首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
青岛采暖期不同天气状况下大气颗粒态无机氮分布研究   总被引:9,自引:5,他引:4  
于2007-10~2008-04采集了青岛近海采暖前及采暖期内大气气溶胶样品,并运用离子色谱法(IC)分析了颗粒物中的无机氮组分.结果表明,采暖期内青岛颗粒物和无机氮的浓度都有明显增加,采暖期颗粒物质量浓度为137.41μg/m3,比采暖前增加了82.2%;NO3--N和NH4+-N浓度分别由采暖前的2.48μg/m3和6.95μg/m3增加到采暖期的4.43μg/m3和10.28μg/m3.天气过程对于青岛颗粒物浓度和无机氮离子浓度均有较大影响.采暖期晴天颗粒物浓度均值为181.34μg/m3,较采暖前增加32.0%,主要源于二次气溶胶的NH4+-N和NO3--N浓度分别为5.56μg/m3和1.86μg/m3,低于采暖前.雾天因为低温高湿和污染物的循环积累,样品中颗粒物、NH4+-N和NO3--N平均浓度比采暖前浓度增加了1~2倍.大风降温天气下颗粒物浓度及无机氮组分浓度均有所降低.采暖期烟尘和飞灰的排放明显影响青岛大气颗粒物和无机氮的粒径分布,特别是细粒子部分.青岛近海颗粒物及NO3--N质量浓度呈现双峰分布,采暖前峰值出现在0.43~0.65μm与3.3~4.7μm的范围内,采暖期积聚模态峰值移至0.65~1.1μm范围内.NH4+-N粒径分布均呈现明显的单峰分布,峰值出现在积聚模态.  相似文献   

2.
青岛近海生物气溶胶中总微生物的分布特征   总被引:5,自引:5,他引:0  
宫静  祁建华  李鸿涛 《环境科学》2019,40(8):3477-3488
为了解生物气溶胶中总微生物浓度的月季分布和粒径分布特征,于2016年9月~2017年7月期间在青岛近海连续采集了大气生物气溶胶分级样品,并利用DAPI染色-荧光显微镜计数方法测定了生物气溶胶中总微生物浓度.结果表明,采样期间青岛近海生物气溶胶中总微生物浓度范围为1. 86×10~5~2. 54×10~6cells·m~(-3),平均值为(6. 84±4. 83)×10~5cells·m~(-3).大气中总微生物浓度的季节变化为春季和冬季较高,夏季较低,秋季最低,统计分析显示秋季和春季、夏季大气中总微生物浓度具有明显的季节变化差异(P 0. 05).生物气溶胶中总微生物月均浓度在2. 65×10~5~1. 12×10~6cells·m~(-3)之间,最高值出现在2017年2月,最低值出现在2016年9月. 2015~2017年青岛秋冬季大气中总微生物浓度一日中变化较大,但并未呈现出明显的日变化规律(P 0. 05).生物气溶胶中总微生物的粒径分布呈现偏态分布, 7. 0μm粒径所占比例最高,可达20. 5%~27. 3%;粒径分布随月份不同而有变化,呈现双峰分布和偏态分布两类.相关性分析显示,总微生物浓度与AQI、CO、PM_(2.5)和PM_(10)等因子呈显著正相关(P 0. 05),与温度、风速和风向等气象因素以及NO_2、SO_2和O_3等因子无显著相关(P 0. 05).多元线性回归模拟结果显示,生物气溶胶总微生物浓度中20. 6%的变化与相对湿度和PM_(2.5)相关.  相似文献   

