首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbonaceous species (organic carbon [OC] and elemental carbon [EC]) and inorganic ions of particulate matter less than 2.5 μm (PM2.5) were measured to investigate the chemical characteristics of long-range-transported (LTP) PM2.5 at Gosan, Jeju Island, in Korea in the spring and fall of 2008–2012 (excluding 2010). On average, the non-sea-salt (nss) sulfate (4.2 µg/m3) was the most dominant species in the spring, followed by OC (2.6 µg/m3), nitrate (2.1 µg/m3), ammonium (1.7 µg/m3), and EC (0.6 µg/m3). In the fall, the nss-sulfate (4.7 µg/m3) was also the most dominant species, followed by OC (4.0 µg/m3), ammonium (1.7 µg/m3), nitrate (1.1 µg/m3), and EC (0.7 µg/m3). Both sulfate and OC were higher in the fall than in the spring, possibly due to more common northwest air masses (i.e., coming from China and Korea polluted areas) and more frequent biomass burnings in the fall. There was no clear difference in the EC between the spring and fall. The correlation between OC and EC was not strong; thus, the OC measured at Gosan was likely transported across a long distance and was not necessarily produced in a manner similar to the EC. Distinct types of LTP events (i.e., sulfate-dominant LTP versus OC-dominant LTP) were observed. In the sulfate-dominant LTP events, air masses directly arrived at Gosan without passing over the Korean Peninsula from the industrial area of China within 48 hr. During these events, the aerosol optical depth (AOD) increased to 1.63. Ionic balance data suggest that the long-range transported aerosols are acidic. In the OC-dominant LTP event, a higher residence time of air masses in Korea was observed (the air masses departing from the mainland of China arrived at the sampling site after passing Korea within 60–80 hr).

Implications:?In Northeast Asia, various natural and anthropogenic sources contribute to the complex chemical components and affect local/regional air quality and climate change. Chemical characteristics of long-range-transported (LTP) PM2.5 were investigated during spring and fall of 2008, 2009, 2011, and 2012. Based on air mass types, sulfate-dominant LTP and OC-dominant LTP were observed. A long-term variation and chemical characteristics of PM2.5 along with air mass and satellite data are required to better understand long-range-transported aerosols.  相似文献   

2.
Positive matrix factorization (PMF) was used to infer the sources of PM2.5 observed at four sites in Georgia and Alabama. One pair of urban and rural sites in each state is used to examine the regional and urban influence on PM2.5 concentrations in the Southeast. Eight factors were resolved for the two urban sites and seven factors were resolved for the two rural sites. Spatial correlations of factors were investigated using the square of correlation coefficient (R2) calculated from the resolved G factors. Fourier transform was used to define the temporal characteristics of PM2.5 factors at these sites. Factors were normalized by using aerosol fine mass concentration data through multiple linear regression to obtain the quantitative factor contributions for each resolved factor. Common factors include: (1) secondary sulfate dominated by high concentrations of sulfate and ammonium with a strong seasonal variation peaking in summer; (2) nitrate and the associated ammonium with a seasonal maximum in winter; (3) “coal combustion/other” factor with presence of sulfate, EC, OC, and Se; (4) soil represented by Al, Ca, Fe, K, Si and Ti; and (5) wood smoke with the high concentrations of EC, OC and K. The motor vehicle factor with high concentrations of EC and OC and the presence of some soil dust components is found at the urban sites, but cannot be resolved for the two rural sites. Among the other factors, two similar industry factors are found at the two sites in each state. For the wood smoke factor, different seasonal trends are found between urban and rural sites, suggesting different wood burning patterns between urban and rural regions. For the industry factors, different seasonal variations are also found between urban and rural sites, suggesting that this factor may come from different sources or a common source may impact the two sites differently. Generally, sulfate, soil, and nitrate factors at the four sites showed similar chemical composition profiles and seasonal variation patterns reflecting the regional characteristics of these factors. These regional factors have predominantly low frequency variations while local factors such as coal combustion, motor vehicle, wood smoke, and industry factors have high frequency variations in addition to low frequency variations.  相似文献   

