首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
采用微气泡臭氧催化氧化-生化耦合工艺对煤化工废水生化出水进行深度处理,考查了污染物去除性能,并分析了处理过程中含氮杂环芳烃类污染物降解和废水可生化性变化.结果表明,微气泡臭氧催化氧化对煤化工废水生化出水COD平均去除率和去除负荷分别为26.4%和1.46kg/(m~3·d),并将废水BOD5/COD值由0.038提高至0.30,从而改善后续生化处理COD去除性能,使得COD总去除率达到62.4%,显著优于单独生化处理.微气泡臭氧催化氧化降解含氮杂环芳烃后释放氨氮,其在后续生化处理中被有效去除.此外,耦合处理对废水UV_(254)的总去除率可达68.9%.对耦合处理过程中废水GC-MS、紫外-可见吸收光谱和三维荧光光谱进行分析,结果表明,含氮杂环芳烃是煤化工废水生化出水中主要难降解污染物.同时证实微气泡臭氧催化氧化可有效降解去除含氮杂环芳烃,生成小分子有机物,提高废水可生化性.  相似文献   

2.
采用非均相催化臭氧氧化工艺深度处理化工废水二级生化出水,探索负载不同活性组分的活性炭催化剂及该工艺处理化工废水的影响因素。结果表明:当进水COD为85~110 mg/L,臭氧投加量为60 mg/L,催化剂投加量为200 mg/L Cr时,臭氧氧化、ACCA-1、ACCA-2和ACCA-3催化臭氧氧化对出水COD的平均去除率分别为22.46%、32.7%、40.5%和35.7%,3种催化剂均可强化臭氧氧化效果。活性炭催化剂能提高臭氧利用率,叔丁醇对ACCA-2抑制效果最明显。  相似文献   

3.
付丽亚  李敏  周鉴  吴昌永  朱晨  于茵  宋玉栋 《环境工程》2021,39(11):159-165
为强化石化生化出水COD的去除,采用微絮凝砂滤-臭氧催化氧化工艺处理石化生化出水,比较了臭氧催化氧化反应器不同氧化方式和不同回流比组合方式下COD的去除,开展了臭氧催化氧化深度处理单元小试、中试和生产性规模研究,确立了以双级臭氧催化氧化Ⅰ级自回流工艺(回流比100%)为双级臭氧催化氧化推荐的优化工艺。生化出水ρ(COD)为70~120 mg/L时,微絮凝砂滤出水ρ(COD)达到65~113 mg/L,Ⅱ级氧化出水COD平均去除率达到35.0%~42.6%,出水满足GB 31571-2015《石油化学工业污染物排放标准》排放限值要求。生产性试验条件下,优化工艺装置去除单位COD消耗臭氧量平均为1.04 g/g,比对照组现阶段生产工艺(仅Ⅰ级臭氧曝气)降低了21.2%。  相似文献   

4.
采用臭氧-曝气生物滤池组合工艺对石化废水厂二级出水进行深度处理,系统探讨了pH值对臭氧氧化单元的影响,组合工艺对废水中COD、UV254的去除效果,对废水中有机物相对分子质量分布以及荧光物质含量的影响.结果表明,在臭氧投加量为10 mg·L-1,接触时间为4 min,pH值偏碱性时,臭氧预氧化石化二级出水效果较好.臭氧氧化能将大分子有机物转化为小分子物质,使得相对分子质量小于1 000的有机物比例增加约15%,有效提高了废水的可生化性,有利于后续曝气生物滤池的运行.在曝气生物滤池的停留时间为3 h,气水比为3∶1时,组合工艺对COD、UV254的去除率分别达到40.8%和45.8%.在最佳运行条件下,进水平均COD为86.5 mg·L-1时,组合工艺出水平均COD为49.4 mg·L-1.  相似文献   

