首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Measurements of the physical properties of particles in the atmosphere of a UK urban area have been made, including particle number count by condensation nucleus counters with different lower particle size cut-offs; particle size distributions using a Scanning Mobility Particle Sizer; total particle Fuchs surface area using an epiphaniometer and particle mass using Tapered Element Oscillating Micro-balance (TEOM) instruments with size selective (PM10 and PM2.5) inlets. Mean particle number counts at three sites range from 2.86×104 to 9.60×104 cm-3. A traffic-influenced location showed a substantially higher ratio of particle number to PM10 mass than a nearby background location despite being some 70 m from the roadway. Operating two condensation nucleus counters in tandem to determine particles in the 3–7 nm size range by difference showed signficant numbers of particles in this range, apparently related to homogeneous nucleation processes. Measurements with the Scanning Mobility Particle Sizer showed a clear difference between roadside size distributions and those at a nearby background location with an additional mode in the roadside samples below 10 nm diameter. Particle number counts were found to show a significant linear correlation with PM10 mass (r2=0.44; n=44 for 24 h data at an urban background location), although during one period of high pollution a curvilinear relationship was found. Measurements of the diurnal variation in PM10 mass, particle number count and Fuchs surface area show the same general pattern of behaviour of the three variables, explicable in terms of vehicle emission source strength and atmospheric dispersion, although the surface area growth was out of phase with the particle number and mass. It appears that particle number gives the clearest indication of recent road traffic emissions.  相似文献   

2.
Possible effects of climate change on air quality are studied for two urban sites in the UK, London and Glasgow. Hourly meteorological data were obtained from climate simulations for two periods representing the current climate and a plausible late 21st century climate. Of the meteorological quantities relevant to air quality, significant changes were found in temperature, specific humidity, wind speed, wind direction, cloud cover, solar radiation, surface sensible heat flux and precipitation. Using these data, dispersion estimates were made for a variety of single sources and some significant changes in environmental impact were found in the future climate. In addition, estimates for future background concentrations of NOx, NO2, ozone and PM10 upwind of London and Glasgow were made using the meteorological data in a statistical model. These showed falls in NOx and increases in ozone for London, while a fall in NO2 was the largest percentage change for Glasgow. Other changes were small. With these background estimates, annual-average concentrations of NOx, NO2, ozone and PM10 were estimated within the two urban areas. For London, results averaged over a number of sites showed a fall in NOx and a rise in ozone, but only small changes in NO2 and PM10. For Glasgow, the changes in all four chemical species were small. Large-scale background ozone values from a global chemical transport model are also presented. These show a decrease in background ozone due to climate change. To assess the net impact of both large scale and local processes will require models which treat all relevant scales.  相似文献   

3.
Under the National Ambient Air Quality Standards (NAAQS), put in place as a result of the Clean Air Amendments of 1990, three regions in the state of Utah are in violation of the NAAQS for PM10 and PM2.5 (Salt Lake County, Ogden City, and Utah County). These regions are susceptible to strong inversions that can persist for days to weeks. This meteorology, coupled with the metropolitan nature of these regions, contributes to its violation of the NAAQS for PM during the winter. During January–February 2009, 1-hr averaged concentrations of PM10-2.5, PM2.5, NOx, NO2, NO, O3, CO, and NH3 were measured. Particulate-phase nitrate, nitrite, and sulfate and gas-phase HONO, HNO3, and SO2 were also measured on a 1-hr average basis. The results indicate that ammonium nitrate averages 40% of the total PM2.5 mass in the absence of inversions and up to 69% during strong inversions. Also, the formation of ammonium nitrate is nitric acid limited. Overall, the lower boundary layer in the Salt Lake Valley appears to be oxidant and volatile organic carbon (VOC) limited with respect to ozone formation. The most effective way to reduce ammonium nitrate secondary particle formation during the inversions period is to reduce NOx emissions. However, a decrease in NOx will increase ozone concentrations. A better definition of the complete ozone isopleths would better inform this decision.

