首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Multi-year inventories of biomass burning emissions were established in the Pearl River Delta (PRD) region for the period 2003–2007 based on the collected activity data and emission factors. The results indicated that emissions of sulfur dioxide (SO2), nitrogen oxide (NOx), ammonia (NH3), methane (CH4), organic carbon (OC), non-methane volatile organic compounds (NMVOC), carbon monoxide (CO), and fine particulate matter (PM2.5) presented clear declining trends. Domestic biofuel burning was the major contributor, accounting for more than 60% of the total emissions. The preliminary temporal profiles were established with MODIS fire count information, showing that higher emissions were observed in winter (from November to March) than other seasons. The emissions were spatially allocated into grid cells with a resolution of 3 km × 3  km, using GIS-based land use data as spatial surrogates. Large amount of emissions were observed mostly in the less developed areas in the PRD region. The uncertainties in biomass burning emission estimates were quantified using Monte Carlo simulation; the results showed that there were higher uncertainties in organic carbon (OC) and elemental carbon (EC) emission estimates, ranging from ?71% to 133% and ?70% to 128%, and relatively lower uncertainties in SO2, NOx and CO emission estimates. The key uncertainty sources of the developed inventory included emission factors and parameters used for estimating biomass burning amounts.  相似文献   

2.
A global, three-dimensional tropospheric chemistry model was used to perform simulations of the tropospheric distribution of carbon monoxide (CO) coinciding with NASA's Measurement of Air Pollution from Satellites (MAPS) experiment which took place during 5–13 October 1984. Archived meteorological data for September and October, 1984, were obtained from the European Centre for Medium-Range Weather Forecasting and used to drive the offline chemical transport model simulations. Base-case CO emissions were generated by applying emission factors to compiled inventories for related or co-emitted trace species. Simulation results from September and October have been compared with a recent re-release of the 1984 MAPS data and with in situ correlative data taken during the MAPS mission. Because of unrealistically large spatial variability in N2O mixing ratios measured concurrently by MAPS, model results were also compared with an adjusted CO data set generated by assuming that errors in N2O measured mixing ratios were correlated with errors in the MAPS CO data. These comparisons, in conjunction with simulations probing model sensitivities, led to the conclusion that biomass burning CO emissions from central and southern Africa may have been larger during September and October, 1984, than our initial best estimate based on the CO2 emissions data of Hao et al. (1990. Fire in the Tropical Biota; Ecosystem Processes and Global Challenges. Springer, Berlin, pp. 440–462; 1994. Global Biogeochemical Cycles 8, 495–503). This result is in disagreement with recent estimates of biomass burning emissions from Africa (Scholes et al., 1996, Journal of Geophysical Research 101, 23677–23682) which are smaller than previously thought for emissions from this region. Although unknown model deficiencies cannot be conclusively ruled out, model sensitivity studies indicate that increased CO emissions from central and southern Africa offer the best explanation for reducing observed differences between model results and MAPS data for this time period. Our results, in combination with a disparity in recent CO emission estimates from this region (Scholes et al., 1996; Hao et al., 1996, Journal of Geophysical Research 101, 23577–23584), and in light of recent indications of highly variable biomass burning activities from the tropical western Pacific (Folkins et al., 1997, Journal of Geophysical Research 102, 13291–13299), seem to suggest that biomass burning emissions exhibit significant year-to-year variability. This large variability of emissions sources makes the accurate simulation of specific time periods very difficult and suggests that biomass burning trace species inventories may have to be developed specifically for each simulated time period, employing satellite-derived information on fire coverage and flame intensity.  相似文献   

