首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Agricultural practices affect the production and emission of carbon dioxide (CO2) from paddy soils. It is crucial to understand the effects of tillage and N fertilization on soil CO2 flux and its influencing factors for a better comprehension of carbon dynamics in subtropical paddy ecosystems. A 2-yr field study was conducted to assess the effects of tillage (conventional tillage [CT] and no-tillage [NT]) and N fertilization (0 and 210 kg N ha?1) on soil CO2 fluxes during the 2008 and 2009 rice growing seasons in central China. Treatments were established following a split-plot design of a randomized complete block with tillage practices as the main plot and N fertilizer level as the split-plot treatment. The soil CO2 fluxes were measured 24 times in 2008 and 17 times in 2009. N fertilization did not affect soil CO2 emissions while tillage affected soil CO2 emissions, where NT had similar soil CO2 emissions to CT in 2008, but in 2009, NT significantly increased soil CO2 emissions. Cumulative CO2 emissions were 2079–2245 kg CO2–C ha?1 from NT treatments, and 2084–2141 kg CO2–C ha?1 from CT treatments in 2008, and were 1257–1401 kg CO2–C ha?1 from NT treatments, and 1003–1034 kg CO2–C ha?1 from CT treatments in 2009, respectively. Cumulative CO2 emissions were significantly related to aboveground biomass and soil organic C. Before drainage of paddy fields, soil CO2 fluxes were significantly related to soil temperature with correlation coefficients (R) of 0.67–0.87 in 2008 and 0.69–0.85 in 2009; moreover, the Q10 values ranged from 1.28 to 1.55 and from 2.10 to 5.21 in 2009, respectively. Our results suggested that NT rice production system appeared to be ineffective in decreasing carbon emission, which suggested that CO2 emissions from integrated rice-based system should be taken into account to assess effects of tillage.  相似文献   

2.
An automated system for continuous measurement of N2O fluxes on an hourly basis was employed to study N2O emissions in an intensively managed low carbon calcareous soil under sub-humid temperate monsoon conditions. N2O emissions occurred mainly within two weeks of application of NH4+-based fertilizer and total N2O emissions in wheat (average 0.35 or 0.21 kg N ha−1 season−1) and maize (average 1.47 or 0.49 kg N ha−1 season−1) under conventional and optimum N fertilization (300 and 50-122 kg N ha−1, respectively) were lower than previously reported from low frequency measurements. Results from closed static chamber showed that N2O was produced mainly from nitrification of NH4+-based fertilizer, with little denitrification occurring due to limited readily oxidizable carbon and low soil moisture despite consistently high soil nitrate-N concentrations. Significant reductions in N2O emissions can be achieved by optimizing fertilizer N rates, using nitrification inhibitors, or changing from NH4+- to NO3ˉ-based fertilizers.  相似文献   

3.
Simulations with the process oriented Forest-DNDC model showed reasonable to good agreement with observations of soil water contents of different soil layers, annual amounts of seepage water and approximated rates of nitrate leaching at 79 sites across Germany. Following site evaluation, Forest-DNDC was coupled to a GIS to assess nitrate leaching from German forest ecosystems for the year 2000. At national scale leaching rates varied in a range of 0–>80 kg NO3–N ha−1 yr−1 (mean 5.5 kg NO3–N ha−1 yr−1). A comparison of regional simulations with the results of a nitrate inventory study for Bavaria showed that measured and simulated percentages for different nitrate leaching classes (0–5 kg N ha−1 yr−1:66% vs. 74%, 5–15 kg N ha−1 yr−1:20% vs. 20%, >15 kg N ha−1 yr−1:14% vs. 6%) were in good agreement. Mean nitrate concentrations in seepage water ranged between 0 and 23 mg NO3–N l−1.  相似文献   

4.

