首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Effect of climate change on air quality   总被引:2,自引:0,他引:2  
Air quality is strongly dependent on weather and is therefore sensitive to climate change. Recent studies have provided estimates of this climate effect through correlations of air quality with meteorological variables, perturbation analyses in chemical transport models (CTMs), and CTM simulations driven by general circulation model (GCM) simulations of 21st-century climate change. We review these different approaches and their results. The future climate is expected to be more stagnant, due to a weaker global circulation and a decreasing frequency of mid-latitude cyclones. The observed correlation between surface ozone and temperature in polluted regions points to a detrimental effect of warming. Coupled GCM–CTM studies find that climate change alone will increase summertime surface ozone in polluted regions by 1–10 ppb over the coming decades, with the largest effects in urban areas and during pollution episodes. This climate penalty means that stronger emission controls will be needed to meet a given air quality standard. Higher water vapor in the future climate is expected to decrease the ozone background, so that pollution and background ozone have opposite sensitivities to climate change. The effect of climate change on particulate matter (PM) is more complicated and uncertain than for ozone. Precipitation frequency and mixing depth are important driving factors but projections for these variables are often unreliable. GCM–CTM studies find that climate change will affect PM concentrations in polluted environments by ±0.1–1 μg m?3 over the coming decades. Wildfires fueled by climate change could become an increasingly important PM source. Major issues that should be addressed in future research include the ability of GCMs to simulate regional air pollution meteorology and its sensitivity to climate change, the response of natural emissions to climate change, and the atmospheric chemistry of isoprene. Research needs to be undertaken on the effect of climate change on mercury, particularly in view of the potential for a large increase in mercury soil emissions driven by increased respiration in boreal ecosystems.  相似文献   

2.
The on-road transportation (ORT) and power generation (PG) sectors are major contributors to carbon dioxide (CO2) emissions and a host of short-lived radiatively-active air pollutants, including tropospheric ozone and fine aerosol particles, that exert complex influences on global climate. Effective mitigation of global climate change necessitates action in these sectors for which technology change options exist or are being developed. Most assessments of possible energy change options to date have neglected non-CO2 air pollutant impacts on radiative forcing (RF). In a multi-pollutant approach, we apply a global atmospheric composition-climate model to quantify the total RF from the global and United States (U.S.) ORT and PG sectors. We assess the RF for 2 time horizons: 20- and 100-year that are relevant for understanding near-term and longer-term impacts of climate change, respectively. ORT is a key target sector to mitigate global climate change because the net non-CO2 RF is positive and acts to enhance considerably the CO2 warming impacts. We perform further sensitivity studies to assess the RF impacts of a potential major technology shift that would reduce ORT emissions by 50% with the replacement energy supplied either by a clean zero-emissions source (S1) or by the PG sector, which results in an estimated 20% penalty increase in emissions from this sector (S2). We examine cases where the technology shift is applied globally and in the U.S. only. The resultant RF relative to the present day control is negative (cooling) in all cases for both S1 and S2 scenarios, global and U.S. emissions, and 20- and 100-year time horizons. The net non-CO2 RF is always important relative to the CO2 RF and outweighs the CO2 RF response in the S2 scenario for both time horizons. Assessment of the full impacts of technology and policy strategies designed to mitigate global climate change must consider the climate effects of ozone and fine aerosol particles.  相似文献   

3.
A recent multidisciplinary compilation of studies on changes in the Siberian environment details how climate is changing faster than most places on Earth with exceptional warming in the north and increased aridity in the south. Impacts of these changes are rapid permafrost thaw and melt of glaciers, increased flooding, extreme weather events leading to sudden changes in biodiversity, increased forest fires, more insect pest outbreaks, and increased emissions of CO2 and methane. These trends interact with sociological changes leading to land-use change, globalisation of diets, impaired health of Arctic Peoples, and challenges for transport. Local mitigation and adaptation measures are likely to be limited by a range of public perceptions of climate change that vary according to personal background. However, Siberia has the possibility through land surface feedbacks to amplify or suppress climate change impacts at potentially global levels. Based on the diverse studies presented in this Ambio Special Issue, we suggest ways forward for more sustainable environmental research and management.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13280-021-01626-7.  相似文献   