3.
青岛大气气溶胶中无机氮组分的粒径分布特征   总被引:2,自引:0,他引:2  
2005年7月~2006年8月对青岛大气气溶胶进行为期1a的连续观测,分析了气溶胶颗粒以及气溶胶中无机氮组分(NO2-N、NH4-N、NO3-N)的粒径分布。结果表明:颗粒物随粒径分布全年呈现明显的双峰分布,最高峰值出现于0.43~0.65μm的积聚模态,次峰值出现于3.3~4.7μm的粗模态,春季三月沙尘期间的粗模态峰值最为明显。NO3-N的分布略微复杂,夏、春季节与颗粒物类似呈现双峰分布,在粗粒态和细粒态上各出现峰值,而秋冬季节呈现单峰分布,最高峰值均出现在积聚模态;NO2-N性质不稳定,无明显的季节变化规律,但其全年平均却表现出一定的规律,呈现多模态分布;NH4-N的粒径分布的峰值均呈现单峰分布,峰值出现于0.43~0.65μm的积聚模态,无明显的季节变化。另外研究发现,春季沙尘天气和夏季海盐组分都对青岛大气气溶胶颗粒物及其中无机氮组分的粒径分布均有一定影响。  相似文献   

4.
利用2010年春季在青岛观测的不同粒径大气颗粒物数浓度,结合同期的Micaps天气图资料及后向轨迹分析资料,探讨了不同天气条件及气团来源不同时青岛大气颗粒物数浓度谱的变化特征.结果表明,沙尘发生前12h,大气中0.3~1.0μm的细粒子数浓度逐渐小幅升高,沙尘发生时>1.0μm粗颗粒物数浓度较沙尘发生前升高了1~10倍,0.3~1.0μm细颗粒物数浓度则降低了20%~45%.降雨使>1.0μm粗粒子数浓度降低>50%,降雨后大气颗粒物尤其是细粒子数浓度很快回升.雾和霾天气发生时1.0μm粗粒子数浓度较高,而局地源气溶胶中粗粒子数浓度较低,<0.7μm细粒子相对贡献较大.  相似文献   

5.
为探明天气状况对可培养微生物气溶胶分布特性的影响,于2014年8月-2015年7月利用Anderson六级空气微生物采样器对西安市微生物气溶胶进行采样,通过培养法检测分析了可培养细菌和真菌气溶胶在1 a的月际与季节性浓度变化特征,重点研究了不同天气状况下气溶胶的浓度与粒径分布.结果表明:西安市可培养细菌和真菌气溶胶月均浓度均在10月最高,分别为(1 004.81±546.14)和(765.54±544.36)CFU/m3.可培养细菌和真菌气溶胶的季节平均浓度均在夏季最低,分别为(361.96±56.96)和(280.33±74.43)CFU/m3;不同天气条件下气溶胶的浓度变化为晴天 < 雨天 < 阴云天 < 霾天.可培养细菌气溶胶在晴天、阴云天、雨天和霾天粒径分布的峰值分别出现在3.3~4.7、4.7~7.0、3.3~4.7、3.3~4.7 μm区间上,表现为明显的单峰分布;而可培养真菌气溶胶的粒径分布在非霾天则无显著性差异(P>0.05).不同天气状况下可呼吸微生物气溶胶均超过总微生物气溶胶的60%.各天气状况下可培养细菌气溶胶的几何中值直径大于真菌气溶胶.   相似文献   

6.
北京雾霾天气生物气溶胶浓度和粒径特征   总被引:11,自引:6,他引:5  
高敏  仇天雷  贾瑞志  韩梅琳  宋渊  王旭明 《环境科学》2014,35(12):4415-4421
近年来北京雾霾天气频发,空气颗粒物聚集是导致雾霾天气发生的主要原因之一.作为一种重要的空气颗粒物,生物气溶胶对人体健康存在危害.本研究调查了雾霾天气时,生物气溶胶浓度和粒径分布规律;对其同空气质量指数PM2.5(AQI),环境温度和湿度间的Spearman’s相关性进行了研究;分析了冬夏两季重度雾霾天气时,生物气溶胶粒径分布规律.结果表明,生物气溶胶浓度与PM2.5(AQI)呈负相关,与环境温度呈正相关.环境湿度与细菌气溶胶浓度呈负相关而与真菌气溶胶浓度呈正相关.在冬季,最大浓度细菌和真菌气溶胶分别在4.5~7.0μm和2.1~3.3μm粒径范围内检测到,而夏季最高浓度细菌和真菌气溶胶均分布在3.3~4.5μm范围内.本研究结果将为不同雾霾天气下,评价生物气溶胶对人类健康造成的危害提供基础数据.  相似文献   