Implications: Monitoring of air pollution constituents in Salt Lake City, UT, during periods in which PM2.5 concentrations exceeded the NAAQS, reveals that secondary aerosol formation for this region is NOx limited. Therefore, NOx emissions should be targeted in order to reduce secondary particle formation and PM2.5. Data also indicate that the highest concentrations of sulfur dioxide are associated with winds from the north-northwest, the location of several small refineries.  相似文献   


4.
Abstract

Vehicle gaseous emissions (NO, CO, CO2, and hydrocarbon [HC]) and driver’s particle exposures (particulate matter <1 μm [PM1], <2.5 μm [PM2.5], and<10 μm [PM10]) were measured using a mobile laboratory to follow a wide variety of vehicles during very heavy traffic congestion in Macao, Special Administrative Region, People’s Republic of China, an urban area having one of the highest population densities in the world. The measurements were taken with high time resolution so that fluctuations in the emissions can be seen readily during vehicle acceleration, cruising, deceleration, and idling. The tests were conducted in close proximity to the vehicles, with the inlet of a five-gas analyzer mounted on the front bumper of the mobile laboratory, and the distance between the vehicles was usually within several meters. To measure the driver’s particle exposures, the inlets of the particle analyzers were mounted at the height of the driver’s breathing position in the mobile laboratory, with the driver’s window open. A total of 178 and 113 vehicles were followed individually to determine the gaseous emission factor and the driver’s particle exposures, respectively, for motorcycle, passenger car, taxi, truck, and bus. The gaseous emission factors were used to model the roadside air quality, and good correlations between the modeled and monitored CO, NO2, and nitrogen oxide (NOx) verified the reliability of the experiments. Compared with petrol passenger cars and petrol trucks, diesel taxies and diesel trucks emitted less CO but more NOx. The impact of urban canyons is shown to cause a significant increase in the PM1 peak. The background concentrations contributed a significant amount of the driver’s particle exposures.  相似文献   

5.
Long-term measurements (2004–2011) of PM10 (particulate matter with an aerodynamic diameter <10 μm) and trace gases (carbon monoxide [CO], ozone [O3], nitrogen oxide [NO], oxides of nitrogen [NOx], nitrogen dioxide [NO2], sulfur dioxide [SO2], methane [CH4], nonmethane hydrocarbon [NMHC]) have been conducted to study the effect of physicochemical factors on the PM10 concentration. In addition, this study includes source apportionment of PM10 in Kuala Lumpur urban environment. An advanced principal component analysis (PCA) technique coupled with absolute principal component scores (APCS) and multiple linear regression (MLR) has been applied. The average annual concentration of PM10 for 8 yr is 51.3 ± 25.8 μg m?3, which exceeds the Recommended Malaysian Air Quality Guideline (RMAQG) and international guideline values. Detail analysis shows the dependency of PM10 on the linear changes of the motor vehicles in use and the amount of biomass burning, particularly from Sumatra, Indonesia, during southwesterly monsoon. The main sources of PM10 identified by PCA-APCS-MLR are traffic combustion (28%), ozone coupled with meteorological factors (20%), and windblown particles (1%). However, the apportionment procedure left 28.0 μg m?3, that is, 51% of PM10 undetermined.

Implications: Air quality is always a top concern around the globe. Especially in the South Asian regions, measures are not yet sufficient; as revealed in our studies, the concentrations of particulate matters exceed the tolerable limits. Long-term data analysis and characterization of particular matters and their sources will aid the policy makers and the concerned authority to adapt measures and policies according to the circumstances. Additionally, similar intensive studies will give insight about future implications of air quality management.  相似文献   

6.
On 17th February 2003, a congestion charging scheme (CCS), operating Monday–Friday, 07:00–18:00, was introduced in central London along with a programme of traffic management measures. We investigated the potential impact of the introduction of the CCS on measured pollutant concentrations (oxides of nitrogen (NOX, NO and NO2), particles with a median diameter less than 10 microns (PM10), carbon monoxide (CO) and ozone (O3)) measured at roadside and background monitoring sites across Greater London. Temporal changes in pollution concentrations within the congestion charging zone were compared to changes, over the same time period, at monitors unlikely to be affected by the CCS (the control zone) and in the boundary zone between the two. Similar analyses were done for CCS hours during weekends (when the CCS was not operating).Based on the single roadside monitor with the CCS Zone, it was not possible to identify any relative changes in pollution concentrations associated with the introduction of the scheme. However, using background monitors, there was good evidence for a decrease in NO and increases in NO2 and O3 relative to the control zone. There was little change in background concentrations of NOX. There was also evidence of relative reductions in PM10 and CO. Similar changes were observed during the same hours in weekends when the scheme was not operating.The causal attribution of these changes to the CCS per se is not appropriate since the scheme was introduced concurrently with other traffic and emissions interventions which might have had a more concentrated effect in central London. This study provides important pointers for study design and data requirements for the evaluation of similar schemes in terms of air quality. It also shows that results may be unexpected and that the overall effect on toxicity may not be entirely favourable.  相似文献   