3.
To produce a new daily record of gross carbon emissions from biomass burning events and post-burning decomposition fluxes in the states of the Brazilian Legal Amazon (Instituto Brasileiro de Geografia e Estatistica (IBGE), 1991. Anuario Estatistico do Brasil, Vol. 51. Rio de Janeiro, Brazil pp. 1–1024). We have used vegetation greenness estimates from satellite images as inputs to a terrestrial ecosystem production model. This carbon allocation model generates new estimates of regional aboveground vegetation biomass at 8-km resolution. The modeled biomass product is then combined for the first time with fire pixel counts from the advanced very high-resolution radiometer (AVHRR) to overlay regional burning activities in the Amazon. Results from our analysis indicate that carbon emission estimates from annual region-wide sources of deforestation and biomass burning in the early 1990s are apparently three to five times higher than reported in previous studies for the Brazilian Legal Amazon (Houghton et al., 2000. Nature 403, 301–304; Fearnside, 1997. Climatic Change 35, 321–360), i.e., studies which implied that the Legal Amazon region tends toward a net-zero annual source of terrestrial carbon. In contrast, our analysis implies that the total source fluxes over the entire Legal Amazon region range from 0.2 to 1.2 Pg C yr−1, depending strongly on annual rainfall patterns. The reasons for our higher burning emission estimates are (1) use of combustion fractions typically measured during Amazon forest burning events for computing carbon losses, (2) more detailed geographic distribution of vegetation biomass and daily fire activity for the region, and (3) inclusion of fire effects in extensive areas of the Legal Amazon covered by open woodland, secondary forests, savanna, and pasture vegetation. The total area of rainforest estimated annually to be deforested did not differ substantially among the previous analyses cited and our own.  相似文献   

4.
Outdoor fires, such as wildfires and prescribed burns, can emit substantial amounts of particulate matter and other pollutants into the atmosphere. In Texas, an inventory of forest, grassland and agricultural burning activities revealed that fires consumed vegetation on 1.6 and 1.7 million acres of land, in 1996 and 1997, respectively. Emissions from the fires were estimated based on survey and field data on acres burned and land cover and literature data on fuel consumption and emission factors. Fire data were allocated spatially by county and temporally by month. While fire events can cause high transient air pollutant concentrations, for most criteria pollutants, the fire emissions were a relatively small fraction of the annual emission inventory for the State. For fine particulate matter, however, the annual emission estimates were 40,000 tons/yr, which is likely to represent a significant fraction of the State's emission inventory, especially in the counties where the emissions are concentrated.  相似文献   

5.
An inventory of air pollutants emitted from forest and agricultural fires in Northeastern Mexico for the period of January to August of 2000 is presented. The emissions estimates were calculated using an emissions factor methodology. The inventory accounts for the emission of carbon monoxide (CO), methane, nonmethane hydrocarbons, ammonia, nitrogen oxides, and particulate matter (PM). Particulate matter emissions include estimates for fine PM and coarse PM. A total of 2479 wildfires were identified in the domain for the period of interest, which represented approximately 810,000 acres burned and 621,130 short tons emitted (81% being CO). The main source of information used to locate and estimate the extent of the fires came from satellite imagery. A geographic information system was used to determine the type of vegetation burned by each fire. More than 54% of the total area burned during the period of study was land on the State of Tamaulipas. However, >58% of the estimated emissions came from the State of Coahuila. This was because of the mix of vegetation types burned in each state. With respect to the temporal distribution, 76.9% of the fires occurred during the months of April and May consuming almost 78% of the total area burned during the period of study. Analysis of wind forward trajectories of air masses passing through the burned areas and 850-mb wind reanalyses indicate possible transboundary transport of the emissions from Mexico to the United States during the occurrence of the major wildfires identified.  相似文献   

6.
Abstract

An inventory of air pollutants emitted from forest and agricultural fires in Northeastern Mexico for the period of January to August of 2000 is presented. The emissions estimates were calculated using an emissions factor methodology. The inventory accounts for the emission of carbon monoxide (CO), methane, nonmethane hydrocarbons, ammonia, nitrogen oxides, and particulate matter (PM). Particulate matter emissions include estimates for fine PM and coarse PM. A total of 2479 wildfires were identified in the domain for the period of interest, which represented ~810,000 acres burned and 621,130 short tons emitted (81% being CO). The main source of information used to locate and estimate the extent of the fires came from satellite imagery. A geographic information system was used to determine the type of vegetation burned by each fire. More than 54% of the total area burned during the period of study was land on the State of Tamaulipas. However, >58% of the estimated emissions came from the State of Coahuila. This was because of the mix of vegetation types burned in each state. With respect to the temporal distribution, 76.9% of the fires occurred during the months of April and May consuming almost 78% of the total area burned during the period of study. Analysis of wind forward trajectories of air masses passing through the burned areas and 850-mb wind reanalyses indicate possible transboundary transport of the emissions from Mexico to the United States during the occurrence of the major wildfires identified.  相似文献   