7.
为了研究生物气溶胶中微生物活性水平和活性粒径分布特征,于2015年11月~2016年1月在青岛近海运用分级生物气溶胶采样器连续采集了生物气溶胶样品,并用荧光素二乙酸酯(fluorescein diacetate,FDA)水解法进行了活性测定.结果表明,采样期间青岛地区气溶胶中微生物活性水平(以荧光素钠计)范围为21.89~108.59 ng·m~(-3),平均值为59.43 ng·m~(-3).微生物活性的粒径分布呈现活性随粒径增大而增大,粗粒径(2.1μm)高于细粒径(2.1μm)的特征,在7.0μm粗粒子上所占比例最高,平均为24.06%.冬季微生物活性在一天当中变化较大,并未呈现出明显的昼间变化规律.相关性分析显示采样期间微生物活性与风速之间存在显著正相关关系(r=0.445,n=33,**P0.01),与温度、湿度和紫外线强度等气象因素以及AQI、PM_(2.5)、PM_(10)、CO、NO_2、O_3、SO_2等因子无显著相关性.气团来源对微生物活性具有明显影响.晴天微生物活性平均水平为100.33 ng·m~(-3),霾天微生物活性降低,平均水平降为56.53 ng·m~(-3),随着雾-霾天持续出现,活性迅速降低至晴天水平的37.7%,可见持续雾-霾天对微生物活性的影响更大.  相似文献   

8.
太原市大气颗粒物粒径和水溶性离子分布特征   总被引:9,自引:8,他引:1  
在太原市于2014年7月至2015年4月利用TE-235分级采样器采集PM_(10)分级颗粒物样品,通过离子色谱分析其中9种无机水溶性离子,报道了大气颗粒物(PM_(10))及其水溶性无机离子水平,探讨了其粒径分布、季节变化特征和来源.结果表明,采样期间太原市PM_(10)日平均浓度水平为173.7μg·m~(-3),超过了国家环境空气二级日标准限值(150μg·m~(-3),GB3095-2012);冬季PM_(10)浓度(199.1μg·m~(-3))和春季(194.2μg·m~(-3))较接近,远高于夏季水平(127.7μg·m~(-3)).PM_(10)在0.95μm和3.0~7.2μm粒径段处呈双峰分布.PM_(10)中总离子浓度季节变化为冬季夏季春季,其中SO~(2-)_4、NO~-_3和NH~+_4是主要离子,占总离子的质量分数为66%~80%.分级离子中,SO~(2-)_4、K~+、NH~+_4、Cl~-以及冬、春季的NO~-_3在0.95μm段呈单峰分布;Ca~(2+)、Mg~(2+)和夏季NO~-_3均在0.95μm和3.0~7.2μm段呈双峰分布.相关性分析显示,风速增大对冬夏季的颗粒物及其水溶性离子有稀释作用,但春季沙尘天气则会导致其升高.通过NO~-_3/SO~(2-)_4和Mg~(2+)/Ca~(2+)比值发现,太原市颗粒物中NO~-_3和SO~(2-)_4主要来自于燃煤排放,Mg~(2+)和Ca~(2+)来源为扬尘和煤燃烧排放.  相似文献   

9.
生物气溶胶对人体健康的潜在危害不容忽视,但霾污染过程中生物气溶胶变化规律及其影响因素仍不明确.本文利用六级生物气溶胶采样器及大气颗粒物采样器开展了一次典型霾污染过程样品的采集,通过恒温培养测定可培养细菌和真菌浓度,采用4’,6-二脒基-2-苯基吲哚(4’,6-diamidino-2-phenylindole,DAPI)和LIVE/DEAD BacLightTM试剂染色-荧光显微镜计数方法测定总微生物及死/活细菌浓度,并通过其与颗粒物中水溶性离子、金属元素、气象因素及大气氧化性的关系探讨了生物气溶胶分布的影响因素.结果表明,霾污染过程中,可培养细菌和总微生物在轻度污染时浓度最低,随着污染加重其浓度逐渐升高.可培养真菌浓度在霾发生初期大幅增加,平均浓度为污染发生前2.5倍.活菌和死菌浓度在霾过程均呈现先急剧下降后逐渐上升的趋势.可培养细菌粒径分布在霾污染过程中呈现偏态分布(0.65~1.1μm,除中度污染外)和双峰分布(> 7.0μm和1.1~2.1μm,中度污染),可培养真菌粒径在整个污染过程中呈单峰分布,峰值分别为0.65~1.1μm(污染发生前、中度污染和污染结束)和1.1~2...  相似文献   

