首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 655 毫秒
1.
Bioremediation is a proven alternative for remediating petroleum‐impacted soils at exploration and production (E&P) sites. Monitoring remediation performance can involve detection and quantification of biodegradation resistant compounds such as C3017α(H),21β(H)‐hopane, which requires the use of gas chromatography with mass spectrometry detection (GC/MS). Due to the remoteness of many E&P sites, this technology is not always available, and alternative methods are needed to provide reliable quantitative measurements of petroleum remediation efficiency. This study provides a detailed chemical characterization of lacustrine‐sourced crude oils and a technical basis for measuring the effectiveness of bioremediation efforts for soil impacted by those crudes. We show that the novel isoprenoid hydrocarbon botryococcane is relatively stable in lacustrine‐sourced crude oils compared with C3017α(H),21β(H)‐hopane under moderate biodegradation conditions generally observed in field samples. We have also demonstrated that, due to the stability and relatively elevated concentration of botryococcane in lacustrine oils, it can be reliably measured using the more cost‐effective and available GC/FID methodology, and thereby be used to monitor the progress of ongoing soil bioremediation activities at remote sites.  相似文献   

2.
The U.S. Navy Public Works Center (PWC) Environmental Department, San Diego, California, is home to the Navy West Coast Site Characterization and Analysis Penetrometer System (SCAPS). SCAPS has been extensively used at several Navy sites since 1995 to provide real‐time, high‐density data sets. The U.S. Environmental Protection Agency's Triad approach provided an ideal framework for optimizing the use of the Navy SCAPS during a volatile organic compound (VOC) source investigation at Installation Restoration Site 1114 at Marine Corps Base Camp Pendleton. All three elements of Triad—systematic planning, dynamic work strategy, and use of real‐time measurement tools—were implemented to manage decision uncertainty and expedite the site management process. The investigation was conducted using the Navy SCAPS, outfitted with a cone penetrometer, membrane interface probe, and a direct sampling ion trap mass spectrometry detector, which allowed for real‐ time collection of over 690 feet of continuous lithologic information and VOC concentration data. These data were used collaboratively with 24‐hour turnaround US EPA 8260B VOC groundwater results from temporary direct‐ push wells to support the conclusion of a limited source area. Implementation of the Triad approach for this investigation provided an expedited high‐density data set and a refined conceptual site model (CSM) in real time that resulted in cost savings estimated at $2.5M and reduction of the site characterization and cleanup schedule by approximately three years. This project demonstrates how the US EPA's Triad approach can be applied to streamline the site characterization and cleanup process while appropriately managing decision uncertainty in support of defensible site decisions. © 2004 Wiley Periodicals, Inc.  相似文献   

3.
Application of wood plastic composites (WPCs) obtained from recycled materials initially intended for landfill is usually limited by their composition, mainly focused on release of volatile organic compounds (VOCs) which could affect quality or human safety. The study of the VOCs released by a material is a requirement for new composite materials. Characterization and quantification of VOCs of several WPC produced with low density polyethylene (LDPE) and polyethylene/ethylene vinyl acetate (PE/EVA) films and sawdust were carried out, in each stage of production, by solid phase microextraction in headspace mode (HS-SPME) and gas chromatography–mass spectrometry (GC–MS). An odor profile was also obtained by HS-SPME and GC–MS coupled with olfactometry analysis. More than 140 compounds were observed in the raw materials and WPC samples. Some quantified compounds were considered WPC markers such as furfural, 2-methoxyphenol, N-methylphthalimide and 2,4-di-tert-butylphenol. Hexanoic acid, acetic acid, 2-methoxyphenol, acetylfuran, diacetyl, and aldehydes were the most important odorants. None of the VOCs were found to affect human safety for use of the WPC.  相似文献   