7.
Abstract

The objectives of this study were: (1) to quantify the errors associated with saturation air quality monitoring in estimating the long-term (i.e., annual and 5 yr) mean at a given site from four 2-week measurements, once per season; and (2) to develop a sampling strategy to guide the deployment of mobile air quality facilities for characterizing intraurban gradients of air pollutants, that is, to determine how often a given location should be visited to obtain relatively accurate estimates of the mean air pollutant concentrations. Computer simulations were conducted by randomly sampling ambient monitoring data collected in six Canadian cities at a variety of settings (e.g., population-based sites, near-roadway sites). The 5-yr (1998–2002) dataset consisted of hourly measurements of nitric oxide (NO), nitrogen dioxide (NO2), oxides of nitrogen (NOx), sulfur dioxide (SO2), coarse particulate matter (PM10), fine particulate matter (PM2.5), and CO. The strategy of randomly selecting one 2-week measurement per season to determine the annual or long-term average concentration yields estimates within 30% of the true value 95% of the time for NO2, PM10 and NOx. Larger errors, up to 50%, are expected for NO, SO2, PM2.5, and CO. Combining concentrations from 85 random 1-hr visits per season provides annual and 5-yr average estimates within 30% of the true value with good confidence. Overall, the magnitude of error in the estimates was strongly correlated with the variability of the pollutant. A better estimation can be expected for pollutants known to be less temporally variable and/or over geographic areas where concentrations are less variable. By using multiple sites located in different settings, the relationships determined for estimation error versus number of measurement periods used to determine long-term average are expected to realistically portray the true distribution. Thus, the results should be a good indication of the potential errors one could expect in a variety of different cities, particularly in more northern latitudes.  相似文献   

8.
Simultaneous continuous measurements have been made at an urban background site of PM10 mass by Tapered Element Oscillating Microbalance, particle number density by condensation nucleus counter and Fuchs surface area using an epiphaniometer. Concurrent measurements of gaseous NOx and CO have been used to indicate road traffic emissions, and data from a nearby meteorological station have been used for relative humidity, temperature and windspeed. The data indicate that particle number density is a far better indicator of traffic activity than PM10 mass which is strongly influenced by a high background, and also tends to peak rather later than the gaseous pollutants and particle number, presumably as a result of advection of accumulation mode aerosol. PM10 mass and Fuchs surface area generally show a very similar temporal trend, although there is a tendency for the ratio of surface area to dry particle mass to increase with relative humidity. The sampling period included bonfire night celebrations which caused substantial increases in all particle parameters, although the ratio of particle mass to number was considerably higher than for the morning rush hour road traffic-influenced peak.  相似文献   

9.
Olajire AA  Azeez L  Oluyemi EA 《Chemosphere》2011,84(8):1044-1051
We measured toxic air pollutants along Oba Akran road in Lagos to evaluate pedestrian exposure. PM10, CO, O3, NO2, SO2, CH4, noise, wind velocity and temperature were measured simultaneously with portable analyzers. Our results showed that pedestrian exposure to PM10 (with an average of 274.6 μg m−3 for all samples) and CO (with an average of 19.27 ppm for all samples) was relatively high. CO is a traffic-related pollutant, so the influence of the local traffic emissions on CO levels is strong. The high concentration of the PM10 measured at the three environments also suggests that the traffic is a major source of ultrafine particles. The overall average concentrations for the 72-day experimental period for SO2, NO2 and O3 are 101.2, 62.5 and 0.32 ppb respectively, all of which are below the US national ambient air quality standards. Strong traffic impacts can be observed from the concentrations of some of these pollutants measured in these three environments. Most clear is a reflection of diesel truck traffic activity rich in black carbon concentrations. The diurnal variation of O3 and NO2 also showed that NO2 was depleted by photochemically formed O3 during the day and replenished at night as O3 was destroyed. A multivariate statistical analysis (Principal Component Analysis, Factor Analysis) has been applied to a set of data in order to determine the contribution of different sources. It was found that the main principal components, extracted from the air pollution data, were related to gasoline combustion, oil combustion and ozone interactions.  相似文献   