10.
谢丹丹  祁建华  张瑞峰 《环境科学》2017,38(7):2667-2678
于2015年9月至2016年2月在青岛近海连续收集了大气气溶胶分级样品,用离子色谱法分析了其中的水溶性无机离子组分,并讨论了不同强度霾天下气溶胶中二次无机组分的粒径分布,初步探索了霾天SNA的形成过程和影响因素.结果表明,气溶胶中NO_3~-、SO_4~(2-)、NH_4~+、NO_2~-和Cl~-的质量浓度变化范围分别是10.32~193.46、4.42~74.05、2.21~57.75、0.05~2.22和1.35~17.39μg·m~(-3),且SNA的质量浓度随霾污染程度的加剧明显增加.与非霾天相比,轻微、轻度、中度和重度霾天与非霾天相比,NO_3~-的质量浓度分别增加了55%、77%、240%和537%;SO_4~(2-)的质量浓度分别增加了4.7%、35%、77%和262%;NH_4~+的质量浓度分别增加了72%、83%、201%和526%.细粒径上的NO_3~-、SO_4~(2-)与其气态前体物NO_2、SO_2均有显著相关性,且与相对湿度、能见度、风速等气象条件相关性较好,说明细粒径SNA的生成是造成霾天能见度下降,形成空气污染的主要原因之一,同时,高浓度前体物、较大相对湿度、低风速都是影响霾天形成的重要因素.除轻微霾天外,其他不同强度霾天的SOR(硫氧化率)、NOR(氮氧化率)均大于非霾天,且随着霾程度的加剧,SOR、NOR都有明显的升高,尤其是0.43~0.65μm和0.65~1.1μm粒径段;在重度霾天,氮和硫的转化率平均为非霾天的1.5倍,说明细粒径上的硫酸盐和硝酸盐大部分是气-粒转化而来.NO_3~-、NH_4~+、NO_2~-和SO_4~(2-)主要存在于细粒径段,霾天下在细粒径上的比例都显著增大,NO_3~-和SO_4~(2-)在严重霾天所占比例最高,分别达到79.4%和74.4%.NO_3~-在非霾、轻微、轻度霾天时均呈双峰分布,峰值出现在0.43~0.65μm和3.3~4.7μm处,中度霾天时细粒子峰值移动到0.65~1.1μm,在重度霾天粒径分布变为0.65~1.1μm的单峰分布.SO_4~(2-)只在非霾条件下呈双峰分布,峰值出现在0.43~0.65μm和2.1~3.3μm粒径段,霾天下均是单峰分布,轻微和轻度霾天下峰值出现在0.43~0.65μm,中度和重度霾天下峰值在0.65~1.1μm处.NH_4~+呈单峰分布,在非霾和轻微霾天下峰值出现在0.43~0.65μm粒径段,轻度、中度和重度霾天下峰值均出现在0.65~1.1μm粒径段.  相似文献   

11.
采用共沉淀法合成了TiO_2及TiO_2-Fe_2O_3载体,并对硫酸氢铵与上述载体之间的相互作用及硫酸氢铵的具体分解行为进行了研究.结果表明,催化剂载体表面含硫官能团主要以双齿硫酸盐的形式存在,含氮官能团以铵根离子的形式存在.当硫酸氢铵沉积于催化剂载体表面时,由于硫酸根离子具有较强的电负性,Ti原子及Fe原子处于电子缺失状态.对于TiO_2载体,硫酸根离子主要与Ti原子相连;而对于TiO_2-Fe_2O_3载体,Ti原子及Fe原子均为硫酸根离子主要的附着位点.采用热分析方法及原位红外对硫酸氢铵在TiO_2及TiO_2-Fe_2O_3载体表面的分解行为进行了研究,发现铁氧化物的添加显著促进了硫酸氢铵在低温区间内的分解行为;与铵根离子相比,硫酸根离子具有更高的热稳定性.催化剂稳定性测试结果表明,铁氧化物的添加显著提高了低温抗硫抗水性能,为实现低温SCR技术的工业应用提供了理论基础.  相似文献   