3.
Fine particles were collected over four seasons from October 1995 to August 1996 to evaluate the chemical characteristics of principal PM2.5 components in Chongju, South Korea. The annual mean concentrations of PM2.5 (dp⩽2.5 μm), sulfate, nitrate, ammonium, elemental carbon (EC) and organic carbon (OC) were 44.2, 8.22, 3.63, 2.84, 4.44 and 4.99 μg m−3, respectively. The sum of the species measured from this study accounted for 50–62% of the PM2.5 mass. Sulfate was the most abundant species and constituted 13–23% of the PM2.5 mass. The EC and OC accounted for 17–28% of PM2.5. The correlation between OC and EC was strong, and the annual mean ratio of OC/EC was 1.12, suggesting that OC measured in the Chongju area may be emitted directly in particulate form as a primary aerosol.  相似文献   

4.
 This study is aimed to characterize the major chemical compositions of PM2.5 from incense burning in a large environmental chamber. Chemical analyses, including X-ray fluorescence for elemental species, ion chromatography for water soluble inorganic species (chloride, nitrate, sulfate, sodium, potassium, ammonium) and thermal/optical reflectance analysis for carbon species were carried out for combustion of three incense categories (traditional, aromatic and church incense). The average concentrations from incense burning ranged from 139.8 to 4414.7 μg m−3 for organic carbon (OC), and from 22.8 to 74.0 μg m−3 for elemental carbon (EC), respectively. The average OC and EC concentrations in PM2.5 of three incense categories were in the order of church incense>traditional incense>aromatic incense. OC/EC ratios ranged from 7.0 to 39.1 for the traditional incense, with an average of 21.7; from 3.2 to 11.9 for the aromatic incense, with an average of 7.7. The concentrations of Cl, SO42−, Na+ and K+ were highly variable. On average, the inorganic ion concentration sequence was traditional incense>church incense>aromatic incense. The profiles for elements were dominated by Na, Cl and K. In general, the major components in PM2.5 fraction from incense burning are OC (especially OC2, OC3 and OC4), EC and K.  相似文献   

5.
Multi-year hourly measurements of PM2.5 elemental carbon (EC) and organic carbon (OC) from a site in the South Bronx, New York were used to examine diurnal, day of week and seasonal patterns. The hourly carbon measurements also provided temporally resolved information on sporadic EC spikes observed predominantly in winter. Furthermore, hourly EC and OC data were used to provide information on secondary organic aerosol formation. Average monthly EC concentrations ranged from 0.5 to 1.4 μg m?3 with peak hourly values of several μg m?3 typically observed from November to March. Mean EC concentrations were lower on weekends (approximately 27% lower on Saturday and 38% lower on Sunday) than on weekdays (Monday to Friday). The weekday/weekend difference was more pronounced during summer months and less noticeable during winter. Throughout the year EC exhibited a similar diurnal pattern to NOx showing a pronounced peak during the morning commute period (7–10 AM EST). These patterns suggest that EC was impacted by local mobile emissions and in addition by emissions from space heating sources during winter months. Although EC was highly correlated with black carbon (BC) there was a pronounced seasonal BC/EC gradient with summer BC concentrations approximately a factor of 2 higher than EC. Average monthly OC concentrations ranged from 1.0 to 4.1 μg m?3 with maximum hourly concentrations of 7–11 μg m?3 predominantly in summer or winter months. OC concentrations generally correlated with PM2.5 total mass and aerosol sulfate and with NOx during winter months. OC showed no particular day of week pattern. The OC diurnal pattern was typically different than EC except in winter when OC tracked EC and NOx indicating local primary emissions contributed significantly to OC during winter at the urban location. On average secondary organic aerosol was estimated to account for 40–50% of OC during winter and up to 63–73% during summer months.  相似文献   

6.
We applied a multiple linear regression (MLR) model to study the correlations of total PM2.5 and its components with meteorological variables using an 11-year (1998–2008) observational record over the contiguous US. The data were deseasonalized and detrended to focus on synoptic-scale correlations. We find that daily variation in meteorology as described by the MLR can explain up to 50% of PM2.5 variability with temperature, relative humidity (RH), precipitation, and circulation all being important predictors. Temperature is positively correlated with sulfate, organic carbon (OC) and elemental carbon (EC) almost everywhere. The correlation of nitrate with temperature is negative in the Southeast but positive in California and the Great Plains. RH is positively correlated with sulfate and nitrate, but negatively with OC and EC. Precipitation is strongly negatively correlated with all PM2.5 components. We find that PM2.5 concentrations are on average 2.6 μg m?3 higher on stagnant vs. non-stagnant days. Our observed correlations provide a test for chemical transport models used to simulate the sensitivity of PM2.5 to climate change. They point to the importance of adequately representing the temperature dependence of agricultural, biogenic and wildfire emissions in these models.  相似文献   