4.
Compost leachate forms during the composting process of organic material. It is rich in oxidizable organics, ammonia and metals, which pose a risk to the environment if released without proper treatment. An innovative method based on the membrane bioreactor (MBR) technology was developed to treat compost leachate over 39 days. Water quality parameters, such as pH, dissolved oxygen, ammonia, nitrate, nitrite and chemical oxygen demand (COD) were measured daily. Concentrations of caffeine and metals were measured over the course of the experiment using gas chromatography – mass spectrometry (GC/MS) and inductively coupled plasma – mass spectrometry (ICP–MS) respectively. A decrease of more than 99% was achieved for a COD of 116 g/L in the initial leachate. Ammonia was decreased from 2720 mg/L to 0.046 mg/L, while the nitrate concentration in the effluent rose to 710 mg/L. The bacteria in the MBR system adjusted to the presence of the leachate, and increased 4 orders of magnitude. Heavy metals were removed by at least 82.7% except copper. These successful results demonstrated the membrane bioreactor technology is feasible, efficient method for the treatment of compost leachate.  相似文献   

5.
Detailed composition of chlorinated and brominated polycyclic aromatic hydrocarbons (Cl-PAHs and Br-PAHs) generated during informal recycling of e-waste and their toxic relevance are still poorly understood. This study investigated the occurrence of Cl-PAHs and Br-PAHs in surface soil samples from the Agbogbloshie e-waste recycling site (Accra, Ghana) using quantitative gas chromatography–mass spectrometry (GC–MS) and comprehensive two-dimensional GC–time-of-flight mass spectrometry (GC × GC–ToFMS) profiling. The results of GC–MS analysis showed elevated concentrations in open e-waste burning areas (160–220 and 19–46 ng/g dry weight for Cl- and Br-PAHs, respectively) with substantial contribution from unidentified compounds (respectively, more than 36 and 70%, based on the total areas of potential peaks). Cl- and Br-PAHs from e-waste burning had a distinctive composition dominated by ring–ring compounds. Several homologue groups not monitored with GC–MS were found using GC × GC–ToFMS: PAHs with up to 5Cl or 3Br, mixed halogenated PAHs and chlorinated methylPAHs. The dioxin-like toxic equivalents of the identified Cl-/Br-PAHs in soils, estimated from their in vitro AhR agonist potencies relative to 2,3,7,8-tetrachlorodibenzo-p-dioxin, were much lower than the range reported for chlorinated and brominated dioxins. However, the toxicity of the unidentified halogenated PAHs remained unclear.  相似文献   

6.
Nuclear magnetic resonance (NMR) geophysical tools have been widely used in the petroleum exploration industry since the 1960s and have improved significantly in the last two decades. These tools can provide estimates of bulk porosity and fluid content, quantification of bound versus mobile fluids, and estimates of hydraulic conductivity (K). Although the size and cost of oil‐field tools historically limited their use for near‐surface applications, smaller and more economical downhole NMR logging tools are now available for detecting and characterizing the formation water content and K to support environmental and groundwater resource investigations. These tools can be deployed using direct‐push drilling techniques or they can be lowered into existing open borings or wells with nonconductive polyvinyl chloride casings and screens. In many cases, using the tool in existing wells offers a safer and more cost‐effective alternative compared to drilling new boreholes. For environmental investigations, NMR can provide useful high‐resolution quantitative hydrostratigraphic information that can provide additional valuable data to further inform and refine the conceptual site model. This paper highlights several NMR field investigations that demonstrate the viability of this technology as a site characterization tool for near‐surface investigations. NMR measurements were compared to data from lithologic logs, cone penetrometer testing data, and prior field hydraulic tests. Use of NMR to detect vadose zone water, including previously unidentified perched groundwater zones, provided hydrostratigraphic details that could not be gleaned from historical well drilling logs and were used to evaluate drainable pore water versus pore water bound in small pores by capillary forces or electrochemically clay‐bond water. NMR also produced K estimates similar to those from conventional hydraulic tests, but the improved vertical resolution from NMR provided additional information regarding the vertical heterogeneity of the formation along the entire length of the well or borehole. Additionally, bench‐scale tests are presented that confirm the capability for NMR to reliably detect and quantify light nonaqueous phase liquid saturation (specifically diesel fuel and weathered gasoline) in situ. The field tests combined with bench‐scale testing results affirm the applicability and potential for NMR as a practical characterization tool that should increasingly be utilized in environmental investigations.  相似文献   