5.
采用微气泡臭氧化深度处理实际制药废水和制革废水,比较处理性能并分析废水水质对处理性能的影响.结果表明,微气泡臭氧化可有效氧化降解实际制药废水和制革废水中主要有机污染物并去除COD,其深度处理COD去除量与臭氧消耗量之比分别为0.77和1.02,同时明显提高可生化性并降低生物毒性.废水中有机污染物类型影响微气泡臭氧化处理性能,制药废水中存在较多难降解复杂芳香族有机污染物,臭氧化降解难度较大,因而微气泡臭氧化深度处理制药废水性能不及制革废水.废水中无机阴离子不利于臭氧气液传质和分解以及·OH产生,进而影响微气泡臭氧化反应效率以及可生化性改善,降低阴离子浓度有助于提高微气泡臭氧化处理性能.  相似文献   

6.
为验证采用生化组合工艺处理煤化工废水可行性,采用"水解+A~2O生化+混凝沉淀+臭氧催化氧化+生化"组合工艺处理煤气化废水,系统出水COD≤60.00 mg/L,氨氮≤3 mg/L。通过试验确定工艺设计参数:生化处理工艺总水力停留时间90.66小时;生化处理运行负荷1.23 kg COD/m~3·d;臭氧投加量40.00 mg/L;PAC药剂投加量为400 mg/L。  相似文献   

7.
李德生  黄利 《中国环境科学》2012,32(7):1196-1202
通过现场中试实验对曝气微电解、强化混凝、催化电氧化作预处理提高兰炭污水的可生化性进行了探讨.并对通过预处理与生化处理的组合实现兰炭污水达到污水排放标准的可行性进行了研究.结果表明,原水首先调节pH值为3左右,在通过120min的曝气微电解处理后,可使有机物由25000mg/L下降到10000mg/L,氨氮由3000mg/L降到1200mg/L,COD和NH3-N的去除均可达到60%;然后调节曝气微电解出水的pH值为8~9,通过投加200mg/L PAC、4.5mg/L PAM强化混凝后,出水COD和NH3-N可去除50%;强化混凝后出水再通过120 min的催化电氧化反应器的高级氧化处理,废水中COD去除率可达65%,NH3-N去除率为60%;催化电氧化反应器出水最后通过厌氧/好氧生物接触处理,其出水COD<150mg/L,NH3-N<25 mg/L.  相似文献   

8.
刘春  张晶  张静  陈晓轩  张磊  曹丽亚 《环境科学》2016,37(7):2632-2638
运行中试规模微气泡曝气生物膜反应器处理校园生活污水,对其运行性能进行评估,并与传统生物处理工艺比较.结果表明,采用中试系统处理校园生活污水原水时,平均COD去除率和去除负荷分别为57.0%和2.68 kg·(m~3·d)~(-1),平均氨氮去除率和去除负荷分别为17.4%和0.17 kg·(m~3·d)~(-1),平均TN去除率和去除负荷分别为15.8%和0.21 kg·(m~3·d)~(-1),平均氧利用率达到100%.采用中试系统处理可生化性较差的生物接触氧化池出水,平均COD去除率和去除负荷分别为46.0%和1.53 kg·(m~3·d)~(-1);平均氨氮去除率和去除负荷分别为17.1%和0.32 kg·(m~3·d)~(-1);平均TN去除率和去除负荷分别为14.1%和0.28 kg·(m~3·d)~(-1);平均氧利用率高于50%.由于微气泡曝气能够加速氧传质过程并提高氧利用率,因此相同进水条件下,中试系统污染物去除能力显著优于传统生物接触氧化工艺和传统曝气生物滤池工艺.  相似文献   

9.
针对氯碱厂含盐废水和两醇(正丁醇、辛醇)含氨氮废水的特点,采用了预处理一水解酸化一好氧法工艺流程.废水经处理后,可去除17.2%的钙(以CaCO3计);COD从生化进水的1 005.9 mg/L(平均值),下降至出水的77.6 mg/L(平均值),平均去除率为92.3%;NH3-N从生化进水的48.4 mg/L(平均值),下降至出水的6.6 mg/L(平均值),平均去除率为86.4%,出水指标达到GB8978-1996一级排放标准.  相似文献   

10.
利用臭氧催化氧化工艺,对焦化废水生化出水进行深度处理,考察了催化剂类型、用量、反应时间对COD去除率的影响。研究结果表明:p H值为7~8,臭氧流量10g/h,催化剂8g,反应时间约50min,臭氧催化氧化对COD去除率达到68.63%,出水指标满足炼焦化学工业污染物排放标准(GB16171-2012)。  相似文献   