7.
Particulate matter, including coarse particles (PM2.5–10, aerodynamic diameter of particle between 2.5 and 10 μm) and fine particles (PM2.5, aerodynamic diameter of particle lower than 2.5 μm) and their compositions, including elemental carbon, organic carbon, and 11 water-soluble ionic species, and elements, were measured in a tunnel study. A comparison of the six-hour average of light-duty vehicle (LDV) flow of the two sampling periods showed that the peak hours over the weekend were higher than those on weekdays. However, the flow of heavy-duty vehicles (HDVs) on the weekdays was significant higher than that during the weekend in this study. EC and OC content were 49% for PM2.5–10 and 47% for PM2.5 in the tunnel center. EC content was higher than OC content in PM2.5–10, but EC was about 2.3 times OC for PM2.5. Sulfate, nitrate, ammonium were the main species for PM2.5–10 and PM2.5. The element contents of Na, Al, Ca, Fe and K were over 0.8 μg m?3 in PM2.5–10 and PM2.5. In addition, the concentrations of S, Ba, Pb, and Zn were higher than 0.1 μg m?3 for PM2.5–10 and PM2.5. The emission factors of PM2.5–10 and PM2.5 were 18 ± 6.5 and 39 ± 11 mg km?1-vehicle, respectively. The emission factors of EC/OC were 3.6/2.7 mg km?1-vehicle for PM2.5–10 and 15/4.7 mg km?1-vehicle for PM2.5 Furthermore, the emission factors of water-soluble ions were 0.028(Mg2+)–0.81(SO42?) and 0.027(NO2?)–0.97(SO42?) mg km?1-vehicle for PM2.5–10 and PM2.5, respectively. Elemental emission factors were 0.003(V)–1.6(Fe) and 0.001(Cd)–1.05(Na) mg km?1-vehicle for PM2.5–10 and PM2.5, respectively.  相似文献   

8.
Three years of measurement of PM2.5 with 5-min time resolution was conducted from 2005 to 2007 in urban and rural environments in Beijing to study the seasonal and diurnal variations in PM2.5 concentration. Pronounced seasonal variation was observed in the urban area, with the highest concentrations typically observed in the winter and the lowest concentrations generally found in the summer. In the rural area, the maximum in PM2.5 concentration usually appeared during the spring, followed by a second maximum in the summer, while the minimum generally occurred in the winter. Significant diurnal variations in PM2.5 concentration were observed in both urban and rural areas. In the urban area, the PM2.5 concentration displays a bimodal pattern, with peaks between 7:00 and 8:00 a.m. and between 7:00 and 11:00 p.m. The minimum generally appears around noon. The morning peak is attributed to enhanced anthropogenic activity during rush hours. The decreases of boundary layer height and wind speed in the afternoon companying with increased source activity during the afternoon rush hour result in the highest PM2.5 concentration during evening hours. In the rural area, the PM2.5 concentration shows a unimodal pattern with a significant peak between 5:00 and 11:00 p.m.The seasonal and diurnal variations in PM2.5 concentration in the urban area are mostly dominated by the seasonal and diurnal variability of boundary layer and source emissions. The year-to-year variability of rainfall also has an important influence on the seasonal variation of PM2.5 in the urban area. The seasonal and diurnal wind patterns are more important factors for PM2.5 variation in the rural area. Southerly winds carry pollutants emitted in southern urban areas northward and significantly enhance the PM2.5 concentration level in the rural area.  相似文献   

9.
Organic aerosol is the least understood component of ambient fine particulate matter (PM2.5). In this study, organic and elemental carbon (OC and EC) within ambient PM2.5 over a three-year period at a forested site in the North Carolina Piedmont are presented. EC exhibited significant weekday/weekend effects and less significant seasonal effects, in contrast to OC, which showed strong seasonal differences and smaller weekend/weekday effects. Summer OC concentrations are about twice as high as winter concentrations, while EC was somewhat higher in the winter. OC was highly correlated with EC during cool periods when both were controlled by primary combustion sources. This correlation decreased with increasing temperature, reflecting higher contributions from secondary organic aerosol, likely of biogenic origin. PM2.5 radiocarbon data from the site confirms that a large fraction of the carbon in PM2.5 is indeed of biogenic origin, since modern (non-fossil fuel derived) carbon accounted for 80% of the PM2.5 carbon over the course of a year. OC and EC exhibited distinct diurnal profiles, with summertime OC peaking in late evening and declining until midday. During winter, OC peaked during the early morning hours and again declined until midday. Summertime EC peaked during late morning hours except on weekends. Wintertime EC often peaked in late PM or early AM hours due to local residential wood combustion emissions. The highest short term peaks in OC and EC were associated with wildfire events. These data corroborate recent source apportionment studies conducted within 20 km of our site, where oxidation products of isoprene, α-pinene, and β-caryophyllene were identified as important precursors to organic aerosols. A large fraction of the carbon in rural southeastern ambient PM2.5 appears to be of biogenic origin, which is probably difficult to reduce by anthropogenic controls.  相似文献   