4.
Before climate change is considered in long-term coastal management, it is necessary to investigate how institutional stakeholders in coastal management conceptualize climate change, as their awareness will ultimately affect their actions. Using questionnaires in eight Baltic Sea riparian countries, this study examines environmental managers' awareness of climate change. Our results indicate that problems related to global warming are deemed secondary to short-term social and economic issues. Respondents agree that problems caused by global warming will become increasingly important, but pay little attention to adaptation and mitigation strategies. Current environmental problems are expected to continue to be urgent in the future. We conclude that an apparent gap exists between decision making, public concerns, and scientific consensus, resulting in a situation in which the latest evidence rarely influences commonly held opinions.  相似文献   

5.
Climate change is forecast to adversely affect air quality through perturbations in meteorological conditions, photochemical reactions, and precursor emissions. To protect the environment and human health from air pollution, there is an increasing recognition of the necessity of developing effective air quality management strategies under the impacts of climate change. This paper presents a framework for developing risk-based air quality management strategies that can help policy makers improve their decision-making processes in response to current and future climate change about 30-50 years from now. Development of air quality management strategies under the impacts of climate change is fundamentally a risk assessment and risk management process involving four steps: (1) assessment of the impacts of climate change and associated uncertainties; (2) determination of air quality targets; (3) selections of potential air quality management options; and (4) identification of preferred air quality management strategies that minimize control costs, maximize benefits, or limit the adverse effects of climate change on air quality when considering the scarcity of resources. The main challenge relates to the level of uncertainties associated with climate change forecasts and advancements in future control measures, since they will significantly affect the risk assessment results and development of effective air quality management plans. The concept presented in this paper can help decision makers make appropriate responses to climate change, since it provides an integrated approach for climate risk assessment and management when developing air quality management strategies. Implications: Development of climate-responsive air quality management strategies is fundamentally a risk assessment and risk management process. The risk assessment process includes quantification of climate change impacts on air quality and associated uncertainties. Risk management for air quality under the impacts of climate change includes determination of air quality targets, selections of potential management options, and identification of effective air quality management strategies through decision-making models. The risk-based decision-making framework can also be applied to develop climate-responsive management strategies for the other environmental dimensions and assess costs and benefits of future environmental management policies.  相似文献   

6.
Local emissions of Arctic air pollutants and their impacts on climate, ecosystems and health are poorly understood. Future increases due to Arctic warming or economic drivers may put additional pressures on the fragile Arctic environment already affected by mid-latitude air pollution. Aircraft data were collected, for the first time, downwind of shipping and petroleum extraction facilities in the European Arctic. Data analysis reveals discrepancies compared to commonly used emission inventories, highlighting missing emissions (e.g. drilling rigs) and the intermittent nature of certain emissions (e.g. flaring, shipping). Present-day shipping/petroleum extraction emissions already appear to be impacting pollutant (ozone, aerosols) levels along the Norwegian coast and are estimated to cool and warm the Arctic climate, respectively. Future increases in shipping may lead to short-term (long-term) warming (cooling) due to reduced sulphur (CO2) emissions, and be detrimental to regional air quality (ozone). Further quantification of local Arctic emission impacts is needed.  相似文献   