Radiation use efficiency (RUE) is considered critical for calculation of crop yield. The crop productivity can be improved by increasing the interception of solar radiation and maintaining higher RUE for plants. Irrigation water and nitrogen (N) supply are the main limiting factors for RUE in maize (Zea mays L.) across the semi-arid environments. Field experiments were conducted during two consecutive growing seasons (2009–2010) to optimize RUE in relation to N application timings and rates with varying irrigation water management practices. In experiment 1, three N application timings were made, while in experiment 2, three possible water management practices were used. In both experiments, five N rates (100, 150, 200, 250, and 300 kg N ha−1) were applied to evaluate the effects of irrigation water and N on cumulative photosynthetic active radiation (PARi), dry matter RUE (RUEDM), and grain yield RUE (RUEGY). The results demonstrated that cumulative PARi and RUEs were not constant during the plant growth under varying the nutrients. The water and N significantly influenced cumulative PARi and RUEs during the both growing seasons. In experiment 1, the maximum cumulative PARi was observed by application of 250 kg N ha−1 in three splits (1/3 N at V2, 1/3 N at V16, and 1/3 N at R1 stage), and the highest RUEDM was achieved by the application of 300 kg N ha−1. However, the highest RUEGY was observed by application of 250 kg N ha−1. In experiment 2, the maximum cumulative PARi was attained at normal irrigation regime with 250 kg N ha−1, while the highest RUEDM and RUEGY were recorded at normal irrigation regime with the application of 300 kg N ha−1. The regression analysis showed significant and positive correlation of RUEGY with grain yield. Therefore, optimum water and N doses are important for attaining higher RUE, which may enhance maize grain yield semi-arid environment; this may be considered in formulating good agricultural practices for the environmental conditions resembling to those of this study.

  相似文献   

5.
The wetlands play an important role in global carbon and nitrogen storage, and they are also natural sources of greenhouse gases such as methane (CH4) and nitrous oxide (N2O). Land-use change is an important factor affecting the exchange of greenhouse gases between wetlands and the atmosphere. However, few studies have investigated the effect of land-use change on CH4 and N2O emissions from freshwater marsh in China. Therefore, a field study was carried out over a year to investigate the seasonal changes of the emissions of CH4 and N2O at three sites (Deyeuxia angustifolia marsh, dryland and rice field) in the Sanjiang Plain of Northeast China. Marsh was the source of CH4 showing a distinct temporal variation. Maximum fluxes occurred in June and the highest value was 20.69 ± 2.57 mg CH4 m?2 h?1. The seasonal change of N2O fluxes from marsh was not obvious, consisted of a series of emission pulses. The marsh acted as a N2O sink during winter, while became a N2O source in the growing season. The results showed that gas exchange between soil/snow and the atmosphere in the winter season contributed greatly to the annual budgets. The winter season CH4 flux was about 3.24% of the annual flux and the winter uptake of N2O accounted for 13.70% of the growing-season emission. Conversion marsh to dryland resulted in a shift from a strong CH4 source to a weak sink (from 199.12 ± 39.04 to ?1.37 ± 0.68 kg CH4 ha?1 yr?1), while increased N2O emissions somewhat (from 4.07 ± 1.72 to 4.90 ± 1.52 kg N2O ha?1 yr?1). Conversion marsh to rice field significantly decreased CH4 emission from 199.12 ± 39.04 to 94.82 ± 9.86 kg CH4 ha?1 yr?1 and N2O emission from 4.07 ± 1.72 to 2.09 ± 0.79 kg N2O ha?1 yr?1.  相似文献   

6.
We calculated farm, land, and soil N-budgets for countries in Europe and the EU27 as a whole using the agro-economic model CAPRI. For EU27, N-surplus is 55 kg N ha−1 yr−1 in a soil budget and 65 kg N2O–N ha−1 yr−1 and 67 kg N ha−1 yr−1 in land and farm budgets, respectively. NUE is 31% for the farm budget, 60% for the land budget and 63% for the soil budget. NS values are mainly related to the excretion (farm budget) and application (soil and land budget) of manure per hectare of total agricultural land. On the other hand, NUE is best explained by the specialization of the agricultural system toward animal production (farm NUE) or the share of imported feedstuff (soil NUE). Total N input, intensive farming, and the specialization to animal production are found to be the main drivers for a high NS and low NUE.  相似文献   

7.
Croplands contribute to atmospheric nitric oxide (NO), but very limited data are available about NO fluxes from intensively managed croplands in China. In this study, NO fluxes were measured in a typical vegetable field planted with flowering Chinese cabbage (Brassica campestris L. ssp. Chinensis var. utilis Tsen et Lee), which is the most widely cultivated vegetable in Guangdong province, south China. NO emission drastically increased after nitrogen fertilizer application, and other practices involving loosening the soil also enhanced NO emission. Mean NO emission flux was 47.5 ng N m−2 s–1 over a complete growth cycle. Annual NO emission from the vegetable field was about 10.1 kg N ha−1 yr−1. Fertilizer-induced NO emission factor was estimated to be 2.4%. Total NO emission from vegetable fields in Guangdong province was roughly estimated to be 11.7 Gg N yr−1 based on the vegetable field area and annual NO emission rate, and to be 13.3 Gg N yr−1 based on fertilizer-induced NO emission factor and background NO emission. This means that NO emission from vegetable fields was approximately 6% of NOx from commercial energy consumption in Guangdong province.  相似文献   