10.
Abstract

Data from the U.S. Environmental Protection Agency Air Quality System, the Southeastern Aerosol Research and Characterization database, and the Assessment of Spatial Aerosol Composition in Atlanta database for 1999 through 2002 have been used to characterize error associated with instrument precision and spatial variability on the assessment of the temporal variation of ambient air pollution in Atlanta, GA. These data are being used in time series epidemiologic studies in which associations of acute respiratory and cardiovascular health outcomes and daily ambient air pollutant levels are assessed. Modified semivariograms are used to quantify the effects of instrument precision and spatial variability on the assessment of daily metrics of ambient gaseous pollutants (SO2, CO, NOx, and O3) and fine particulate matter ([PM2.5] PM2.5 mass, sulfate, nitrate, ammonium, elemental carbon [EC], and organic carbon [OC]). Variation because of instrument imprecision represented 7–40% of the temporal variation in the daily pollutant measures and was largest for the PM2.5 EC and OC. Spatial variability was greatest for primary pollutants (SO2, CO, NOx, and EC). Population–weighted variation in daily ambient air pollutant levels because of both instrument imprecision and spatial variability ranged from 20% of the temporal variation for O3 to 70% of the temporal variation for SO2 and EC. Wind rose plots, corrected for diurnal and seasonal pattern effects, are used to demonstrate the impacts of local sources on monitoring station data. The results presented are being used to quantify the impacts of instrument precision and spatial variability on the assessment of health effects of ambient air pollution in Atlanta and are relevant to the interpretation of results from time series health studies that use data from fixed monitors.  相似文献   

11.
Analyses of diurnal patterns of PM10 in Taipei City have been performed in this study at different daily ozone maximum concentrations (O3,max) from 1994 to 2003. In order to evaluate secondary aerosol formation at different ozone levels, CO was used as a tracer of primary aerosol, and O3,max was used as an index of photochemical activity. Results show that when O3,max exceeds 120 ppb, the highest photochemical formation of secondary aerosol can be found at 15:00 (local time). The produced secondary aerosol is estimated to contribute 30 μg m−3 (43%) of PM10 concentration, and about 77% of the estimated secondary PM10 is composed of PM2.5. The estimated maximum concentration of secondary aerosol occurs 2–3 h later than the maximum ozone concentration. As revealed in an O3 episode, PM10 and PM2.5 vary consistently with O3 at daytime, which suggests that they are mostly secondary aerosols produced from photochemical reactions. Data collected from Taipei aerosol supersite in 2002 indicates that for all O3 levels, summertime PM2.5 is composed of 23%, 20%, 9%, and 7% of organic carbon, sulfate, nitrate, and elemental carbon, respectively. Aerosol number and volume size spectra are dominated by submicron particles either from pollution transport or photochemical reactions. Secondary PM10 concentrations show increasing tendencies for the time between 15:00 and 19:00 from 1994–1996 to 2001–2003. This reveals that the abatement of secondary PM10 becomes more important after pronounced primary PM10 reduction in a metropolis.  相似文献   