7.
Transport affects climate directly and indirectly through mechanisms that operate on very different timescales and cause both warming and cooling. We calculate contributions to the historical development in global mean temperature for the main transport sectors (road transport, aviation, shipping and rail) based on estimates of historical emissions and by applying knowledge about the various forcing mechanisms from detailed studies. We also calculate the development in future global mean temperature for four transport scenarios consistent with the IPCC SRES scenarios, one mitigation scenario and one sensitivity test scenario. There are large differences between the transport sectors in terms of sign and magnitude of temperature effects and with respect to the contributions from the long- and short-lived components. Since pre-industrial times, we calculate that transport in total has contributed 9% of total net man-made warming in the year 2000. The dominating contributor to warming is CO2, followed by tropospheric O3. By sector, road transport is the largest contributor; 11% of the warming in 2000 is due to this sector. Likewise, aviation has contributed 4% and rail ~1%. Shipping, on the other hand, has caused a net cooling up to year 2000, with a contribution of ?7%, due to the effects of SO2 and NOx emissions. The total net contribution from the transport sectors to total man-made warming is ~15% in 2050, and reaches 20% in 2100 in the A1 and B1 scenarios. For all scenarios and throughout the century, road transport is the dominating contributor to warming. Due to the anticipated reduction in sulphur content of fuels, the net effect of shipping changes from cooling to warming by the end of the century. Significant uncertainties are related to the estimates of historical and future net warming mainly due to cirrus, contrails and aerosol effects, as well as uncertainty in climate sensitivity.  相似文献   

8.
Singapore has many environmental accomplishments to its credit. Accessible data on air quality indicates that all criteria pollutants satisfy both U.S. Environmental Protection Agency (EPA) and World Health Organization (WHO) air quality standards and guidelines, respectively. The exception is PM2.5 (particles with an aerodynamic diameter ≤2.5 μm), which is not currently considered a criteria pollutant in Singapore but may potentially be the major local air pollution problem and cause for health concern. Levels of other airborne pollutants as well as their physical and chemical processes associated with local formation, transformation, dispersion, and deposition are not known. According to available emission inventories, Singapore's contribution to the total atmospheric pollution and carbon budget at the regional and global scales is small. Emissions per unit gross domestic product (GDP) are low compared with other countries, although Singapore's per-capita GDP and per-capita emissions are among the highest in the world. Some information is available on health effects, but the impacts on the ecosystem and the complex interactions of air pollution and climate change at a regional level are also unknown. This article reviews existing available information on atmospheric pollution and greenhouse gas emissions and proposes a multipollutant approach to greenhouse gas mitigation and local air quality. Singapore, by reducing its per-capita emissions, increasing the availability of information (e.g., through regularly publishing hourly and/or daily PM2.5 concentrations) and developing a research agenda in this area, would likely be seen to be a model of a high-density, livable, and sustainable city in Southeast Asia and other tropical regions worldwide.

Implications Singapore is widely recognized for its environmental achievements and often cited as a model of a high-density, livable, and sustainable city. This article reviews available information with the aim to provide a reference for future scientific research of strategic relevance for Singapore's air quality and greenhouse gas mitigation management under a multipollutant framework. However, the limited publicly accessible data and little scientific information prevent a comprehensive assessment of the local air quality and greenhouse gas emissions. Singapore's dynamic economy and strong profile in advanced science and technological innovation have the potential to enhance the research agenda in this area, which is not yet well developed in tropical cities.  相似文献   

9.
Valuation of health effects of air pollution is becoming a critical component of the performance of cost–benefit analysis of pollution control measures, which provides a basis for setting priorities for action. Beijing has focused on control of transport emission as vehicular emissions have recently become an important source of air pollution, particularly during Olympic games and Post-games. In this paper, we conducted an estimation of health effects and economic cost caused by road transport-related air pollution using an integrated assessment approach which utilizes air quality model, engineering, epidemiology, and economics. The results show that the total economic cost of health impacts due to air pollution contributed from transport in Beijing during 2004–2008 was 272, 297, 310, 323, 298 million US$ (mean value), respectively. The economic costs of road transport accounted for 0.52, 0.57, 0.60, 0.62, and 0.58% of annual Beijing GDP from 2004 to 2008. Average cost per vehicle and per ton of PM10 emission from road transport can also be estimated as 106 US $/number and 3584 US $ t?1, respectively. These findings illustrate that the impact of road transport contributed particulate air pollution on human health could be substantial in Beijing, whether in physical and economic terms. Therefore, some control measures to reduce transport emissions could lead to considerable economic benefit.  相似文献   