7.
Contemporary human activities such as tropical deforestation, land clearing for agriculture, pest control and grassland management lead to biomass burning, which in turn leads to land-cover changes. However, biomass burning emissions are not correctly measured and the methods to assess these emissions form a part of current research area. The traditional methods for estimating aerosols and trace gases released into the atmosphere generally use emission factors associated with fuel loading and moisture characteristics and other parameters that are hard to estimate in near real-time applications. In this paper, fire radiative power (FRP) products were extracted from Moderate Resolution Imaging Spectroradiometer (MODIS) and from the Geostationary Operational Environmental Satellites (GOES) fire products and new South America generic biomes FRE-based smoke aerosol emission coefficients were derived and applied in 2002 South America fire season. The inventory estimated by MODIS and GOES FRP measurements were included in Coupled Aerosol-Tracer Transport model coupled to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS) and evaluated with ground truth collected in Large Scale Biosphere–Atmosphere Smoke, Aerosols, Clouds, rainfall, and Climate (SMOCC) and Radiation, Cloud, and Climate Interactions (RaCCI). Although the linear regression showed that GOES FRP overestimates MODIS FRP observations, the use of a common external parameter such as MODIS aerosol optical depth product could minimize the difference between sensors. The relationship between the PM2.5μm (Particulate Matter with diameter less than 2.5 μm) and CO (Carbon Monoxide) model shows a good agreement with SMOCC/RaCCI data in the general pattern of temporal evolution. The results showed high correlations, with values between 0.80 and 0.95 (significant at 0.5 level by student t test), for the CATT-BRAMS simulations with PM2.5μm and CO.  相似文献   

8.
This paper presents the 2005 global inventory of anthropogenic emissions to the atmosphere component of the work that was prepared by UNEP and AMAP as a contribution to the UNEP report Global Atmospheric Mercury Assessment: Sources, Emissions and Transport (UNEP Chemicals Branch, 2008).It describes the methodology applied to compile emissions data on the two main components of the inventory – the ‘by-product’ emissions and the ‘intentional use’ emissions – and to geospatially distribute these emissions estimates to produce a gridded dataset for use by modelers, and the results of this work.It also presents some initial results of work to develop (simplified) scenario emissions inventories for 2020 that can be used to investigate the possible implications of actions to reduce mercury emissions at the global scale.  相似文献   

9.
A spatially resolved biomass burning data set, and related emissions of sulphur dioxide and aerosol chemical constituents was constructed for India, for 1996–1997 and extrapolated to the INDOEX period (1998–1999). Sources include biofuels (wood, crop waste and dung-cake) and forest fires (accidental, shifting cultivation and controlled burning). Particulate matter (PM) emission factors were compiled from studies of Indian cooking stoves and from literature for open burning. Black carbon (BC) and organic matter (OM) emissions were estimated from these, accounting for combustion temperatures in cooking stoves. Sulphur dioxide emission factors were based on fuel sulphur content and reported literature measurements. Biofuels accounted 93% of total biomass consumption (577 MT yr−1), with forest fires contributing only 7%. The national average biofuel mix was 56 : 21 : 23% of fuelwood, crop waste and dung-cake, respectively. Compared to fossil fuels, biomass combustion was a minor source of SO2 (7% of total), with higher emissions from dung-cake because of its higher sulphur content. PM2.5 emissions of 2.04 Tg yr−1 with an “inorganic fraction” of 0.86 Tg yr−1 were estimated. Biomass combustion was the major source of carbonaceous aerosols, accounting 0.25 Tg yr−1 of BC (72% of total) and 0.94 Tg yr−1 of OM (76% of total). Among biomass, fuelwood and crop waste were primary contributors to BC emissions, while dung-cake and forest fires were primary contributors to OM emissions. Northern and the east-coast India had high densities of biomass consumption and related emissions. Measurements of emission factors of SO2, size resolved aerosols and their chemical constituents for Indian cooking stoves are needed to refine the present estimates.  相似文献   