12.
To explore the effect of biodiesel and sulfur content on PM2.5 emissions, engine dynamometer tests were performed on a Euro II engine to compare the PM2.5 emissions from four fuels: two petroleum diesel fuels with sulfur contents of 50 and 100 ppm respectively, and two B20 fuels in which soy methyl ester (SME) biodiesel was added to each of the above mentioned petroleum diesel fuels (v/v: 80%/20% for petroleum diesel and SME respectively). Gaseous pollutants and PM2.5 emissions were sampled with an AVL AMA4000 and Model 130 High-Flow Impactor (MSP Corp). Measurements were made of the PM2.5 mass, organic carbon (OC), elemental carbon (EC) and the water-soluble ion distribution. The results showed that PM2.5 emissions decreased with lower sulfur content or blending with SME biodiesel, and the decrease would be more by applying both two methods together. Particles of approximately 0.13 μm contributed 48–83% of PM2.5 emissions. The impact of sulfur content on this percentage was different for low and high engine speed. The majority of PM2.5 was comprised of OC and EC, and the carbon emission rate had the same trend as PM2.5. Since the EC abatement of B20 was larger than OC, the OC/EC ratio of B20 was always larger than that of petroleum diesel. For petroleum diesel, the OC/EC increased with sulfur content, which was not the case for B20. The SO42? had highest emission rate in the water-soluble ions of PM.  相似文献   

13.
Abstract

This paper presents the results of the first reported study on fine particulate matter (PM) chemical composition at Salamanca, a highly industrialized urban area of Central Mexico. Samples were collected at six sites within the urban area during February and March 2003. Several trace elements, organic carbon (OC), elemental carbon (EC), and six ions were analyzed to characterize aerosols. Average concentrations of PM with aerodynamic diameter of less than 10 μm (PM10) and fine PM with aerodynamic diameter of less than 2.5 μm (PM2.5) ranged from 32.2 to 76.6 μg m-3 and 11.1 to 23.7 μg m-3, respectively. OC (34%), SO4 = (25.1%), EC (12.9%), and geological material (12.5%) were the major components of PM2.5. For PM10, geological material (57.9%), OC (17.3%), and SO4 = (9.7%) were the major components. Coarse fraction (PM10 –PM2.5), geological material (81.7%), and OC (8.6%) were the dominant species, which amounted to 90.4%. Correlation analysis showed that sulfate in PM2.5 was present as ammonium sulfate. Sulfate showed a significant spatial variation with higher concentrations to the north resulting from predominantly southwesterly winds above the surface layer and by major SO2 sources that include a power plant and refinery. At the urban site of Cruz Roja it was observed that PM2.5 mass concentrations were similar to the submicron fraction concentrations. Furthermore, the correlation between EC in PM2.5 and EC measured from an aethalometer was r2 = 0.710. Temporal variations of SO2 and nitrogen oxide were observed during a day when the maximum concentration of PM2.5 was measured, which was associated with emissions from the nearby refinery and power plant. From cascade impactor measurements, the three measured modes of airborne particles corresponded with diameters of 0.32, 1.8, and 5.6 μm.  相似文献   

14.
Twenty-four hour PM2.5 samples from a rural site, an urban site, and a suburban site (next to a major highway) in the metropolitan Atlanta area in December 2003 and June 2004 were analyzed for 19 polycyclic aromatic hydrocarbons (PAH). Extraction of the air samples was conducted using an accelerated solvent extraction method followed by isotope dilution gas chromatography/mass spectrometry determination. Distinct seasonal variations were observed in total PAH concentration (i.e. significantly higher concentrations in December than in June). Mean concentrations for total particulate PAHs in December were 3.16, 4.13, and 3.40 ng m?3 for the urban, suburban and rural sites, respectively, compared with 0.60, 0.74, and 0.24 ng m?3 in June. Overall, the suburban site, which is impacted by a nearby major highway, had higher PAH concentration than did the urban site. Total PAH concentrations were found to be well correlated with PM2.5, organic carbon (OC), and elemental carbon (EC) in both months (r2 = 0.36–0.78, p < 0.05), although the slopes from the two months were different. PAHs represented on average 0.006% of total PM2.5 mass and 0.017% of OC in June, compared with 0.033% of total PM2.5 and 0.14% of OC in December. Total PAH concentrations were also correlated with potassium ion (r2 = 0.39, p = 0.014) in December, but not in June, suggesting that in winter biomass burning can potentially be an important source for particulate PAH. Retene was found at a higher median air concentration at the rural site than at the urban and suburban sites—unlike the rest of the PAHs, which were found at lower levels at the rural site. Retene also had a larger seasonal difference and had the weakest correlation with the rest of the PAHs measured, suggesting that retene, in particular, might be associated with biomass burning.  相似文献   