10.
Emissions of exhaust gases and particles from oceangoing ships are a significant and growing contributor to the total emissions from the transportation sector. We present an assessment of the contribution of gaseous and particulate emissions from oceangoing shipping to anthropogenic emissions and air quality. We also assess the degradation in human health and climate change created by these emissions. Regulating ship emissions requires comprehensive knowledge of current fuel consumption and emissions, understanding of their impact on atmospheric composition and climate, and projections of potential future evolutions and mitigation options. Nearly 70% of ship emissions occur within 400 km of coastlines, causing air quality problems through the formation of ground-level ozone, sulphur emissions and particulate matter in coastal areas and harbours with heavy traffic. Furthermore, ozone and aerosol precursor emissions as well as their derivative species from ships may be transported in the atmosphere over several hundreds of kilometres, and thus contribute to air quality problems further inland, even though they are emitted at sea. In addition, ship emissions impact climate. Recent studies indicate that the cooling due to altered clouds far outweighs the warming effects from greenhouse gases such as carbon dioxide (CO2) or ozone from shipping, overall causing a negative present-day radiative forcing (RF). Current efforts to reduce sulphur and other pollutants from shipping may modify this. However, given the short residence time of sulphate compared to CO2, the climate response from sulphate is of the order decades while that of CO2 is centuries. The climatic trade-off between positive and negative radiative forcing is still a topic of scientific research, but from what is currently known, a simple cancellation of global mean forcing components is potentially inappropriate and a more comprehensive assessment metric is required. The CO2 equivalent emissions using the global temperature change potential (GTP) metric indicate that after 50 years the net global mean effect of current emissions is close to zero through cancellation of warming by CO2 and cooling by sulphate and nitrogen oxides.  相似文献   

11.
Air quality transcends all scales with in the atmosphere from the local to the global with handovers and feedbacks at each scale interaction. Air quality has manifold effects on health, ecosystems, heritage and climate. In this review the state of scientific understanding in relation to global and regional air quality is outlined. The review discusses air quality, in terms of emissions, processing and transport of trace gases and aerosols. New insights into the characterization of both natural and anthropogenic emissions are reviewed looking at both natural (e.g. dust and lightning) as well as plant emissions. Trends in anthropogenic emissions both by region and globally are discussed as well as biomass burning emissions. In terms of chemical processing the major air quality elements of ozone, non-methane hydrocarbons, nitrogen oxides and aerosols are covered. A number of topics are presented as a way of integrating the process view into the atmospheric context; these include the atmospheric oxidation efficiency, halogen and HOx chemistry, nighttime chemistry, tropical chemistry, heat waves, megacities, biomass burning and the regional hot spot of the Mediterranean. New findings with respect to the transport of pollutants across the scales are discussed, in particular the move to quantify the impact of long-range transport on regional air quality. Gaps and research questions that remain intractable are identified. The review concludes with a focus of research and policy questions for the coming decade. In particular, the policy challenges for concerted air quality and climate change policy (co-benefit) are discussed.  相似文献   

12.
Air pollution in England and Wales is reviewed to identify priorities for management and research. The main human drivers of emissions are the production and consumption of energy and materials, disposal of waste, transport and land use. Pollutants are assigned to seven types: (i) nuisance (e.g. odour, noise), (ii) toxic, (iii) acidifying/eutrophying, (iv) photochemical oxidant precursors, (v) radionuclides, (vi) stratospheric ozone depleting substances and (vii) greenhouse gases. Dominant trends in activity and emissions are highlighted. New technologies and fuels are partially decoupling emissions from activity in power generation, industry and transport, but the gains are being offset by growth in demand and output in all major sectors. The evidence for impacts on human health, the atmosphere and other environmental systems is discussed. Priorities for management are climate change, ground-level ozone, acidification and eutrophication by nitrogen, urban air quality and nuisance pollution. Management responses require greater foresight, technological improvements and new instruments to control polluting activities. More scientific information is needed on the impacts on human health, quality of life and ecosystems, and on the links between different types of pollution. The policy challenges include generating energy sustainably, reducing transport impacts, devising effective economic instruments, improving societal awareness and contributing to cleaner global development.  相似文献   