10.
Multi-year inventories of carbonaceous aerosol emissions from biomass open burning at a high spatial resolution of 0.5° × 0.5° have been constructed in China using GIS methodology for the period 1990-2005. Black carbon (BC) emissions have increased by 383.03% at an annual average rate of 25.54% from 14.05 Gg in 1990 to 67.87 Gg in 2005; while organic carbon (OC) emissions have increased by 365.43% from 57.37 Gg in 1990 to 267.00 Gg in 2005. Through the estimation period, OC/BC ratio for biomass burning was averagely 4.09, suggesting that it was not the preferred control source from a climatic perspective. Spatial distribution of BC and OC emissions were similar, mainly concentrated in three northeastern provinces, central provinces of Shandong, Jiangsu, Anhui and Henan, and southern provinces of Guangxi, Guangdong, Hunan and Sichuan basin, covering 24.89% of China’s territory, but were responsible for 63.38% and 67.55% of national BC and OC emissions, respectively.  相似文献   

11.
Emission inventories are the foundation for cost-effective air quality management activities. In 2005, a report by the public/private partnership North American Research Strategy for Tropospheric Ozone (NARSTO) evaluated the strengths and weaknesses of North American emissions inventories and made recommendations for improving their effectiveness. This paper reviews the recommendation areas and briefly discusses what has been addressed, what remains unchanged, and new questions that have arisen. The findings reveal that all emissions inventory improvement areas identified by the 2005 NARSTO publication have been explored and implemented to some degree. The U.S. National Emissions Inventory has become more detailed and has incorporated new research into previously under-characterized sources such as fine particles and biomass burning. Additionally, it is now easier to access the emissions inventory and the documentation of the inventory via the internet. However, many emissions-related research needs exist, on topics such as emission estimation methods, speciation, scalable emission factor development, incorporation of new emission measurement techniques, estimation of uncertainty, top-down verification, and analysis of uncharacterized sources. A common theme throughout this retrospective summary is the need for increased coordination among stakeholders. Researchers and inventory developers must work together to ensure that planned emissions research and new findings can be used to update the emissions inventory. To continue to address emissions inventory challenges, industry, the scientific community, and government agencies need to continue to leverage resources and collaborate as often as possible. As evidenced by the progress noted, continued investment in and coordination of emissions inventory activities will provide dividends to air quality management programs across the country, continent, and world.

Implications: In 2005, a report by the public/private partnership North American Research Strategy for Tropospheric Ozone (NARSTO) evaluated the strengths and weaknesses of North American air pollution emissions inventories. This paper reviews the eight recommendation areas and briefly discusses what has been addressed, what remains unchanged, and new questions that have arisen. Although progress has been made, many opportunities exist for the scientific agencies, industry, and government agencies to leverage resources and collaborate to continue improving emissions inventories.  相似文献   

12.
Abstract

Emissions inventories of fine particulate matter (PM2.5) were compared with estimates of emissions based on data emerging from U.S. Environment Protection Agency Particulate Matter Supersites and other field programs. Six source categories for PM2.5 emissions were reviewed: on-road mobile sources, nonroad mobile sources, cooking, biomass combustion, fugitive dust, and stationary sources. Ammonia emissions from all of the source categories were also examined. Regional emissions inventories of PM in the exhaust from on-road and nonroad sources were generally consistent with ambient observations, though uncertainties in some emission factors were twice as large as the emission factors. In contrast, emissions inventories of road dust were up to an order of magnitude larger than ambient observations, and estimated brake wear and tire dust emissions were half as large as ambient observations in urban areas. Although comprehensive nationwide emissions inventories of PM2.5 from cooking sources and biomass burning are not yet available, observational data in urban areas suggest that cooking sources account for approximately 5–20% of total primary emissions (excluding dust), and biomass burning sources are highly dependent on region. Finally, relatively few observational data were available to assess the accuracy of emission estimates for stationary sources. Overall, the uncertainties in primary emissions for PM2.5 are substantial. Similar uncertainties exist for ammonia emissions. Because of these uncertainties, the design of PM2.5 control strategies should be based on inventories that have been refined by a combination of bottom-up and top-down methods.  相似文献   