11.
构建电凝聚臭氧化耦合工艺对城市污水处理厂二级出水进行深度处理,研究了不同初始pH值、臭氧投加量和电流密度对二级出水处理效果的影响.结果表明,当初始pH值为5、臭氧投加量为1.5 mg·mg-1、电流密度为15 mA·cm-2时,该工艺处理效果达到最佳,二级出水中溶解性有机物的去除率可达到58.6%.与单独电絮凝和臭氧氧化工艺相比,耦合工艺对有机物有更好的去除效果.由于金属盐水解产物可以作为臭氧化的催化剂,为了甄别其活性点位,将磷酸盐引入体系中,结果表明磷酸盐占据了混凝剂水解产物表面的羟基,从而阻碍了臭氧与水解铝盐混凝剂之间的反应,使得有机物的去除率降低,傅立叶红外(FT-IR)分析的结果进一步证明表面羟基是产生的铝盐混凝剂催化臭氧化的活性点位.为了进一步明确该耦合工艺去除溶解性有机物的机理,选择对氯苯甲酸(pCBA)探针法间接证明和电子顺磁共振(EPR)实验直接证明体系中羟基自由基(·OH)的存在,结果表明,电凝聚臭氧化耦合工艺较单独臭氧氧化工艺产生了更多的·OH,说明电絮凝产生的铝盐混凝剂水解产物可以作为催化剂催化臭氧产生·OH,提升体系对有机物的去除效率.  相似文献   

12.
以城市污水处理厂二级出水为原水,研究臭氧化处理对水中难凝聚有机物的去除效果.结果表明单独混凝对水中有机物的去除率较低,混凝过程中未被去除的有机物属于难凝聚有机物,加入臭氧进行氧化,随着臭氧投加量的增加,二级出水色度和UV254去除率逐渐增大,而DOC去除率变化较小.当臭氧投加量(以O3/DOC计)增加至1.5 mg·mg-1时,色度、UV254和DOC的去除率分别为45%、34%和20%,说明臭氧易于与不饱和结构有机物反应,而直接氧化的矿化能力较弱.为进一步明确二级出水有机物种类和含量的变化,测定了混凝和不同臭氧投加量下有机物的相对分子质量和三维荧光光谱.结果表明混凝对有机物含量的影响很小,而臭氧能够优先氧化分解难凝聚有机物中的大分子物质,明显减弱腐殖质类物质的荧光峰强度,但不改变荧光峰位置.同时采用光电子能谱分析有机物结构的变化规律,结果表明混凝能够去除含羧基类官能团有机物,而臭氧则易于与含苯环类难凝聚有机物反应,随着臭氧投加量的增大,脂肪类饱和有机物含量有所升高.  相似文献   

13.
微气泡曝气生物膜反应器是微气泡曝气技术与好氧生物处理相结合的新型处理工艺.本研究采用微气泡曝气生物膜反应器在低气水比下处理低C/N比废水,考察了生物脱氮过程和性能,并分析了脱氮功能菌群变化.结果表明,通过低气水比(小于1∶2)控制DO浓度并降低进水C/N比,可以实现生物脱氮过程从同步硝化-反硝化向同步短程硝化-厌氧氨氧化-反硝化(SNAD)过程转变,并可获得较高的低C/N比废水生物脱氮性能. DO浓度低于1. 0 mg·L-1、进水C/N比为1∶2. 8时,SNAD过程成为生物脱氮的主要途径,TN平均去除率可达到76. 3%,TN平均去除负荷为1. 42 kg·(m3·d)-1,厌氧氨氧化过程对TN去除的贡献率为86. 0%.随着进水C/N比降低,生物膜中亚硝化菌群和厌氧氨氧化菌群的相对丰度逐渐增加,而硝化菌群和反硝化菌群的相对丰度逐渐降低.生物脱氮功能菌群变化与脱氮过程转变为SNAD过程相一致.  相似文献   