15.
Lahore, Pakistan is an emerging megacity that is heavily polluted with high levels of particle air pollution. In this study, respirable particulate matter (PM2.5 and PM10) were collected every sixth day in Lahore from 12 January 2007 to 19 January 2008. Ambient aerosol was characterized using well-established chemical methods for mass, organic carbon (OC), elemental carbon (EC), ionic species (sulfate, nitrate, chloride, ammonium, sodium, calcium, and potassium), and organic species. The annual average concentration (±one standard deviation) of PM2.5 was 194 ± 94 μg m?3 and PM10 was 336 ± 135 μg m?3. Coarse aerosol (PM10?2.5) was dominated by crustal sources like dust (74 ± 16%, annual average ± one standard deviation), whereas fine particles were dominated by carbonaceous aerosol (organic matter and elemental carbon, 61 ± 17%). Organic tracer species were used to identify sources of PM2.5 OC and chemical mass balance (CMB) modeling was used to estimate relative source contributions. On an annual basis, non-catalyzed motor vehicles accounted for more than half of primary OC (53 ± 19%). Lesser sources included biomass burning (10 ± 5%) and the combined source of diesel engines and residual fuel oil combustion (6 ± 2%). Secondary organic aerosol (SOA) was an important contributor to ambient OC, particularly during the winter when secondary processing of aerosol species during fog episodes was expected. Coal combustion alone contributed a small percentage of organic aerosol (1.9 ± 0.3%), but showed strong linear correlation with unidentified sources of OC that contributed more significantly (27 ± 16%). Brick kilns, where coal and other low quality fuels are burned together, are suggested as the most probable origins of unapportioned OC. The chemical profiling of emissions from brick kilns and other sources unique to Lahore would contribute to a better understanding of OC sources in this megacity.  相似文献   

16.
Continuous observation of PM2.5 was conducted in Taiyuan, a heavily polluted city in China, during high pollution season from December 2005 to February 2006. The results of this study showed that PM2.5 and carbonaceous species pollution were serious during winter in Taiyuan. The organic carbon (OC) and element carbon (EC) were accounted for 18.6±11.2% and 2.9±1.6% of PM2.5, respectively, which indicated that carbonaceous aerosols were key components for control fine particles pollution in Taiyuan. Coal combustion was a dominant source of OC and EC of PM2.5 in the urban area of Taiyuan during winter. The impact of local and remote particle sources on urban air quality was assessed using PM2.5 concentration rose and 3-day back trajectories of air masses arriving at Taiyuan. The meteorological conditions were found to affect the ambient concentrations of PM2.5, OC, EC and OC/EC ratio.  相似文献   

17.
Long-term study of air pollution plays a decisive role in formulating and refining pollution control strategies. In this study, two 12-month measurements of PM2.5 mass and speciation were conducted in 00/01 and 04/05 to determine long-term trend and spatial variations of PM2.5 mass and chemical composition in Hong Kong. This study covered three sites with different land-use characteristics, namely roadside, urban, and rural environments. The highest annual average PM2.5 concentration was observed at the roadside site (58.0±2.0 μg m−3 (average±2σ) in 00/01 and 53.0±2.7 μg m−3 in 04/05), followed by the urban site (33.9±2.5 μg m−3 in 00/01 and 39.0±2.0 μg m−3 in 04/05), and the rural site (23.7±1.9 μg m−3 in 00/01 and 28.4±2.4 μg m−3 in 04/05). The lowest PM2.5 level measured at the rural site was still higher than the United States’ annual average National Ambient Air Quality Standard of 15 μg m−3. As expected, seasonal variations of PM2.5 mass concentration at the three sites were similar: higher in autumn/winter and lower in summer. Comparing PM2.5 data in 04/05 with those collected in 00/01, a reduction in PM2.5 mass concentration at the roadside (8.7%) but an increase at the urban (15%) and rural (20%) sites were observed. The reduction of PM2.5 at the roadside was attributed to the decrease of carbonaceous aerosols (organic carbon and elemental carbon) (>30%), indicating the effective control of motor vehicle emissions over the period. On the other hand, the sulfate concentration at the three sites was consistent regardless of different land-use characteristics in both studies. The lack of spatial variation of sulfate concentrations in PM2.5 implied its origin of regional contribution. Moreover, over 36% growth in sulfate concentration was found from 00/01 to 04/05, suggesting a significant increase in regional sulfate pollution over the years. More quantitative techniques such as receptor models and chemical transport models are required to assess the temporal variations of source contributions to ambient PM2.5 mass and chemical speciation in Hong Kong.  相似文献   