13.
Submicron particles were collected from June to September 2008 in La Jolla, California to investigate the composition and sources of atmospheric aerosol in an anthropogenically-influenced coastal site. Factor analysis of aerosol mass spectrometry (AMS) and Fourier transform infrared (FTIR) spectroscopy measurements revealed that the two largest sources of submicron organic mass (OM) at the sampling site were (1) fossil fuel combustion associated with ship and diesel truck emissions near the ports of Los Angeles and Long Beach and (2) aged smoke from large wildfires burning in central and northern California. During non-fire periods, fossil fuel combustion contributed up to 95% of FTIR OM, correlated to sulfur, and consisted mostly of alkane (86%) and carboxylic acid groups (9%). During fire periods, biomass burning contributed up to 74% of FTIR OM, consisted mostly of alkane (48%), ketone (25%), and carboxylic acid groups (17%), and correlated to AMS-derived factors resembling brush fire smoke, wood smoldering and flaming particles, and biogenic secondary organic aerosol. The two AMS-derived biomass burning factors were identified as oxygenated and hydrocarbon biomass burning aerosol on the basis of spectral similarities to smoldering and flaming smoke particles, respectively. In addition, the ratio of oxygenated to hydrocarbon biomass burning OM shows a clear diurnal trend with an afternoon peak, consistent with photochemical oxidation. Back trajectory analysis indicates that 2–4-day old forest fire emissions include substantial ketone groups, which have both lower O/C and lower m/z 44/OM fraction than carboxylic acid groups. Air masses with more than 4-day old emissions have higher carboxylic acid/ketone group ratios, showing that atmospheric processing of these ketone-containing organic aerosol particles results in increased m/z 44 and O/C. These observations may provide functionally-specific evidence for the type of chemical processing that is responsible for biomass burning particle composition in the atmosphere.  相似文献   

14.
Emissions inventories of fine particulate matter (PM2.5) were compared with estimates of emissions based on data emerging from U.S. Environment Protection Agency Particulate Matter Supersites and other field programs. Six source categories for PM2.5 emissions were reviewed: on-road mobile sources, nonroad mobile sources, cooking, biomass combustion, fugitive dust, and stationary sources. Ammonia emissions from all of the source categories were also examined. Regional emissions inventories of PM in the exhaust from on-road and nonroad sources were generally consistent with ambient observations, though uncertainties in some emission factors were twice as large as the emission factors. In contrast, emissions inventories of road dust were up to an order of magnitude larger than ambient observations, and estimated brake wear and tire dust emissions were half as large as ambient observations in urban areas. Although comprehensive nationwide emissions inventories of PM2.5 from cooking sources and biomass burning are not yet available, observational data in urban areas suggest that cooking sources account for approximately 5-20% of total primary emissions (excluding dust), and biomass burning sources are highly dependent on region. Finally, relatively few observational data were available to assess the accuracy of emission estimates for stationary sources. Overall, the uncertainties in primary emissions for PM2.s are substantial. Similar uncertainties exist for ammonia emissions. Because of these uncertainties, the design of PM2.5 control strategies should be based on inventories that have been refined by a combination of bottom-up and top-down methods.  相似文献   

15.
To elucidate the macro-structure of the PM2.5 emissions generated by Japan's economic activities, this paper presents an emission inventory of primary particles of PM2.5 with high sectoral resolution based on the Japanese Input–Output Tables, comprising some 400 sectors. These primary PM2.5 emissions were estimated by multiplying the estimated energy consumption associated with each fuel type by a PM10 emission factor incorporating the technological level of dust collection in each sector and the mass ratio of PM2.5 to PM10. Non-energy emissions from agricultural open burning were also determined. Total PM2.5 emissions in 2000 were 252 kt, 49% of which were due to mobile emission sources. Changes in total PM2.5 emissions between 1990 and 2000 were also calculated. This showed that a substantial increase in energy sector emissions due to rising coal consumption was offset by a sharp decline in emissions from road vehicles and shipping vessels, resulting in an overall decrease in total emissions. In addition, the emissions induced by economic demand in each sector were quantified by means of input–output analysis, which revealed that demand for construction, foods and communications and services constituted the principal causes of real domestic emissions. An assessment of sectoral contributions to PM2.5 emissions that takes into account the effects of human exposure, expressed as external costs, suggests that the contribution of transportation is greater than indicated on the grounds of direct emissions alone.  相似文献   