7.
Careful design studies and selection of an effective technique for the installation of permeable reactive barriers (PRBs) are important contributors to the overall success of zero‐valent iron PRBs. This article provides a case study summarizing the successful design and construction of a PRB installed at the former Carswell Air Force Base located in Fort Worth, Texas. Expedited site characterization using a cone penetrometer rig equipped with a mass spectrometer was employed to provide real‐time characterization and lithologic data. These data proved to be invaluable for the design of the PRB and allowed for the development of an accurate preconstruction cost estimate. Field data gained from the expedited water quality and geologic characterization along with aquifer testing and a bench‐scale treatability study provided a comprehensive basis for the design. The biopolymer slurry construction technique provided additional unanticipated benefits to the designed zero‐ valent iron treatment by promoting the development of anaerobic conditions favorable for microbial degradation of trichloroethene. Postconstruction monitoring data are discussed to illustrate the successful performance of the PRB. © 2005 Wiley Periodicals, Inc.  相似文献   

8.
A promising new technology for the detection of dense nonaqueous phase liquids, or DNAPLs, is cosolvent injection/extraction. Cosolvents, such as alcohols, are injected into the subsurface and interact with DNAPLs to increase their aqueous solubility, which increases recovery of the chemicals. A laboratory assessment was performed to determine if incorporating this technology with cone penetrometers could provide a useful sampling tool for DNAPL detection. A cone penetrometer was modeled in the laboratory by injecting and extracting small quantities of ethanol and propylene glycol at low concentrations into a homogeneous sand reactor contaminated with a residual saturation of tetrachloroethene (PCE). Experimental test results show that this technology is extremely sensitive to the vertical placement of the sampler, but is capable of enhancing PCE solubility while recovering most of the alcohol injected. Field testing of this technology will provide the next step in determining the feasibility of this technology for DNAPL detection.  相似文献   

9.
This article demonstrates the applicability of in situ flushing for the remediation of soil contaminated with petroleum hydrocarbons at a Mexican refinery. The initial average total petroleum hydrocarbon (TPH) concentration for the demonstration field test was 55,156 g/kg. After six weeks of in situ flushing with alternate periods of water and water/surfactant, an average concentration of 1,407 mg/kg was reached, achieving a total removal efficiency of 98 percent. At the end of the process, no hydrocarbons such as diesel; gasoline; benzene, toluene, ethyl benzene, and xylene (BTEX); or petroleum aromatic hydrocarbons (PAHs) were found. Iron washing achieved a removal efficiency of 70 percent, and for vanadium, the removal efficiency was 94.4 percent. The volume of soil treated was 41.6 m3 (38 m2), equivalent to 69.5 tons of soil. A rough calculation of the process costs estimated a total cost of $104.20/m3 ($114.00/m2). Our research indicates that there are a few studies demonstrating in situ flushing experiences under field conditions where both organic (TPH, diesel, gasoline, PAHs, BTEX) and metal (iron and vanadium) removals are reported. © 2004 Wiley Periodicals, Inc.  相似文献   

10.
The mass‐to‐concentration tie‐in (MtoC Tie‐In) correlates passive soil gas (PSG) data in mass to active soil gas data in concentration determined by the US EPA Method TO‐17 or TO‐15. Passive soil gas surveys consist of rapid deployment of hydrophobic sorbents (dozens to several hundred locations typically installed in one day) to a depth of six inches to three feet in a grid pattern with exposure in the field from three days to two weeks to target a wide variety of organic compounds. A power function is used on a compound‐to‐compound basis to correlate spatially varying mass (nanograms) from selected locations within a passive soil gas survey to concentration (µg/m3) at those same locations. The correlation from selected PSG locations is applied to the remainder of the PSG grid. The MtoC Tie‐In correlations provide added value to a PSG survey, with the PSG data then used to estimate risk throughout the limits of the investigation for quantitative assessment. The results from a site in northern California show the MtoC Tie‐In correlations for both benzene and total petroleum hydrocarbons (TPH). The correlations are applied on a compound‐to‐compound basis to the remaining locations in the PSG grid to provide an estimate of concentration that can be used for comparison to risk/screening levels or fate‐and‐transport diagnostic tools (partitioning equations, solubility laws, etc.). An example of how the correlations are applied is presented in tabular form. The results from a chlorinated solvent survey show the MtoC Tie‐In correlation from a site in Maryland for tetrachloroethene (PCE). In this instance, there was a near‐perfect relationship between the PSG mass and the active soil gas concentration (R2 value of 1). The concentration estimated throughout a PSG grid enables a vast new realm of interpretive power at sites. Several other sites are discussed, including an example application for groundwater. © 2009 Wiley Periodicals, Inc.  相似文献   