13.
Combustion processes have inherent characteristics that lead to the release in the environment of both gaseous and particulate pollutants that have primary and secondary impacts on air quality, human health, and climate. The emissions from the combustion of fossil fuels and biofuels and their atmospheric impacts are reviewed here with attention given to the emissions of the currently regulated pollutant gasses, primary aerosols, and secondary aerosol precursors as well as the emissions of non-regulated pollutants. Fuels ranging from coal, petroleum, liquefied petroleum gas (LPG), natural gas, as well as the biofuels; ethanol, methanol, methyl tertiary-butyl ether (MTBE), ethyl tertiary-butyl ether (ETBE), and biodiesel, are discussed in terms of the known air quality and climate impacts of the currently regulated pollutants. The potential importance of the non-regulated emissions of both gasses and aerosols in air quality issues and climate is also discussed with principal focus on aldehydes and other oxygenated organics, polycyclic aromatic hydrocarbons (PAHs), and nitrated organics. The connection between air quality and climate change is also addressed with attention given to ozone and aerosols as potentially important greenhouse species.  相似文献   

14.
Globally, 1.3 billion on-road vehicles consume 79 quadrillion BTU of energy, mostly gasoline and diesel fuels, emit 5.7 gigatonnes of CO2, and emit other pollutants to which approximately 200,000 annual premature deaths are attributed. Improved vehicle energy efficiency and emission controls have helped offset growth in vehicle activity. New technologies are diffusing into the vehicle fleet in response to fuel efficiency and emission standards. Empirical assessment of vehicle emissions is challenging because of myriad fuels and technologies, intervehicle variability, multiple emission processes, variability in operating conditions, and varying capabilities of measurement methods. Fuel economy and emissions regulations have been effective in reducing total emissions of key pollutants. Real-world fuel use and emissions are consistent with official values in the United States but not in Europe or countries that adopt European standards. Portable emission measurements systems, which uncovered a recent emissions cheating scandal, have a key role in regulatory programs to ensure conformity between “real driving emissions” and emission standards. The global vehicle fleet will experience tremendous growth, especially in Asia. Although existing data and modeling tools are useful, they are often based on convenience samples, small sample sizes, large variability, and unquantified uncertainty. Vehicles emit precursors to several important secondary pollutants, including ozone and secondary organic aerosols, which requires a multipollutant emissions and air quality management strategy. Gasoline and diesel are likely to persist as key energy sources to mid-century. Adoption of electric vehicles is not a panacea with regard to greenhouse gas emissions unless coupled with policies to change the power generation mix. Depending on how they are actually implemented and used, autonomous vehicles could lead to very large reductions or increases in energy consumption. Numerous other trends are addressed with regard to technology, emissions controls, vehicle operations, emission measurements, impacts on exposure, and impacts on public health.

Implications: Without specific policies to the contrary, fossil fuels are likely to continue to be the major source of on-road vehicle energy consumption. Fuel economy and emission standards are generally effective in achieving reductions per unit of vehicle activity. However, the number of vehicles and miles traveled will increase. Total energy use and emissions depend on factors such as fuels, technologies, land use, demographics, economics, road design, vehicle operation, societal values, and others that affect demand for transportation, mode choice, energy use, and emissions. Thus, there are many opportunities to influence future trends in vehicle energy use and emissions.  相似文献   


15.
Air quality can be affected by weather and thus is sensitive to a changing climate. Wildfire (influenced by weather), consecutive high temperature summer days, and other extreme events are projected to become more severe and frequent with climate change. These may create challenging conditions for managing air quality despite policy targets to reduce precursor and pollutant emissions. Although extreme events are becoming more intense and interest in climate adaptation is increasing among public health practitioners, little attention in scholarly literature and policy covers climate adaptation for air quality governance. Understanding the management and managers’ perspectives at the local level provides insight about the needs for climate adaptation, including their adaptation status, perspectives, responsibilities, and roles. This study explores local manager perspectives and experiences of managing air quality within a changing climate as one puzzle piece to understand the gap in climate adaptation within the air quality sector. A broader goal is to contribute to the discussion of developing a multi-jurisdictional vision for reducing the impacts of air quality in a changing climate. In 2016 local air quality district managers in California were invited to participate in an online survey of 39 questions focused on extreme event impacts on air quality. The questionnaire focused on present air quality threats and extreme event challenges, adaptation status and strategies, adaptive capacities, perceived barriers to adaptation, and jurisdictional responsibilities and roles. Over 85 percent of the 35 local air districts in California participated in the survey, which represents 80 percent of the state’s population. High awareness and knowledge of climate change among local managers indicates they are ready to adopt and take action on policies that would support climate adaptation, but barriers reported suggests they may need policies and adequate funding to take action and make necessary changes.