16.
A comprehensive, spatially resolved (0.25°×0.25°) fossil fuel consumption database and emissions inventory was constructed, for India, for the first time. Emissions of sulphur dioxide and aerosol chemical constituents were estimated for 1996–1997 and extrapolated to the Indian Ocean Experiment (INDOEX) study period (1998–1999). District level consumption of coal/lignite, petroleum and natural gas in power plants, industrial, transportation and domestic sectors was 9411 PJ, with major contributions from coal (54%) followed by diesel (18%). Emission factors for various pollutants were derived using India specific fuel characteristics and information on combustion/air pollution control technologies for the power and industrial sectors. Domestic and transportation emission factors, appropriate for Indian source characteristics, were compiled from literature. SO2 emissions from fossil fuel combustion for 1996–1997 were 4.0 Tg SO2 yr−1, with 756 large point sources (e.g. utilities, iron and steel, fertilisers, cement, refineries and petrochemicals and non-ferrous metals), accounting for 62%. PM2.5 emitted was 0.5 and 2.0 Tg yr−1 for the 100% and the 50% control scenario, respectively, applied to coal burning in the power and industrial sectors. Coal combustion was the major source of PM2.5 (92%) primarily consisting of fly ash, accounting for 98% of the “inorganic fraction” emissions (difference between PM2.5 and black carbon+organic matter) of 1.6 Tg yr−1. Black carbon emissions were estimated at 0.1 Tg yr−1, with 58% from diesel transport, and organic matter emissions at 0.3 Tg yr−1, with 48% from brick-kilns. Fossil fuel consumption and emissions peaked at the large point industrial sources and 22 cities, with elevated area fluxes in northern and western India. The spatial resolution of this inventory makes it suitable for regional-scale aerosol-climate studies. These results are compared to previous studies and differences discussed. Measurements of emission factors for Indian sources are needed to further refine these estimates.  相似文献   

17.
Emission from large-scale post-harvest agricultural-waste burning (paddy-residue burning during October–November and wheat-residue burning in April–May) is a conspicuous feature in northern India. The poor and open burning of agricultural residue result in massive emission of carbonaceous aerosols and organic pollutants to the atmosphere. In this context, concentrations of atmospheric polycyclic aromatic hydrocarbons (PAHs) and their isomer ratios have been studied for a 2-year period from a source region (Patiala: 30.2°N; 76.3°E) of two distinct biomass burning emissions. The concentrations of 4—6 ring PAHs are considerably higher compared to 2–3 ring PAHs in the ambient particulate matter (PM2.5). The crossplots of PAH isomer ratios, fluoranthene?/?(fluoranthene?+?pyrene) and indeno[1,2,3-cd]pyrene/(indeno[1,2,3-cd]pyrene?+?benzo[g,h,i]perylene) for two biomass burning emissions, exhibit distinctly different source characteristics compared to those for fossil-fuel combustion sources in south and south-east Asia. The PAH isomer ratios studied from different geographical locations in northern India also exhibit similar characteristics on the crossplot, suggesting their usefulness as diagnostic tracers of biomass burning emissions.  相似文献   

18.
The impact of biogenic volatile organic compound (BVOC) emissions on European ozone distributions has not yet been evaluated in a comprehensive way. Using the CHIMERE chemistry-transport model the variability of surface ozone levels from April to September for 4 years (1997, 2000, 2001, 2003) resulting from biogenic emissions is investigated. It is shown that BVOC emissions increased on average summer daily ozone maxima over Europe by 2.5 ppbv (5%). The impact is most significant in Portugal (up to 15 ppbv) and in the Mediterranean region (about 5 ppbv), being smaller in the northern part of Europe (1.3 ppbv north of 47.5°N). The average impact is rather similar for the three summers (1997, 2000, 2001), but is much larger during the extraordinarily hot summer of 2003. Here, the biogenic contribution to surface ozone doubles compared to other years at some locations. Interaction with anthropogenic NOx emissions is found to be a key process for ozone production of biogenic precursors. Comparing the impact of the state-of-the-art BVOC emission inventory compiled within the NatAir project and an earlier, widely used BVOC inventory derived from Simpson et al. [1999. Inventorying emissions from nature in Europe. Journal of Geophysical Research 104(D7), 8113–8152] on surface ozone shows that ozone produced from biogenic precursors is less in central and northern Europe but in certain southern areas much higher e.g. Iberian Peninsula and the Mediterranean Sea. The uncertainty in the regionally averaged impact of BVOC on ozone build-up in Europe is estimated to be ±50%.  相似文献   