12.
方婧  余博阳 《环境科学》2013,34(10):4050-4057
采用实验室柱淋溶方法,考察了纳米CeO2、纳米TiO2和纳米Al2O3材料在不同土壤中的运移行为,分析了纳米材料在土壤中运移能力与土壤性质的相关性,并采用胶体运移动力学模型估算了纳米材料在土壤中的最远运移距离.结果表明,纳米CeO2和纳米TiO2在试验的大部分土壤中有很强的运移能力,而纳米Al2O3仅在试验的酸性土壤中有较强的运移能力,在其他土壤中几乎被全部截留.纳米材料在土壤中运移的机制非常复杂,静电作用、土壤表面电荷异质性、团聚作用、张力作用(straining)以及过滤熟化作用(ripening)均对纳米材料的运移有着重要的影响.纳米CeO2的运移能力与土壤Zeta电位显著负相关;纳米TiO2的运移能力与土壤黏粒含量显著负相关,与土柱渗透系数显著正相关;纳米Al2O3的运移能力与土壤pH显著负相关,与土柱渗透系数显著正相关.模型估算的纳米CeO2、纳米TiO2和纳米Al2O3在试验土壤中的最远运移距离分别为52~69 043、31~332和<10~5 722 cm.纳米材料在一些土壤中的最远运移距离远远大于30 cm表层土壤的深度,意味着纳米材料在这些土壤中有向深层土壤运移的可能.  相似文献   

13.
紫外光照下盐酸环丙沙星的光解性能   总被引:1,自引:0,他引:1  
本研究重点考察了盐酸环丙沙星初始浓度、硝酸铅、硝酸镉、氯化铅、氯化镉等重金属盐对盐酸环丙沙星光降解性能影响.结果表明,黑暗条件下环丙沙星无降解;紫外光照可以有效去除环丙沙星,且环丙沙星的光降解速率随其初始浓度的增大而降低;硝酸铅和硝酸镉(除0.006 mmol·L~(-1)体系外)可以促进环丙沙星的光降解,且随摩尔比的增大(即硝酸盐浓度的降低),环丙沙星的半衰期逐渐增大;随着摩尔比的增大(即氯化盐浓度的降低),氯化铅和氯化镉先促进后抑制环丙沙星的光降解.  相似文献   

14.
采用水热合成法制备Cu-Al2O3-g-C3N4类芬顿催化剂,以扫描电镜(SEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)、电子自旋共振(EPR)、拉曼光谱(Raman)对所制备的催化剂及反应过程进行表征.以染料亚甲基蓝(MB)和罗丹明B(Rh-B)及小分子有机物2,4-二氯苯氧乙酸(2,4-D)、双酚A(BPA)和苯妥英(PHT)为目标污染物,研究催化剂在初始pH=7条件下的类芬顿催化活性.同时,探讨Cu掺杂量和有机物配体g-C3N4掺杂量对体系催化性能的影响,并验证晶格氧诱发与有机配体络合两种方式对催化剂活性和稳定性提高产生的影响.DMPO-EPR自由基测定实验及Raman光谱监测催化反应过程验证表明:Cu的晶格氧掺杂诱发了靠近铜晶格O2·-的富电子Cu中心,以及靠近铝晶格O2·-的缺电子Al中心;引入的g-C3N4以阳离子π作用形式通过σ-型Cu—O—C键桥将π体系上的电子转移至Cu,形成一个新的缺电子π中心.在H2O2存在的情况下,富电子Cu中心将电子传递给H2O2,使其被还原为·OH;同时,体系中H2O的电子被缺电子中心剥夺,进而氧化为·OH.羟基自由基转化率TOFs值的进一步计算结果表明,Cu-Al2O3-g-C3N4体系中TOF值为0.516 s-1,是传统均相芬顿体系TOF值(1.53×10-2 s-1)的33倍以上.  相似文献   