Implications: Downscaled global climate models project an increasing severity and frequency of extreme events. In the southwestern United States, these include wildfire, heat events, and dry periods, among others, all of which can place an extra burden on air quality managers and emitters to achieve air quality standards even as they reduce emissions. Despite climate change presenting increasing challenges to meet air quality standards, in the southwestern United States, policy and action to mitigate these impacts have been surprisingly absent. California presents a valuable case study on the topic because of its historic leadership in air quality management for the United States and also because of its initiatives in combating climate change. Yet still we found that adaptation has not been incorporated into air quality management thus far, but local managers seem sufficiently knowledgeable and willing.  相似文献   

16.
Singapore has many environmental accomplishments to its credit. Accessible data on air quality indicates that all criteria pollutants satisfy both U.S. Environmental Protection Agency (EPA) and World Health Organization (WHO) air quality standards and guidelines, respectively. The exception is PM2.5 (particles with an aerodynamic diameter < or = 2.5 microm), which is not currently considered a criteria pollutant in Singapore but may potentially be the major local air pollution problem and cause for health concern. Levels of other airborne pollutants as well as their physical and chemical processes associated with local formation, transformation, dispersion, and deposition are not known. According to available emission inventories, Singapore contribution to the total atmospheric pollution and carbon budget at the regional and global scales is small. Emissions per unit gross domestic product (GDP) are low compared with other countries, although Singapore's per-capita GDP and per-capita emissions are among the highest in the world. Some information is available on health effects, but the impacts on the ecosystem and the complex interactions of air pollution and climate change at a regional level are also unknown. This article reviews existing available information on atmospheric pollution and greenhouse gas emissions and proposes a multipollutant approach to greenhouse gas mitigation and local air quality. Singapore, by reducing its per-capita emissions, increasing the availability of information (e.g., through regularly publishing hourly and/or daily PM2.5 concentrations) and developing a research agenda in this area, would likely be seen to be a model of a high-density, livable, and sustainable city in Southeast Asia and other tropical regions worldwide.  相似文献   

17.
This paper presents an example of how air pollution models can be used together with energy system models to study the impacts of climate change mitigation strategies on air pollution. As many mitigation measures of greenhouse gases (GHGs) affect the use of fossil fuels in energy production, they can have important side-effects on other air pollution problems. This paper studies on a national scale the impacts of the planned GHG reduction measures on multiple air pollution problems in Finland, concentrating on acidification of forest soils and lakes, tropospheric ozone levels harmful to humans and vegetation and on emissions of fine particles. The air pollutant emission scenarios with the alternative energy choices are calculated for about 200 large point sources, assuming the present emission limit legislation. Disperse emissions are treated at municipality level. The analysis extends to the year 2020. The implementation of the Kyoto protocol in Finland would induce notable reductions of multiple air pollutant emissions and related environmental impacts. A 6–11% reduction in ecosystems threatened by acidification in Southern and Central Finland would be achieved with the Finnish Climate Strategy alone. Substantial improvement in ozone levels would be reached in all scenarios compared to the current situation. The measures of the Climate Strategy could reduce the harmful ozone levels by a further 3%. The measures of the Climate Strategy would not significantly affect the primary particulate emissions in the future because the emissions from large power plants are already effectively controlled. Contrary to the fuel choices of the large units, expanded use of small-scale wood combustion can result in considerable increases of both fine particulate and VOC emissions.  相似文献   