14.
为了解不同进水C/P条件下同步硝化内源反硝化除磷(SNEDPR)的脱氮除磷特性.以实际城市污水为处理对象,采用延时厌氧(180 min)/低氧(溶解氧0.5~1.0 mg·L~(-1))运行的序批式反应器(SBR),考察了进水C/P(分别为60、30、20、15、10)对系统C、N、P去除特性的影响.结果表明:适当降低进水C/P(由60降至30)有利于提高系统内PAOs竞争优势.当C/P为30时系统除磷性能最高,厌氧段释磷速率(PRR)和好氧段吸磷速率(PUR,以P/MLSS计,下同)分别高达3.5mg·(g·h)-1和4.2 mg·(g·h)-1,出水PO3-4-P浓度均低于0.3 mg·L~(-1),且PPAO,An高达88.1%;但进一步降低进水C/P至10时,PO3-4-P去除率和PPAO,An分别由38.1%和82.4%降低至3.1%和5.3%,PRR和PUR分别仅为0.2 mg·(g·h)-1和0.24mg·(g·h)-1,系统表现出较差的除磷性能.降低C/P对系统COD去除性能没有影响,COD去除率稳定在85%左右.此外,当C/P由60降低至20时,系统硝化性能变差,表现为出水NH+4-N和NO-2-N浓度分别由0和6.9 mg·L~(-1)升高至5.1 mg·L~(-1)和16.2 mg·L~(-1);而当C/P进一步降低至10时,系统硝化性能得以恢复,但亚硝积累特性遭到破坏,表现为出水NH+4-N和NO-2-N浓度逐渐降低为0,但出水NO-3-N浓度由0.08 mg·L~(-1)升高至14.1 mg·L~(-1).SNED率先由62.1%降低为36.4%后又逐渐提高至56.4%.C/P低于15时,有利于提高GAOs的竞争优势,且C/P由20降至10时系统脱氮性能得以恢复,原因在于GAOs内源反硝化作用的增强.  相似文献   

15.
刘春  陈蕊  张静  杨旭  陈晓轩  郭延凯  武明泽  庞勃 《环境科学》2022,43(9):4608-4615
采用臭氧微气泡预处理实际制药废水,并与氮气微气泡、臭氧普通气泡和氮气普通气泡处理过程比较,考察悬浮固体(SS)和有机物去除过程和性能.结果表明,臭氧微气泡存在强吸附-气浮-氧化作用,显著增强SS去除能力,60 min时SS去除率可达到81.67%,同时SS粒径减小,SS表面负电荷转变为正电荷.微气泡臭氧化具有强·OH氧化作用,显著增强有机物降解去除能力,60 min时溶解性COD (SCOD)去除率可达到36.60%,且SS去除可加速SCOD去除,UV254去除率可达到36.91%,同时可生化性改善和生物毒性消除作用明显.三维荧光和GC-MS分析表明,微气泡臭氧化可有效氧化破坏废水中复杂结构大分子有机物,显著降低废水中有机物芳香性.微气泡臭氧化可为高浓度难降解实际制药废水提供高效可行的预处理手段.  相似文献   

16.
生活污水预沉淀-SNAD颗粒污泥工艺小试   总被引:1,自引:1,他引:0  
李冬  崔雅倩  赵世勋  刘志诚  张杰 《环境科学》2019,40(4):1871-1877
采用人工配水,在SBR反应器中启动同步短程硝化、厌氧氨氧化耦合反硝化(SNAD)颗粒污泥工艺,随后逐渐降低进水氨氮浓度,低氨氮稳定运行一段时间后通入预沉淀后生活污水,考察SNAD颗粒污泥工艺处理生活污水的脱氮性能及稳定性.结果表明,SNAD工艺启动成功后,氨氮去除率大于98%,总氮去除率在89%左右,随着进水氨氮浓度逐渐降低,亚硝酸盐氧化菌(NOB)活性升高,总氮去除率逐渐下降至75%左右.通入预沉淀生活污水(NH4+-N 52~63 mg·L-1,COD 99~123 mg·L-1)后,平均总氮去除率为73.2%,出水COD浓度在35 mg·L-1以下,最大出水氨氮和总氮浓度为0.7 mg·L-1和12.8 mg·L-1,连续30d以上出水氨氮和总氮浓度达到《城镇污水处理厂污染物排放标准》一级A排放标准,实现了生活污水碳氮同步高效去除的目的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号