10.
The U.S. EPA Models-3 Community Multiscale Air Quality (CMAQ) modeling system with the process analysis tool is applied to China to study the seasonal variations and formation mechanisms of major air pollutants. Simulations show distinct seasonal variations, with higher surface concentrations of sulfur dioxide (SO2), nitrogen dioxide (NO2), and particulate matter with aerodynamic diameter less than or equal to 10 μm (PM10), column mass of carbon monoxide (CO) and NO2, and aerosol optical depth (AOD) in winter and fall than other seasons, and higher 1-h O3 and troposphere ozone residual (TOR) in spring and summer than other seasons. Higher concentrations of most species occur over the eastern China, where the air pollutant emissions are the highest in China. Compared with surface observations, the simulated SO2, NO2, and PM10 concentrations are underpredicted throughout the year with NMBs of up to ?51.8%, ?32.0%, and ?54.2%, respectively. Such large discrepancies can be attributed to the uncertainties in emissions, simulated meteorology, and deviation of observations based on air pollution index. Max. 1-h O3 concentrations in Jan. and Jul. at 36-km are overpredicted with NMBs of 12.0% and 19.3% and agree well in Apr. and Oct. Simulated column variables can capture the high concentrations over the eastern China and low values in the central and western China. Underpredictions occur over the northeastern China for column CO in Apr., TOR in Jul., and AODs in both Apr. and Jul.; and overpredictions occur over the eastern China for column CO in Oct., NO2 in Jan. and Oct., and AODs in Jan. and Oct. The simulations at 12-km show a finer structure in simulated concentrations than that at 36-km over higher polluted areas, but do not always give better performance than 36-km. Surface concentrations are more sensitive to grid resolution than column variables except for column NO2, with higher sensitivity over mountain and coastal areas than other regions.  相似文献   

11.
This study explores the appropriateness of the locality of air monitoring stations which are meant to indicate air quality in the area. Daily variations in NO2 and PM10 concentrations at 14 monitoring stations in Hong Kong are examined. The daily variations in NO2 at a number of background monitoring stations exhibit patterns similar to variations in traffic volume while variations in PM10 concentration exhibit less discernible pattern. Principal component analysis (PCA) and cluster analysis (CA) are applied to analyse NO2 and PM10 measurements between January 2001 and December 2005. The results show that NO2 concentrations at background stations within the urban area are highly influenced by vehicle emissions. The effect vehicle emission has on NO2 at stations within new towns is smaller. CA results also show that variations in PM10 concentrations are distinguished by the area the station is located in. PCA results show that there are two principal components (PC's) associated with variations in roadside concentration of PM10. The strong influence of roadside emissions towards concentrations of NO2 and PM10 at a number of urban background stations may be due to their close proximity to busy roadways and the high density of surrounding tall buildings, which creates an enclosure that hinders dispersion of roadside emissions and results in air pollution behaviour that reflects variation in traffic.  相似文献   

12.
Abstract

The objective of this project is to demonstrate how the ambient air measurement record can be used to define the relationship between O3 (as a surrogate for photochemistry) and secondary particulate matter (PM) in urban air. The approach used is to develop a time-series transfer-function model describing the daily PM10 (PM with less than 10 μm aerodynamic diameter) concentration as a function of lagged PM and current and lagged O3, NO or NO2, CO, and SO2. Approximately 3 years of daily average PM10, daily maximum 8-hr average O3 and CO, daily 24-hr average SO2 and NO2, and daily 6:00 a.m.-9:00 a.m. average NO from the Aerometric Information Retrieval System (AIRS) air quality subsystem are used for this analysis. Urban areas modeled are Chicago, IL; Los Angeles, CA; Phoenix, AZ; Philadelphia, PA; Sacramento, CA; and Detroit, MI. Time-series analysis identified significant autocorrelation in the O3, PM10, NO, NO2,CO, and SO2 series. Cross correlations between PM10 (dependent variable) and gaseous pollutants (independent variables) show that all of the gases are significantly correlated with PM10 and that O3 is also significantly correlated lagged up to two previous days. Once a transfer-function model of current PM10 is defined for an urban location, the effect of an O3-control strategy on PM concentrations is estimated by calculating daily PM10 concentrations with reduced O3 concentrations. Forecasted summertime PM10 reductions resulting from a 5 percent decrease in ambient O3 range from 1.2 μg/m3 (3.03%) in Chicago to 3.9 μg/m3 (7.65%) in Phoenix.  相似文献   