18.
The paper describes the incorporation of actual emission measurements and future emission standards into the emission model ‘NEMO’ (Network Emission Model). This model is then applied to make predictions on vehicle emission levels on basis of the Austrian fleet composition until 2020. The output is compared to the results based on the most common emission tool for the calculation of vehicle emissions in Central Europe – the recent version (2.1) of the ‘Handbook Emission Factors for Road Transport’. The discussion is focused on NOx and particulate matter (PM), since these pollutants are considered to be the most critical for the local air quality level.The NOx emission levels of recent modern diesel vehicle generations observed in several real world driving conditions were observed to be clearly higher than demanded in the type approval procedure. Due to the growing number of modern diesel engine concepts equipped with coated catalytic exhaust after treatment, the fraction of NO2 of the total tailpipe NOx emissions is predicted to continue to increase in the next few years. Bearing in mind the upcoming tightening of the NO2 air quality limits and the steady increase of traffic volumes, excesses of the NO2 air quality limits at roadside locations have to be expected to an increasing extent for the beginning of the next decade. The issue of particle emissions originated from the diesel engine combustion process can be regarded as being technically solved due to the extensive introduction of diesel particle filters in the vehicle fleet if these systems will prove a high efficiency over the entire vehicle life in real world operation conditions. However, PM emissions from road transport will continue to be in the focus of public attention due to particle emissions caused by dust re-suspension and abrasion processes.  相似文献   

19.
A forecast of expected evolution of carbon dioxide (CO(2)) emissions in Portugal between 1988 and 2010 is presented. Predictions show that CO(2) emissions will almost double in the next twenty years. The equivalent potential CO(2) emissions from nitrogen oxides (NO(x)) and volatile organic compounds (VOC), for a time horizon of 20 years, is also presented. NO(x) and VOC emissions seem to make a significant contribution to the global warming potential of Portuguese emissions. Estimates of CO(2) emissions due to forest fires have been made, oriented towards the study of the Portuguese contribution to the global warming. If the burned area exceeds 100 000 ha this contribution could reach 7% of the total Portuguese CO(2) emissions. The global warming potential of Portuguese forest emissions were also calculated. The climate change predicted to Portugal could be responsible for an increase in the forest fires and consequently for a greater contribution of its emissions to the total values. It was concluded that it is important to quantify emissions of the greenhouse gases, including the contribution of forest fire emissions, not only in Portugal, but in all the Southern European countries.  相似文献   

20.
Combustion of coal, oil, and natural gas, and to a lesser extent deforestation, land-cover change, and emissions of halocarbons and other greenhouse gases, are rapidly increasing the atmospheric concentrations of climate-warming gases. The warming of approximately 0.1-0.2 degrees C per decade that has resulted is very likely the primary cause of the increasing loss of snow cover and Arctic sea ice, of more frequent occurrence of very heavy precipitation, of rising sea level, and of shifts in the natural ranges of plants and animals. The global average temperature is already approximately 0.8 degrees C above its preindustrial level, and present atmospheric levels of greenhouse gases will contribute to further warming of 0.5-1 degrees C as equilibrium is re-established. Warming has been and will be greater in mid and high latitudes compared with low latitudes, over land compared with oceans, and at night compared with day. As emissions continue to increase, both warming and the commitment to future warming are presently increasing at a rate of approximately 0.2 degrees C per decade, with projections that the rate of warming will further increase if emission controls are not put in place. Such warming and the associated changes are likely to result in severe impacts on key societal and environmental support systems. Present estimates are that limiting the increase in global average surface temperature to no more than 2-2.5 degrees C above its 1750 value of approximately 15 degrees C will be required to avoid the most catastrophic, but certainly not all, consequences of climate change. Accomplishing this will require reducing emissions sharply by 2050 and to near zero by 2100. This can only be achieved if: (1) developed nations move rapidly to demonstrate that a modem society can function without reliance on technologies that release carbon dioxide (CO2) and other non-CO2 greenhouse gases to the atmosphere; and (2) if developing nations act in the near-term to sharply limit their non-CO2 emissions while minimizing growth in CO2 emissions, and then in the long-term join with the developed nations to reduce all emissions as cost-effective technologies are developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号