18.
Five intensive field measurements were carried out at two background sites in Korea; Kosan and Kangwha during spring, fall, and winters of 1996 and 1997 to investigate the characteristics of long-range transport of air pollutants in northeastern Asia. Fine particles (PM2.5) were collected by low-volume samplers and the concentrations of major ions, organic and elemental carbons, and nitric acid were quantified. The concentrations of anthropogenic species in PM2.5 measured at both sites were generally higher than those at other background areas, Nagano, Japan and San Nicolas Is., USA due to continental outflow of air pollutants, but lower than those at an urban background site, Qingdao, China. The major components of PM2.5 were sulfate, organic carbon (OC), and ammonium for Kosan and sulfate, OC, ammonium, and nitrate for Kangwha. The major fractions of sulfate at both sites are non-sea-salts (nss) sulfate. Based on the relationship among major anthropogenic species, analysis of the nss sulfate to total nitrate molar ratios, and backward air parcel trajectories, it was found that fine particles measured at both sites during the measurement periods are mainly coming from China. At Kosan, the concentrations of anthropogenic species were higher when air parcels were coming from southern China than when air parcels were from northern China. At Kangwha, however, the differences of the concentrations were not statistically significant since most air parcels were from northern China and local effects are prominent.  相似文献   

19.
One hundred ninety-five chemically speciated samples were collected from March 2003 to February 2005 in the Seoul Metropolitan area to investigate the characteristics of the major components in PM2.5 and to characterize the chemical variations between smog and non-smog events. The annual average PM2.5 concentration was 43 μg m−3 that is almost three times higher than the US NAAQS annual PM2.5 standard of 15 μg m−3. During this sampling period, smog and yellow sand events were observed on 27 and 10 days, respectively. The PM2.5 concentrations and its constituents during smog events were about two–three times higher than those during non-smog and yellow sand events. In particular, the mass fractions of secondary aerosols such as sulfate, nitrate, and ammonium during the smog events were higher than those of the other constituents. The mean concentration and mass fraction of secondary organic carbon (SOC) were highest during the winter smog events. Sulfate, nitrate and SOC that can have long residence times were important species during the smog events suggesting that regional scale sources rather than local sources were important. Five-day backward air trajectory analysis showed that the air parcels during smog events passed through the major industrial areas in China more often than those during non-smog events.  相似文献   

20.
Rural and background sites provide valuable information on the concentration and optical properties of organic, elemental, and water-soluble organic carbon (OC, EC, and WSOC), which are relevant for understanding the climate forcing potential of regional atmospheric aerosols. To quantify climate- and air quality-relevant characteristics of carbonaceous aerosol in the central United States, a regional background site in central Texas was chosen for long-term measurement. Back trajectory (BT) analysis, ambient OC, EC, and WSOC concentrations and absorption parameters are reported for the first 15 months of a long-term campaign (May 2011–August 2012). BT analysis indicates consistent north–south airflow connecting central Texas to the Central Plains. Central Texas aerosols exhibited seasonal trends with increased fine particulate matter (<2.5 μm aerodynamic diameter, PM2.5) and OC during the summer (PM2.5 = 10.9 μg m?3 and OC = 3.0 μg m?3) and elevated EC during the winter (0.22 μg m?3). When compared to measurements in Dallas and Houston, TX, central Texas OC appears to have mixed urban and rural sources. However, central Texas EC appears to be dominated by transport of urban emissions. WSOC averaged 63% of the annual OC, with little seasonal variability in this ratio. To monitor brown carbon (BrC), absorption was measured for the aqueous WSOC extracts. Light absorption coefficients for EC and BrC were highest during summer (EC MAC = 11 m2 g?1 and BRC MAE365 = 0.15 m2 g?1). Results from optical analysis indicate that regional aerosol absorption is mostly due to EC with summertime peaks in BrC attenuation. This study represents the first reported values of WSOC absorption, MAE365, for the central United States.
Implications:Background concentration and absorption measurements are essential in determining regional potential radiative forcing due to atmospheric aerosols. Back trajectory, chemical, and optical analysis of PM2.5 was used to determine climatic and air quality implications of urban outflow to a regional receptor site, representative of the central United States. Results indicate that central Texas organic carbon has mixed urban and rural sources, while elemental carbon is controlled by the transport of urban emissions. Analysis of aerosol absorption showed black carbon as the dominant absorber, with less brown carbon absorption than regional studies in California and the southeastern United States.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号