology (RSM) were used to optimize the key factors of SSFP. Results showed that the removal rates of TOC and ONA decreased as L/S increased. Subsequently, four target initial ONA concentrations including 100 mg kg−1, 1 g kg−1, 10 g kg−1, and 100 g kg−1 on a dry basis were evaluated for the effect of L/S. A significant cubic empirical model between the initial ONA concentration and L/S was successfully developed to predict the optimal L/S for given initial ONA concentration for SSFP. Moreover, an optimized operation strategy of multi-SSFP for different cases was determined based on the residual target pollutant concentration and the corresponding environmental conditions. It showed that the total L/S of multi-SSFP in all tested scenarios was no greater than 3.8, which is lower than the conventional slurry systems (L/S ? 5). The multi-SSFP is environment-friendly when it used for detoxication of hazardous solid waste contaminated by ONA and provides a potential method for the detoxication of hazardous solid waste contaminated by organics.  相似文献   

15.
Experiences gained from full-scale evaluation of advanced treatment processes used for reclaiming wastewaters should help in the evaluation of potential treatment systems for treatment and reuse of water in space. Water Factory 21 is a 0.66 m3s−1 (15 million gallons per day) water reclamation plant in California that has been in operation since 1976. The plant receives biologically treated wastewater. Lime treatment is effective for removal of heavy metals. Volatile organic constitutes are efficiently removed by air stripping. Non-volatile organic constituents are removed by activated carbon adsorption and reverse osmosis (RO). RO is a highly effective polishing step, and removes most of the remaining materials including inorganic salts, heavy metals, and organics. RO removed 85% of the total organic carbon, down to about 1 mg 1−1, which is lower than in many treated drinking waters. The series of treatment processes used insured virus and pathogen removal, with lime treatment and chlorination together proving highly effective. Sufficient data has been collected to provide statistically reliable confidence limits to be set on the performance of each unit process.  相似文献   

16.
This article demonstrates the applicability of in situ flushing for the remediation of soil contaminated with petroleum hydrocarbons at a Mexican refinery. The initial average total petroleum hydrocarbon (TPH) concentration for the demonstration field test was 55,156 g/kg. After six weeks of in situ flushing with alternate periods of water and water/surfactant, an average concentration of 1,407 mg/kg was reached, achieving a total removal efficiency of 98 percent. At the end of the process, no hydrocarbons such as diesel; gasoline; benzene, toluene, ethyl benzene, and xylene (BTEX); or petroleum aromatic hydrocarbons (PAHs) were found. Iron washing achieved a removal efficiency of 70 percent, and for vanadium, the removal efficiency was 94.4 percent. The volume of soil treated was 41.6 m3 (38 m2), equivalent to 69.5 tons of soil. A rough calculation of the process costs estimated a total cost of $104.20/m3 ($114.00/m2). Our research indicates that there are a few studies demonstrating in situ flushing experiences under field conditions where both organic (TPH, diesel, gasoline, PAHs, BTEX) and metal (iron and vanadium) removals are reported. © 2004 Wiley Periodicals, Inc.  相似文献   

17.

The leaching of rare earth elements (REEs) from Egyptian Abu Tartur phosphate rock using phosphoric acid has been examined and was subsequently optimized to better understand if such an approach could be industrially feasible. Preliminary experiments were performed to properly define the design of experiments. Afterward, 24 full factorial design was implemented to optimize the leaching process. Optimum REEs leaching efficiency (96.7 ± 0.9%) was reached with the following conditions: phosphoric acid concentration of 30 wt.-% P2O5, liquid/solid ratio, mL/g, of 5:1, at 20 °C, and 120 min of leaching time. The apparent activation energy of the dissolution of REEs from phosphate rock using the phosphoric acid solution was -19.6 kJ/mol. D2EHPA was subsequently applied as an organic solvent for REEs separation from the acquired leach liquor. REEs stripping and precipitation were conducted, and finally, rare earth oxides with a purity of 88.4% were obtained. The leach liquor was further treated with concentrated sulfuric acid to recover the used phosphoric acid and produce gypsum with a purity of >95% at the same time. A flow diagram for this innovative cleaner production process was developed, and larger-scale experiments are proposed to further understand this promising approach to comprehensive phosphate rock processing.

  相似文献   

18.
Volatilization and Biodegradation of VOCs in Membrane Bioreactors (MBR)   总被引:1,自引:0,他引:1  
Volatilization and biodegradation are major competitive volatile organic compound (VOC) removal mechanisms in biological wastewater treatment process, which depend on compound specific properties and system design/operational parameters. In this study, a mathematical model was used to determine major removal pathways at various organic loading rates (OLR), solids residence time (SRT) and dissolved oxygen (DO) concentrations in a biological process for vinyl acetate. Model results showed that biological treatment process should be designed with long SRT, high OLR and low DO concentrations to maximize biodegradation and minimize volatilization of VOCs. Unless a VOC is toxic to microorganisms under the given conditions, low VOC emission rates are an inherent advantage of MBRs, which operate at higher OLR and longer SRT compared to conventional activated sludge process. A lab scale membrane bioreactor (MBR) was operated at varying OLR to investigate the relative volatilization and biodegradation rates for acetaldehyde, butyraldehyde and vinyl acetate. Synthetic wastewater containing three VOCs was introduced to the MBR. The DO concentration and SRT was maintained at 2.0 mg L− 1 and 100 days, respectively. The overall VOC removal rate was more than 99.7% for three VOCs at all the OLR. For vinyl acetate, the biodegradation rate increased from 93.87 to 99.40% and the volatilization removal rate decreased from 6.09 to 0.59% as OLR was increased from 1.1 to 2.0 kg COD m− 3 d− 1. It was confirmed that a MBR can be a promising solution to reduce VOC emissions from wastewater.  相似文献   

19.
Increasingly, there are severe environmental controls in the mining industry. Because of lack of technological advances, waste management practices are severely limited. Most of the wastes in the milling industrial effluents are known to contain cyanides and it is recognized that after extraction and recovery of precious metals, substantial amounts of cyanide are delivered to tailings ponds. The toxicity of cyanide creates serious environmental problems. In this paper we describe several methods for the treatment of cyanide solutions. These include: (1) cyanide destruction by oxidation with chlorine dioxide (ClO(2)) in a Gas-Sparged Hydrocyclone (GSH) reactor; (2) destruction of cyanide by ozone (O(3)) using a stirred batch reactor, and finally, (3) the photolysis of cyanide with UV light in presence of titania sol. In all cases excellent performance were observed as measured by the extent and of the destruction.  相似文献   

20.
The use of bioremediation technologies to clean up contaminated soil and groundwater is increasingly winning favor over more costly and often ineffective mechanical approaches. One new type of bioremediation process, known as TreeMediationTM, uses trees and other vegetation to remediate soil by acting as a natural pump to extract and remediate contaminated groundwater in aquifers less than 30 feet deep. This article describes this innovative treatment method, shows its advantages over traditional pump and-treat techniques, and explains how TreeMediation is being used to extract nitrate and ammonium contamination from an aquifer in New Jersey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号