11.
Methods of toxicity-directed analysis have been developed for the characterization and identification of toxic organic constituents in industrial wastewater. Sequential solid-phase extraction is followed by high-performance liquid chromatography (HPLC) fractionation or by automated multiple development thin-layer chromatography fractionation (AMD–TLC) of the toxic extracts. Toxic fractions were finally analyzed by gas chromatography–mass spectroscopy (GC–MS). Toxicity was detected before each of the analytical steps by the bioluminescence inhibition of Vibrio fischeri, which was performed on microtiter plates and on the developed TLC plates. While sequential extraction broadens the polarity range of the procedure, the new variants of the luminescence test make the method very versatile and fast. The potential of this kind of toxicity-directed analysis with respect to resolution and polarity of analytes is discussed and applications to partial effluents of a tannery, to molasses wastewater and a spent dyeing bath are presented. A variety of benzothiazoles and more polar organics were identified as major toxic compounds in tannery effluents. It is shown that the procedures are well suited to detect individual toxic components in complex industrial wastewaters. The use of LC-MS is proposed to extend the polarity range of the final identification step. ©  相似文献   

12.
The performance of four dioxin emission monitors, including two long-term sampling devices, the Dioxin-MonitoringSystem (DMS) and AMESA (the adsorption method for sampling dioxins and furans), and two semireal-time continuous monitors, the resonance ionization with multimirror photon accumulation time-of-flight mass spectrometer (RIMMPA-TOFMS) and the jet resonance-enhanced multiphoton ionization (jet-REMPI) system were tested. A package boiler burning a simulated chlorinated hazardous waste was used for a total of nine tests. Reference samples were collected during each test and analyzed for polychlorinated dibenzodioxins and dibenzofurans (PCDDs/Fs) using gas chromatography mass spectrometry. The PCDD/F concentrations of the reference samples measured by EPA Method 23 ranged from 0.9 to 6.0 ng toxic equivalence (TEQ)/dry standard cubic meter. The relative accuracies achieved by DMS, AMESA, and jet-REMPI varied from 22.6% to 78.2%, with 100% data completeness. The RIMMPA-TOFMS produced no quantifiable results due to various difficulties associated with the instrument during the testing. The two long-term samplers were easy to install and operate and provided a cumulative, averaged emission for the sampling period. The operations of the two semi-real-time continuous monitors were relatively complex, but one of them provided on-site, real-time data for PCDD/F emissions from measurement of a TEQ correlative indicator compound. This article summarizes results from the individual Environmental Technology Verification reports for the four dioxin monitors. This work was presented, in part, at the Fourth International Conference on Combustion, Incineration/Pyrolysis and Emission Control (i-CIPEC)  相似文献   

13.
This study was undertaken to evaluate in-situ soil bioremediation processes, including degradation and detoxification, for two types of wood preserving wastes and two types of petroleum refining wastes at high concentrations in an unacclimated soil. The soil solid phase, water soluble fractions of the soil, and column leachates were evaluated. Two bioassays, a mutagenic potential asay (Ames assay) and an aqueous toxicity assay (Microtox assay) were used to evaluate detoxification; high performance liquid chromatography was used to evaluate chemical concentration and degradation for eight polynuclear aromatic hydrocarbons (PAHs). The group of non-carcinogenic PAHs studied demonstrated greater degradation, ranging from 54–90% of mass added for the four wastes; the carcinogenic group of PAHs studied exhibited degradation ranging from 24–53% of mass added. Although no mutagenicity was observed in waste/soil mixtures after one year of treatment, Microtox toxicity was observed in water soluble fractions and in leachate samples. An integration of information concerning degradation of hazardous constituents with bioassay information represents an approach for designing treatability studies and for evaluating the effectiveness of in-situ bioremediation of contaminated soil/waste systems. When combined with information from waste, site and soil characterization studies, the data generated in treatability studies may be used in predictive mathematical models to: (1) evaluate the effectiveness of use of on-site bioremediation for treatment of wastes in soil systems; (2) develop appropriate containment structures to prevent unacceptable waste transport from the treatment zone; and (3) design performance monitoring strategies.  相似文献   