13.
Our study was an attempt to conduct a comprehensive and systematical examination of the holiday effect, defined as the difference in air pollutant concentrations between holiday and non-holiday periods. This holiday effect can be applied to other countries with similar national or cultural holidays. Hourly and daily surface measurements of six major air pollutants from thirteen air quality monitoring stations of the Taiwan Environmental Protection Administration during the Chinese New Year (CNY) and non-Chinese New Year (NCNY) periods were used. We documented evidence of a “holiday effect”, where air pollutant concentrations were significantly different between holidays (CNY) and non-holidays (NCNY), in the Taipei metropolitan area over the past thirteen years (1994–2006).The concentrations of NOx, CO, NMHC, SO2 and PM10 were lower in the CNY than in the NCNY period, while the variation in the concentration of O3 was reversed, which was mainly due to the NO titration effect. Similar differences in these six air pollutants between the CNY and NCNY periods were also found in the diurnal cycle and in the interannual variation. For the diurnal cycle, a common traffic-related double-peak variation was observed in the NCNY period, but not in the CNY period. Impacts of dust storms were also observed, especially on SO2 and PM10 in the CNY period. In the 13-year period of 1994–2006, decreasing trends of NOx and CO in the NCNY period implied a possible reduction of local emissions. Increasing trends of SO2 and PM10 in the CNY period, on the other hand, indicated a possible enhancement of long-range transport. These two mechanisms weakened the holiday effect.  相似文献   

14.
The effects of the solar eclipse on 11 August 1999 on surface ozone at two sites, Thessaloniki, Greece (urban site) and Hohenpeissenberg, Germany (elevated rural site) are investigated in this study and compared with model results. The eclipse offered a unique opportunity to test our understanding of tropospheric ozone chemistry and to investigate with a simple photochemical box model the response of surface ozone to changes of solar radiation during a photolytical perturbation such as the solar eclipse. The surface ozone measurements following the eclipse display a decrease of around 10–15 ppbv at the urban station of Eptapyrgio at Thessaloniki while at Hohenpeissenberg, the actual ozone data do not show any clear effect of eclipse on surface ozone. For Thessaloniki, the model results suggest that solely photochemistry can account for a significant amount of the observed surface ozone decrease during the eclipse but transport effects mask part of the photochemical effect of eclipse on surface ozone. For Hohenpeissenberg, the box model predicted an ozone decrease, due to the eclipse, of about 2 ppbv in relative agreement with the magnitude of the observed ozone decrease from the 2 h moving average while at the same time it inhibits the foreseen diurnal ozone increase. However, this modeled ozone decrease during the eclipse is small compared to the diurnal ozone variability due to transport effects, and hence, transport really masks such relative small changes. The different magnitude of the surface ozone decrease between the two sites indicates mainly the role of the NOx levels. Measured and modeled NO and NO2 concentrations at Hohenpeissenberg during the eclipse are also compared and indicate that the partitioning of NO and NO2 in NOx is influenced clearly from the eclipse. This is not observed at Thessaloniki due to local NOx sources.  相似文献   

15.
A study of the effect of water vapor on the photochemical system NO2 + alphapinene + hv was conducted. A Hotpack Environmental Room was used as a constant temperature chamber, a bank of ultraviolet and fluorescent lamps as a source of simulated solar radiation, and a 150-liter FEP Teflon bag as a reaction vessel. Representative concentrations of 10 pphm NO2 and 50 pphm alphapinene were used in a 3 × 2 × 2 factorial design where absolute humidities of 0.0000, 0.0090, 0.01 80 g H2O/g dry air were varied.