8.
Throughfall and bulk precipitation chemistry were studied for five years (June 1994–May 1999) at two high elevation forest sites (Val Gerola and Val Masino) which were known to differ in terms of tree health, as assessed by live crown condition. The ion concentration of bulk precipitation samples did not differ significantly between sites, except for Mg2+, while the throughfall concentrations differed in the measured values of H+, N-NO3, Cl, Na+, K+, DOC and weak organic acids. The results of the application of the canopy exchange model indicated a higher contribution from the dry deposition of N-NO3, N-NH4+ and H+ at Val Gerola, where the damage symptoms were more evident. In addition, the canopy leaching of Ca2+, K+ and weak organic acids were 47%, 21% and 27% higher at Val Gerola than at Val Masino. Annual SO42− deposition fluxes (21.3 kg ha−1 yr−1 at Val Masino and 23.6 kg ha−1 yr−1 at Val Gerola) were similar to those reported for moderately polluted European and U.S. sites. Annual N loads were 13.6 and 13.1 kg ha−1 yr−1 in the bulk input, and 15.0 and 18.0 kg ha−1 yr−1 in throughfall inputs, at Val Masino and Val Gerola, respectively. The contribution of the organic fraction to the total N atmospheric deposition load is significant, constituting 17% of the bulk flux and 40% of the throughfall flux. Measured nitrogen loads exceed the critical nutrient loads by several kg N ha−1 at both stations. In particular the nitrogen throughfall load at Val Gerola was about 3 times higher than the critical values.  相似文献   

9.
Responses of understory plant diversity to nitrogen (N) additions were investigated in reforested forests of contrasting disturbance regimes in southern China from 2003 to 2008: disturbed forest (with harvesting of understory vegetation and litter) and rehabilitated forest (without harvesting). Experimental additions of N were administered as the following treatments: Control, 50 kg N ha−1 yr−1, and 100 kg N ha−1 yr−1. Nitrogen additions did not significantly affect understory plant richness, density, and cover in the disturbed forest. Similarly, no significant response was found for canopy closure in this forest. In the rehabilitated forest, species richness and density showed no significant response to N additions; however, understory cover decreased significantly in the N-treated plots, largely a function of a significant increase in canopy closure. Our results suggest that responses of plant diversity to N deposition may vary with different land-use history, and rehabilitated forests may be more sensitive to N deposition.  相似文献   

10.
Agricultural soils may account for 10% of anthropogenic emissions of NO, a precursor of tropospheric ozone with potential impacts on air quality and global warming. However, the estimation of this biogenic source strength and its relationships to crop management is still challenging because of the spatial and temporal variability of the NO fluxes.Here, we present a combination of new laboratory- and field-scale methods to characterise NO emissions and single out the effects of environmental drivers.First, NO fluxes were continuously monitored over the growing season of a maize-cropped field located near Paris (France), using 6 automatic chambers. Mineral fertilizer nitrogen was applied from May to October 2005. An additional field experiment was carried out in October to test the effects of N fertilizer form on the NO emissions. The automatic chambers were designed to measure simultaneously the NO and N2O gases. Laboratory measurements were carried out in parallel using soil cores sampled at same site to test the response of NO fluxes to varying soil N–NH4 and water contents, and temperatures. The effects of soil core thickness were also analysed.The highest NO fluxes occurred during the first 5 weeks following fertilizer application. The cumulative loss of NO–N over the growing season was estimated at 1.5 kg N ha?1, i.e. 1.1% of the N fertilizer dose (140 kg N ha?1). All rainfall events induced NO peak fluxes, whose magnitude decreased over time in relation to the decline of soil inorganic N. In October, NO emissions were enhanced with ammonium forms of fertilizer N. Conversely, the application of nitrate-based fertilizers did not significantly increase NO emissions compared to an unfertilized control. The results of the subsequent laboratory experiments were in accordance with the field observations in magnitude and time variations. NO emissions were maximum with a water soil content of 15% (w w?1), and with a NH4–N content of 180 mg NH4–N kg soil?1. The response of NO fluxes to soil temperature was fitted with two exponential functions, involving a Q10 of 2.0 below 20 °C and a Q10 of 1.4 above. Field and laboratory experiments indicated that most of the NO fluxes originated from the top 10 cm of soil. The characterisation of this layer in terms of mean temperature, NH4 and water contents is thus paramount to explaining the variations of NO fluxes.  相似文献   