14.
Soil contamination resulting from petroleum hydrocarbon contaminants poses a fairly substantial hazard to human health and the environment. Phytoremediation, land farming, and chemico–biological stabilization were used to treat total petroleum hydrocarbons (TPHs) and polycyclic aromatic hydrocarbons (PAHs) at a crude oil polluted soil site in Nigeria. A field pilot study was conducted by preparing nine cells with subcells attached to each serving as a control with an overall area of 1.53 m2. A complete block design method was used for the study. The prepared soil sample cells were divided into three groups with each group having approximately 300 kg of soil and delineated as low, medium, and high test plots. The low samples were spiked with 6.1 kg of crude oil, the medium samples were spiked with 12.2 kg of crudeoil, and the high samples were spiked with 18.3 kg of crude oil. Each row containing three cells with low, medium, and high concentrations were treated separately using the three treatment methods. The ratio of the soil sample to the organic amendment for the treatments was 2:1. The results showed over 90% degradation in the initial concentration of TPH and PAHs across different contaminant levels except in the control subcells where only 30% of degradation was recorded. Multivariate analysis of variance was employed to assess the significant difference in each treatment group while inferential statistics using a mean performance plot was used to ascertain the optimum treatment method. Land farming, chemico–biological stabilization, and phytoremediation ranked 1, 2, and 3, respectively. In conclusion, the three treatment methods employed all degraded the contaminants (TPH and PAHs) with land farming emerging as the best method.  相似文献   

15.
The identification and quantitation of non-method-specific target analytes have greater importance with respect to EPA's current combustion strategy. The risk associated with combustion process emissions must now be characterized. EPA has recently released draft guidance on procedures for the collection of emissions data to support and augment site-specific risk assessments (SSRAs) as part of the hazardous waste incineration permitting process. This guidance includes methodology for quantifying total organic (TO) emissions as a function of compound volatility. The ultimate intent is to compare the amount of organic material identified and quantified by target analyte-specific methodologies to organic emissions quantified by the TO methodology. The greater the amount accounted for by the target analyte-specific methodologies, the less uncertainty may be associated with the SSRAs. A limitation of this approach is that the target analyte-specific methodologies do not routinely quantify compounds of low toxicological interest; nor do they target products of incomplete combustion (PICs). Thus, the analysis can miss both toxic and non-toxic compounds. As a result, it is unknown whether the uncharacterized fraction of the TO emission possesses toxic properties. The hypothesis that we propose to test is that organic emissions and organics extracted from particulate matter (PM) are more complex than standard GC-MS-based instrumentation can currently measure. This complexity can affect quantitation for toxic compounds, thereby potentially affecting risk assessments. There is a pressing need to better characterize these organic emissions from hazardous waste incinerators and PM extracts from various other combustion sources. We will demonstrate that multidimensional gas chromatography-mass spectrometry (MDGC-MS) procedures significantly improve chromatographic separation for complex environmental samples. Sequential repetitive heart-cutting MDGC, with coupled mass spectrometry will be shown to be a complete analysis technique. The ability of this technique to disengage components from complex mixtures taken from hazardous and municipal waste incinerators will be shown.  相似文献   

16.
The University of Alaska Fairbanks Environmental Technology Laboratory is conducting ongoing research into the effectiveness of a biosurfactant, PES-51®, in removing weathered crude oil from beach material. A field test was conducted from 1 to 7 July 1993 in Sleepy Bay on La Touche Island in Prince William Sound. The results of chemical analysis of the beach material before and after treatment show that diesel range petroleum hydrocarbons are completely removed to levels below the detection limit of 0.5 mg kg−1. Semivolatile petroleum hydrocarbons were reduced an average of 70%. The microbial data collected indicate that no inhibition of microbial activity in sediments is caused by treatment. The numbers and activity of hydrocarbon-degrading organisms were enhanced immediately following treatment and for about a month afterwards. There was no evidence of dissolved hydrocarbons or increased microbiological activity in seawater samples, providing evidence that oil was not transported offshore during the treatment process.  相似文献   