15.
邯郸市大气复合污染特征的监测研究   总被引:8,自引:2,他引:6  
利用邯郸市4个大气环境监测站点的PM2.5、PM10、O3等在线连续观测数据,对2013年全年的PM2.5、PM10、O3的浓度水平、变化规律和PM2.5/PM10的变化情况进行了分析,并从地形、气象、污染物排放及冬、夏季逐时PM2.5、O3和各类气体污染物浓度之间的关系等方面进行了研究.结果表明:12013年PM2.5、PM10的年均浓度分别为139和238μg·m-3,分别是国家二级标准的4.0倍和3.4倍.PM2.5、PM10日均浓度超过标准的天数均在280 d左右,全年3/4以上天数均超标.其颗粒物污染程度甚至超过北京、天津、长三角和珠三角等超大城市或城市群,属于严重超载的红色预警地区.整个采暖期PM2.5、PM10平均浓度分别为209和322.1μg·m-3,为非采暖期平均浓度的2倍和1.6倍;同时,采暖期PM2.5/PM10平均值为63%,高出非采暖期10%,采暖期细颗粒物污染问题特征明显.22013年O3日最大8小时平均浓度的最大值为238μg·m-3,是国家二级标准的1.5倍,超标天数为53 d,超标率为14.5%;最大时均浓度为288μg·m-3,是国家二级标准的1.4倍,超标小时数为148h,占全年有效数据的1.7%;与北方城市相比,其污染程度超过北京、天津等,略低于洛阳污染水平.3邯郸市大气复合污染的形成,除了区域大气环流与特殊地形叠加影响外,还主要归因于相对较高的人为源大气污染物排放,因此,要想走出复合污染的困局,减排是硬道理,解决灰霾污染需开展颗粒物、NOx、SO2等污染物的协同控制.  相似文献   

16.
浮游植物最大光合作用效率(F_v/F_m)可以判断水生生态环境状况,是探究梯级筑坝对河流生态环境影响的重要参数。本研究对三岔河梯级水库的浮游植物F_v/F_m及相关的水化学参数进行了季节性调查,探讨F_v/F_m的时空变化及其环境影响因素。结果表明,F_v/F_m具有明显的时空差异性,在空间分布上为库区下泄水河流;F_v/F_m和浮游植物总细胞丰度呈现显著正相关,库区总细胞丰度大,F_v/F_m比其它区域高。在时间分布上为冬季夏季≈秋季春季,表明浮游植物在水温较低时,会提高光合作用效率,F_v/F_m增高。  相似文献   

17.
Al2O3为载体的催化剂净化贫燃汽车尾气研究   总被引:2,自引:0,他引:2  
在富氧条件下,考察了C3H6和C2H5OH在Ag/Al2O3、In/Al2O3、Sn/Al2O3、Co/Al2O3、Pt/Al2O3和Ag/Al2O3+Pt/Al2O3组合催化剂上选择性还原NO的性能.结果表明,Ag/Al2O3具有最高的NO还原活性.在负载型过渡金属氧化物催化剂上,会生成显著量的CO,其HC和CO氧化转化温度也远远高于Pt/Al2O3催化剂.串联组合Ag/Al2O3+Pt/Al2O3催化剂可显著拓宽活性温度范围,促进HC和CO氧化,降低N2O和CH3CHO生成量.  相似文献   