11.
Two-week average concentrations of ozone (O3), nitric acid vapor (HNO3) and ammonia (NH3) were measured with passive samplers during the 2002 summer season across the central Sierra Nevada Mountains, California, along the San Joaquin River drainage. Elevated concentrations of the pollutants were determined with seasonal means for individual sites ranging between 62 and 88 ppb for O3, 1.0-3.8 μg m−3 for HNO3, and 2.6-5.2 μg m−3 for NH3. Calculated O3 exposure indices were very high, reaching SUM00-191 ppm h, SUM60-151 ppm h, and W126-124 ppm h. Calculated nitrogen (N) dry deposition ranged from 1.4 to 15 kg N ha−1 for maximum values, and 0.4-8 kg N ha−1 for minimum values; potentially exceeding Critical Loads (CL) for nutritional N. The U.S., California, and European 8 h O3 human health standards were exceeded during 104, 108, and 114 days respectively, indicating high risk to humans from ambient O3.  相似文献   

12.
Quantifying greenhouse gas (GHG) emissions from wetland ecosystems is a relatively new issue in global climate change studies. China has approximately 22% of the world's rice paddies and 38% of the world's rice production, which are crucial to accurately estimate the global warming potential (GWP) at regional scale. This paper reports an application of a biogeochemical model (DeNitrification and DeComposition or DNDC) for quantifying GWP from rice fields in the Tai-Lake region of China. For this application, DNDC is linked to a 1:50,000 soil database, which was derived from 1107 paddy soil profiles compiled during the Second National Soil Survey of China in the 1980–1990s. The simulated results show that the 2.34 Mha of paddy soil cultivated in rice–wheat rotation in the Tai-Lake region emitted about ?1.48 Tg C, 0.84 Tg N and 5.67 Tg C as CO2, N2O, and CH4 respectively, with a cumulative GWP of 565 Tg CO2 equivalent from 1982 to 2000. As for soil subgroups, the highest GWP (26,900 kg CO2 equivalent ha?1 yr?1) was linked to gleyed paddy soils accounting for about 4.4% of the total area of paddy soils. The lowest GWP (5370 kg CO2 equivalent ha?1 yr?1) was associated with submergenic paddy soils accounting for about 0.32% of the total area of paddy soils. The most common soil in the area was hydromorphic paddy soils, which accounted for about 53% of the total area of paddy soils with a GWP of 12,300 kg CO2 equivalent ha?1 yr?1. On a regional basis, the annual averaged GWP in the polder, Tai-Lake plain, and alluvial plain soil regions was distinctly higher than that in the low mountainous and Hilly soil regions. As for administrative areas, the average annual GWP of counties in Shanghai city was high. Conversely, the average annual GWP of counties in Jiangsu province was low. The high variability in soil properties throughout the Tai-Lake region is important and affects the net greenhouse gas emissions. Therefore, the use of detailed soil data sets with high-resolution digital soil maps is essential to improve the accuracy of GWP estimates with process-based models at regional and national scales.  相似文献   

13.
Evidence from an international survey in the Atlantic biogeographic region of Europe indicates that chronic nitrogen deposition is reducing plant species richness in acid grasslands. Across the deposition gradient in this region (2-44 kg N ha−1 yr−1) species richness showed a curvilinear response, with greatest reductions in species richness when deposition increased from low levels. This has important implications for conservation policies, suggesting that to protect the most sensitive grasslands resources should be focussed where deposition is currently low. Soil pH is also an important driver of species richness indicating that the acidifying effect of nitrogen deposition may be contributing to species richness reductions. The results of this survey suggest that the impacts of nitrogen deposition can be observed over a large geographical range.  相似文献   