19.
The Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study was commissioned to investigate the sources of haze at Big Bend National Park in southwest Texas. The modeling domain of the BRAVO Study includes most of the continental United States and Mexico. The BRAVO emissions inventory was constructed from the 1999 National Emission Inventory for the United States, modified to include finer-resolution data for Texas and 13 U.S. states in close proximity. The first regional-scale Mexican emissions inventory designed for air-quality modeling applications was developed for 10 northern Mexican states, the Tula Industrial Park in the state of Hidalgo, and the Popocatépetl volcano in the state of Puebla. Emissions data were compiled from numerous sources, including the U.S. Environmental Protection Agency (EPA), the Texas Natural Resources Conservation Commission (now Texas Commission on Environmental Quality), the Eastern Research Group, the Minerals Management Service, the Instituto Nacional de Ecología, and the Instituto Nacional de Estadistica Geografía y Informática. The inventory includes emissions for CO, nitrogen oxides, sulfur dioxide, volatile organic compounds (VOCs), ammonia, particulate matter (PM) < 10 microm in aerodynamic diameter, and PM < 2.5 microm in aerodynamic diameter. Wind-blown dust and biomass burning were not included in the inventory, although high concentrations of dust and organic PM attributed to biomass burning have been observed at Big Bend National Park. The SMOKE modeling system was used to generate gridded emissions fields for use with the Regional Modeling System for Aerosols and Deposition (REMSAD) and the Community Multiscale Air Quality model modified with the Model of Aerosol Dynamics, Reaction, Ionization and Dissolution (CMAQ-MADRID). The compilation of the inventory, supporting model input data, and issues encountered during the development of the inventory are documented. A comparison of the BRAVO emissions inventory for Mexico with other emerging Mexican emission inventories illustrates their uncertainty.  相似文献   

20.
Aviation emissions contribute to the radiative forcing (RF) of climate. Of importance are emissions of carbon dioxide (CO2), nitrogen oxides (NOx), aerosols and their precursors (soot and sulphate), and increased cloudiness in the form of persistent linear contrails and induced-cirrus cloudiness. The recent Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC) quantified aviation's RF contribution for 2005 based upon 2000 operations data. Aviation has grown strongly over the past years, despite world-changing events in the early 2000s; the average annual passenger traffic growth rate was 5.3% yr?1 between 2000 and 2007, resulting in an increase of passenger traffic of 38%. Presented here are updated values of aviation RF for 2005 based upon new operations data that show an increase in traffic of 22.5%, fuel use of 8.4% and total aviation RF of 14% (excluding induced-cirrus enhancement) over the period 2000–2005. The lack of physical process models and adequate observational data for aviation-induced cirrus effects limit confidence in quantifying their RF contribution. Total aviation RF (excluding induced cirrus) in 2005 was ~55 mW m?2 (23–87 mW m?2, 90% likelihood range), which was 3.5% (range 1.3–10%, 90% likelihood range) of total anthropogenic forcing. Including estimates for aviation-induced cirrus RF increases the total aviation RF in 2005–78 mW m?2 (38–139 mW m?2, 90% likelihood range), which represents 4.9% of total anthropogenic forcing (2–14%, 90% likelihood range). Future scenarios of aviation emissions for 2050 that are consistent with IPCC SRES A1 and B2 scenario assumptions have been presented that show an increase of fuel usage by factors of 2.7–3.9 over 2000. Simplified calculations of total aviation RF in 2050 indicate increases by factors of 3.0–4.0 over the 2000 value, representing 4–4.7% of total RF (excluding induced cirrus). An examination of a range of future technological options shows that substantive reductions in aviation fuel usage are possible only with the introduction of radical technologies. Incorporation of aviation into an emissions trading system offers the potential for overall (i.e., beyond the aviation sector) CO2 emissions reductions. Proposals exist for introduction of such a system at a European level, but no agreement has been reached at a global level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号