18.
李航  封磊  宋萍  游凯  苏丹  刘洁  黄楠 《环境科学学报》2020,40(5):1692-1702
通过热聚合法制备不同比例Cu掺杂g-C3N4复合光催化材料,利用XRD、SEM/EDX、FT-IR、UV-Vis DRS、PL、XPS等技术对复合材料的形貌结构和光学性能进行表征,研究了复合材料对藻细胞的光催化灭活效果.结果表明,Cu掺杂改性可有效促进g-C3N4材料表面光生电子-空穴的分离,增强其对可见光的利用率,进而提升其光催化效率;随着Cu掺杂比例的增大,Cu-C3N4对藻细胞的灭活效果则越好.进一步研究发现,H2O2和·O-2是Cu-C3N4光催化灭藻过程中起主要作用的活性物质,会损伤藻细胞的形态结构、抗氧化酶系统和光合系统,导致藻细胞大量死亡.  相似文献   

19.
为研究Na2SO4中毒SCR催化剂(V2O5-WO3/TiO2催化剂)对SO3生成特性的影响,采用湿式浸渍法制备w(Na)为3%的Na2SO4中毒SCR催化剂,并通过N2物理吸附/脱附、XRD(X射线衍射)技术、SEM(扫描电镜)、XPS(X射线光电子能谱)分析技术对催化剂的物理化学特性进行表征.结果表明:①随着反应温度的升高,所有催化剂上的SO3生成率逐渐增加.当温度升至490℃时,SCR催化剂上的SO3生成率为0.85%,而3% Na2SO4中毒SCR催化剂上的SO3生成率高达1.36%.SO42-的存在导致V-O-S增多,从而促进SO3的生成.②随入口ρ(SO2)的增加,SO3生成率呈下降的趋势.当入口ρ(SO2)为1 000 mg/m3时,3% Na2SO4中毒SCR催化剂上的SO3生成率为1.02%,而SCR催化剂上仅为0.60%.ρ(SO2)对SO3生成率的影响主要依赖于温度和催化剂活性位点数等.③N2物理吸附/脱附、XRD和SEM表征结果表明,与SCR催化剂相比,Na2SO4中毒SCR催化剂表面有Na2SO4的积聚,出现了裂纹和大孔隙,催化剂的比表面积和孔容下降,这些变化均不利于催化剂的催化性能;XPS结果表明,Na2SO4的加入提高了表面化学吸附氧含量,降低了活性组分中w(V4+)/w(V5+)的值.研究显示,相比于SCR催化剂,Na2SO4中毒SCR催化剂上的SO3生成率大幅增加.   相似文献   

20.
利用中国环境监测总站发布的实时大气环境监测资料,选择北京国家奥林匹克体育中心(下称北京奥体中心)为研究对象,分析了2014年全年北京奥体中心空气质量演变特征. 结果表明:①2014年全年北京奥体中心首要污染污染物为PM2.5,其次是NO2,而PM2.5和PM10出现中度污染以上的污染事件主要集中在冬季和春末秋初;②PM2.5、PM10、SO2、NO2、O3和CO等主要污染物的年均质量浓度分别为89.75、141.12、21.83、64.26、48.60和1 210 μg/m3. 其中年均ρ(PM2.5)是GB 3095—2012《环境空气质量标准》二级标准限值(35 μg/m3)的2.6倍,年均ρ(PM10)也是其二级标准限值(70 μg/m3)的2.0倍,年均ρ(SO2)略高于其一级标准限值(20 μg/m3),而年均ρ(NO2)则高于其标准限值(40 μg/m3);③北京奥体中心全年逐月ρ(SO2)/ρ(NO2)都小于1.00,年均值为0.37,反映出北京目前硝酸型污染特征越来越明显;④针对不同污染等级下各类污染物质量浓度的分析结果显示,严重污染时ρ(PM2.5)和ρ(PM10)平均值分别高达324.75和494.98 μg/m3,分别是世界卫生组织(WHO)《空气质量准则》推荐24 h平均浓度准则值的13和10倍,其浓度如此之高会对人体健康造成严重危害;⑤ρ(PM2.5)年均24 h变化趋势表明,ρ(PM2.5)具有明显的日变化特征,出现2个峰值,高峰值出现在午夜时分(23:00—翌日01:00),次高峰值出现在上午(09:00—11:00),最低值出现在下午(15:00—17:00),次低谷值则出现在凌晨(05:00—07:00),说明ρ(PM2.5)除与混合层高度日变化特征密切相关外,还与人们的日常生活有一定联系.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号