Matheson zero air was passed through a clean air train and used as the diluent. Nitrogen dioxide was added to the reaction mixture by a permeation tube, and water and alpha-pinene by evaporation techniques.

Variables measured as a function of time over a 2-hour irradiation period were total oxidants (Mast Ozone Meter), condensation nuclei (General Electric Small Particle Detector), ozone (Regener Chemiluminescent Ozone Meter), nitrogen dioxide and nitric oxide (Technicon Autoanalyzer), and alpha-pinene (Perkin- Elmer Model 800 gas chromatograph).

Upon irradiation, systems containing nitrogen dioxide and alpha-pinene formed oxidants, ozone, condensation nuclei, and nitric oxide. Based on the differences between simultaneous oxidant and ozone measurements, the formation of peroxide- like compounds may be inferred. During the course of the irradiation, nitrogen dioxide and alpha-pinene were consumed. The concentration-time profiles of all variables were characteristic of those exhibited by typical photochemical smog systems.

An effect of water vapor on the systems studied was demonstrated. Increasing humidity decreased net mean/time oxidant and ozone production and net maximum condensation nuclei production. These effects were significant at a 0.05 confidence level. Effects of water on average mean/time NO2, NO, and alphapinene concentrations were insignificant at this level. The oxidant to ozone ratio was found to decrease with increasing humidity.

The significant decreases in net oxidant and ozone production and NO2 consumption with increasing water vapor concentration in systems of nitrogen dioxide alone, suggests that water manifests an effect on pertinent inorganic reactions, and the data also suggest additional water participation in the organic reactions.  相似文献   

16.
Abstract

One-hour average ambient concentrations of particulate matter (PM) with an aerodynamic diameter <2.5 μm (PM2.5) were determined in Steubenville, OH, between June 2000 and May 2002 with a tapered element oscillating microbalance (TEOM). Hourly average gaseous copollutant [carbon monoxide (CO), sulfur dioxide (SO2), nitrogen oxide (NOx), and ozone (O3)] concentrations and meteorological conditions also were measured. Although 75% of the 14,682 hourly PM2.5 concentrations measured during this period were ≤17 μg/m3, concentrations >65 μg/m3 were observed 76 times. On average, PM2.5 concentrations at Steubenville exhibited a diurnal pattern of higher early morning concentrations and lower afternoon concentrations, similar to the diurnal profiles of CO and NOx. This pattern was highly variable; however, PM2.5 concentrations >65 μg/m3 were never observed during the mid-afternoon between 1:00 p.m. and 5:00 p.m. EST. Twenty-two episodes centered on one or more of these elevated concentrations were identified. Five episodes occurred during the months June through August; the maximum PM2.5 concentration during these episodes was 76.6 μg/m3. Episodes occurring during climatologically cooler months often featured higher peak concentrations (five had maximum concentrations between 95.0 and 139.6 μg/m3), and many exhibited strong covariation between PM2.5 and CO, NOx, or SO2. Case studies suggested that nocturnal surface-based temperature inversions were influential in driving high nighttime concentrations of these species during several cool season episodes, which typically had dramatically lower afternoon concentrations. These findings provide insights that may be useful in the development of PM2.5 reduction strategies for Steubenville, and suggest that studies assessing possible health effects of PM2.5 should carefully consider exposure issues related to the intraday timing of PM2.5 episodes, as well as the potential for toxicological interactions among PM2.5 and primary gaseous pollutants.  相似文献   

17.
Long-range transport of pollution outflow from Asian mainland has been noticed and expected to play a significant role in Pacific background. Since 1993 the Taiwanese Environmental Protection Administration (TEPA) is conducting ground-based observations of various particulate and gaseous pollutants at 74 monitoring stations in Taiwan. One of these stations, Heng-Chun at the south coast of Taiwan can be considered as a background station with only negligible amounts of local pollution, and another one, Wan-Li at the north coast, predominantly receives air that has not passed over Taiwan, so that background air can be analysed by means of sectorisation. In this work, the sectorised 13-year time series of measurements of CO, SO2, O3, NOx and PM10, from the Wan-Li station are presen and compared to data from the Heng-Chun station and another TEPA background station off the coast of mainland China, Ma-Zu. The CO and O3 measurements are also compared to data from the Yonaguni station, a Pacific island site, part of the Global Atmospheric Watch (GAW) network.The similarity of the sectorised data from the Wan-Li station with the data of the other station indicates that atmospheric measurements from the Wan-Li site can be used to make inferences about trends in western Pacific background air pollution and the effect of long-range transport of pollutants. The measurement time series from 1993 to 2006 do not indicate a significant trend in the monthly mean O3 concentrations in accordance with other research about ozone in tropical latitudes. An increasing trend in CO concentrations of 2.8% per annum is observed between 1999 and 2006 for long-range transport to northern Taiwan, and a doubling of the SO2 and NOx concentrations observed at the Wan-Li and Heng-Chun sites within the period 2001–2006. SO2 concentrations are found to quadruple at Ma-Zu within the same period. The data suggest that pollution from the Asian mainland enhances significantly the background air pollution over the Pacific.  相似文献   