14.
We present a methane (CH4) budget for the area of the Baiyinxile Livestock Farm, which comprises approximately 1/3 of the Xilin river catchment in central Inner Mongolia, P.R. China. The budget calculations comprise the contributions of natural sources and sinks as well as sources related to the main land-use in this region (non-nomadic pastoralism) during the growing season (May–September). We identified as important CH4 sources floodplains (mean 1.55 ± 0.97 mg CH4–C m?2 h?1) and domestic ruminants, which are mainly sheep in this area. Within the floodplain significant differences between investigated positions were detected, whereby only positions close-by the river or bayous emitted large amounts of CH4 (mean up to 6.21 ± 1.83 mg CH4–C m?2 h?1). Further CH4 sources were sheepfolds (0.08–0.91 mg CH4–C m?2 h?1) and pasture faeces (1.34 ± 0.22 mg CH4–C g?1 faeces dry weight), but they did not play a significant role for the CH4 budget. In contrast, dung heaps were not a net source of CH4 (0.0 ± 0.2 for an old and 0.0 ± 0.3 μg CH4–C kg?1 h?1 for a new dung heap). Trace gas measurements along two landscape transects (volcano, hill slope) revealed expectedly a mean CH4 uptake (volcano: 76.5 ± 4.3; hill: 28.3 ± 5.3 μg CH4–C m?2 h?1), which is typical for the aerobic soils in this and other steppe ecosystems. The observed fluxes were rarely influenced by topography.The CH4 emissions from the floodplain and the sheep were not compensated by the CH4 oxidation of aerobic steppe soils and thus, this managed semi-arid grassland did not serve as a terrestrial sink, but as a source for this globally important greenhouse gas. The source strength amounted to 1.5–3.6 kg CH4–C ha?1 during the growing season, corresponding to 3.5–8.7 kg C ha?1 yr?1.  相似文献   

15.
Abstract

Manure storage tanks and animals in barns are important agricultural sources of methane. To examine the possibility of using an inverse dispersion technique based on a backward Lagrangian Stochastic (bLS) model to quantify methane (CH4) emissions from multiple on-farm sources, a series of tests were carried out with four possible source configurations and three controlled area sources. The simulated configurations were: (C1) three spatially separate ground-level sources, (C2) three spatially separate sources with wind-flow disturbance, (C3) three adjacent ground-level sources to simulate a group of adjacent sources with different emission rates, and (C4) a configuration with a ground level and two elevated sources. For multiple ground-level sources without flow obstructions (C1 and C3), we can use the condition number (k, the ratio of the uncertainty in the calculated emission rate to the uncertainty in the predicted ratio of concentration to emission rate) to evaluate the applicability of this inverse dispersion technique and a preliminary threshold of k < 10 is recommended. For multiple sources with wind disturbance (C2) or an even more complex configuration including ground level and elevated sources (C4), a low k is not sufficient to provide reasonable discrete and total emission rates. The effect of flow obstructions can be neglected as long as the distance between the source and the measurement location is greater than approximately 10 times the height of the flow obstructions. This study shows that the bLS model has the potential to provide accurate discrete emission rates from multiple on-farm emissions of gases provided that certain conditions are met.  相似文献   

16.
The present study aimed to investigate the NH3 volatilization loss from field-applied compost and chemical fertilizer and evaluate the atmosphere–land exchange of NH3 and particulate NH4+ (pNH4) at an upland field with volcanic ash soil (Andosol) in Hokkaido, northern Japan. Two-step basal fertilization was conducted on the bare soil surface. First, a moderately fermented compost of cattle manure was applied by surface incorporation (mixing depth, 0–15 cm) at a rate of 117 kg N ha−1 as total nitrogen (T-N) corresponding to 9.9 kg N ha−1 as ammoniacal nitrogen (NH4–N). Twelve days later, a chemical fertilizer containing 10% (w/w) of NH4–N as a mixture of ammonium sulfate and ammonium phosphates was applied by row placement (cover depth, 3 cm) at a rate of 100 kg N ha−1 as NH4–N. The study period was divided into the first-half, beginning after the compost application (CCM period), and the second-half, beginning after the chemical fertilizer application (CF period). The mean air concentrations of NH3 and pNH4 (1.5 m height) were 7.6 and 3.0 μg N m−3, respectively, in the CCM period; the values were 3.7 and 3.9 μg N m−3, respectively, in the CF period. The composition ratios of NH3 to the sum of NH3 and pNH4 (1.5 m height) were 72% and 49% in the CCM and CF periods, respectively. The NH3 volatilization loss from the compost was 0.8% of the applied T-N (or 9.3% of the applied NH4–N) and that from the chemical fertilizer was near zero. Excluding the period immediately after the compost application, the upland field acted as a net sink for NH3 and pNH4.  相似文献   