17.
An attempted has been made to recover high-calorific fuel gas and useful carbonaceous residue by the electric arc pyrolysis of waste lubricating oil. The characteristics of gas and residues produced from electric arc pyrolysis of waste lubricating oil were investigated in this study. The produced gas was mainly composed of hydrogen (35–40%), acetylene (13–20%), ethylene (3–4%) and other hydrocarbons, whereas the concentration of CO was very low. Calorific values of gas ranged from 11,000 to 13,000 kcal kg?1 and the concentrations of toxic gases, such as NOx, HCl and HF, were below the regulatory emissions limit. Gas chromatography–mass spectrometry (GC/MS) analysis of liquid-phase residues showed that high molecular-weight hydrocarbons in waste lubricating oil were pyrolyzed into low molecular-weight hydrocarbons and hydrogen. Dehydrogenation was found to be the main pyrolysis mechanism due to the high reaction temperature induced by electric arc. The average particle size of soot as carbonaceous residue was about 10 μm. The carbon content and heavy metals in soot were above 60% and below 0.01 ppm, respectively. The utilization of soot as industrial material resources such as carbon black seems to be feasible after refining and grinding.  相似文献   

18.
Gas tracer tests can be used to determine gas flow patterns within landfills, quantify volatile contaminant residence time, and measure water within refuse. While gas chromatography (GC) has been traditionally used to analyze gas tracers in refuse, photoacoustic spectroscopy (PAS) might allow real-time measurements with reduced personnel costs and greater mobility and ease of use. Laboratory and field experiments were conducted to evaluate the efficacy of PAS for conducting gas tracer tests in landfills. Two tracer gases, difluoromethane (DFM) and sulfur hexafluoride (SF6), were measured with a commercial PAS instrument. Relative measurement errors were invariant with tracer concentration but influenced by background gas: errors were 1-3% in landfill gas but 4-5% in air. Two partitioning gas tracer tests were conducted in an aerobic landfill, and limits of detection (LODs) were 3-4 times larger for DFM with PAS versus GC due to temporal changes in background signals. While higher LODs can be compensated by injecting larger tracer mass, changes in background signals increased the uncertainty in measured water saturations by up to 25% over comparable GC methods. PAS has distinct advantages over GC with respect to personnel costs and ease of use, although for field applications GC analyses of select samples are recommended to quantify instrument interferences.  相似文献   

19.
Mathematical modelling is a helpful tool for predicting the hazards which arise from contaminants in leachate. These kinds of models are based on exponentially varying leachate concentration with time. In this research, a model for estimating the concentration of organics, measured as Chemical Oxygen Demand (COD), in leachates from solid waste disposal areas is developed. The model contains processes such as dissolution/dilution, mass transfer, substrate utilization, and microbial mass production. The recommended analytical model is compared with experimental data from two laboratory-scale plants. In addition, the variations of model parameters with the governing processes are determined with respect to time. Experimental data from laboratory and field studies in literature is simulated to verify the model. In order to determine some estimated parameters found by trial and error during modelling, multiple regression equations for the values from simulations are created.  相似文献   

20.
PM2.5 and PM10 samples for megalopolis atmospheric particles were collected at Shinjuku, Tokyo in December 1998–January 1999 and August 1999, for two weeks both in winter and summer, with a 24 hr sampling interval. Sampling of PM2.5 and PM10 in diesel exhaust particles (DEP) was carried out using an automobile exhaust testing system, with a diesel truck placed on a chassis dynamometer. Sampling conditions included idling, constant speed of 40 km hr-1, M-15 test pattern and 60%-revolution/40%-load of maximum power. Mass spectrums of organic compounds adhering to the surface of the PM2.5 and PM10 samples were analyzed by laser desorption time-of-flight mass spectrometry (LD-TOFMS, analytical mass range: m/z 1–m/z 380 000). LD-TOFMS analysis of those samples revealed consistently the detection of low-mass organic compounds up to m/z 800. For the megalopolis atmospheric particles, the mass spectrum pattern of wintertime samples was almost the same as that of the summertime samples for both PM2.5 and PM10. The major peak was m/z 177, and the minor peaks were m/z 84, 94, 101, 163, 189 and 235. The mass spectrum pattern of DEP was the same for all samples under all test conditions. The major peak was m/z 101, and other detected peaks were small.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号