18.
We analyse the air quality data measured at a green area of Buenos Aires City (Argentina) during 38 days in winter. We study the relationships between ambient concentrations of nitric oxide (NO), nitrogen dioxide (NO2), ozone (O3) and nitrogen oxides (NOx=NO+NO2). The variation of the level of oxidant (OX=O3+NO2) with the NOx is obtained. It can be seen that the level of OX at a given location is made up of two contributions: one independent and another dependent on the NOx concentration. The first one can be considered as a regional contribution, equivalent to the background O3 concentration and the second one as a local contribution that depends on the level of primary pollution. Local oxidant sources may include direct NO2 emissions, the reaction of NO with O2 at high-NOx levels, and the emission of species that promote the conversion of NO to NO2. The final category of emissions may include the nitrous acid (HONO) that is emitted directly in vehicle exhaust. Finally, we present a diurnal variation of the local as well as regional contributions and the dependence of the last one on wind direction.  相似文献   

19.
Bursa is one of the largest cities of Turkey and it hosts 17 organized industrial zones. Parallel to the increase in population, rapidly growing energy consumption, and increased numbers of transport vehicles have impacts on the air quality of the city. In this study, regularly calibrated automatic samplers were employed to get the levels of air pollution in Bursa. The concentrations of CH4 and N-CH4 as well as the major air pollutants including PM10, PM2.5, NO, NO2, NOx, SO2, CO, and O3, were determined for 2016 and 2017 calendar years. Their levels were 1641.62?±?718.25, 33.11?±?5.45, 42.10?±?10.09, 26.41?±?9.01, 19.47?±?16.51, 46.73?±?16.56, 66.23?±?32.265, 7.60?±?3.43, 659.397?±?192.73, and 51.92?±?25.63 µg/m3 for 2016, respectively. Except for O3, seasonal concentrations were higher in winter and autumn for both years. O3, CO, and SO2 had never exceeded the limit values specified in the regulations yet PM10, PM2.5, and NO2 had violated the limits in some days. The ratios of CO/NOx, SO2/NOx, and PM2.5/PM10 were examined to characterize the emission sources. Generally, domestic and industrial emissions were dominated in the fall and winter seasons, yet traffic emissions were effective in spring and summer seasons. As a result of the correlation process between Ox and NOx, it was concluded that the most important source of Ox concentrations in winter was NOx and O3 was in summer.  相似文献   

20.
Spread of air pollution sources and non-uniform mixing conditions in urban or regional air sheds often result in spatial variation of pollutant concentrations over different parts of the air sheds. A comprehensive understanding of this variation of concentrations is imperative for informed planning, monitoring and assessment in a range of critical areas including assessment of monitoring network efficiency or assessment of population exposure variation as a function of the location in the city. The aims of this work were to study the citywide variability of pollutants as measured by “urban background” type monitoring stations and to interpret the results in relation to the applicability of the data to population exposure assessments and the network efficiency. A comparison between ambient concentrations of NOx, ozone and PM10 was made for three stations in the Brisbane air shed network. The best correlated between the three stations were ozone concentrations followed by NOx concentration, with the worst correlations observed for PM10. With a few exceptions correlations of all pollutants between the stations were statistically significant. Marginally better were the correlations for the lower concentrations of pollutants that represent urban background, over the correlations for higher concentrations, representing peak values. Implications of these findings on application of the monitoring data to air-quality management, as well as the need for further investigations has been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号