17.
Does nitrogen deposition increase forest production? The role of phosphorus   总被引:2,自引:0,他引:2  
Effects of elevated N deposition on forest aboveground biomass were evaluated using long-term data from N addition experiments and from forest observation plots in Switzerland. N addition experiments with saplings were established both on calcareous and on acidic soils, in 3 plots with Fagus sylvatica and in 4 plots with Picea abies. The treatments were conducted during 15 years and consisted of additions of dry NH4NO3 at rates of 0, 10, 20, 40, 80, and 160 kg N ha−1 yr−1. The same tree species were observed in permanent forest observation plots covering the time span between 1984 and 2007, at modeled N deposition rates of 12-46 kg N ha−1 yr−1. Experimental N addition resulted in either no change or in a decreased shoot growth and in a reduced phosphorus concentration in the foliage in all experimental plots. In the forest, a decrease of foliar P concentration was observed between 1984 and 2007, resulting in insufficient concentrations in 71% and 67% of the Fagus and Picea plots, respectively, and in an increasing N:P ratio in Fagus. Stem increment decreased during the observation period even if corrected for age. Forest observations suggest an increasing P limitation in Swiss forests especially in Fagus which is accompanied by a growth decrease whereas the N addition experiments support the hypothesis that elevated N deposition is an important cause for this development.  相似文献   

18.
The role of nitrogen (N) in acidification of soil and water has become relatively more important as the deposition of sulphur has decreased. Starting in 1991, we have conducted a whole-catchment experiment with N addition at Gårdsjön, Sweden, to investigate the risk of N saturation. We have added 41 kg N ha−1 yr−1 as NH4NO3 to the ambient 9 kg N ha−1 yr−1 in fortnightly doses by means of sprinkling system. The fraction of input N lost to runoff has increased from 0% to 10%. Increased concentrations of NO3 in runoff partially offset the decreasing concentrations of SO4 and slowed ecosystem recovery from acid deposition. From 1990-2002, about 5% of the total N input went to runoff, 44% to biomass, and the remaining 51% to soil. The soil N pool increased by 5%. N deposition enhanced carbon (C) sequestration at a mean C/N ratio of 42-59 g g−1.  相似文献   

19.
We are fertilizing a thicket with 0, 10, 20 and 50 kg nitrogen (N) ha−1 yr−1 in central Spain. Here we report changes in cover, pigments, pigment ratios and FvFm of the N-tolerant, terricolous, lichen Cladonia foliacea after 1-2 y adding N in order to study its potential as biomarker of atmospheric pollution. Cover tended to increase. Pigments increased with fertilization independently of the dose supplied but only significantly with soil nitrate as covariate. β-carotene/chlorophylls increased with 20-50 kg N ha−1 yr−1 (over the background) and neoxanthin/chlorophylls also increased with N. (Neoxanthin+lutein)/carotene decreased with N when nitrate and pH seasonalities were used as covariates. FvFm showed a critical load above 40 kg N ha−1 yr−1. Water-stress, iron and copper also explained variables of lichen physiology. We conclude that this tolerant lichen could be used as biomarker and that responses to N are complex in heterogeneous Mediterranean-type landscapes.  相似文献   

20.
Arable soils are a significant source of nitric oxide (NO), a precursor of tropospheric ozone, and thereby contribute to ozone pollution. However, their actual impact on ozone formation is strongly related to their spatial and temporal emission patterns, which warrant high-resolution estimates.Here, we combined an agro-ecosystem model and geo-referenced databases to map these sources over the 12 000 km2 administrative region surrounding Paris, France, with a kilometric level resolution. The six most frequent arable crop species were simulated, with emission rates ranging from 1.4 kg N-NO ha−1 yr−1 to 11.1 kg N-NO ha−1 yr−1. The overall emission factor for fertilizer-derived NO emissions was 1.7%, while background emissions contributed half of the total NO efflux. Emissions were strongly seasonal, being highest in spring due to fertilizer inputs. They were mostly sensitive to soil type, crops' growing season and fertilizer N rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号