共查询到20条相似文献,搜索用时 13 毫秒
1.
Xiao-Huan Liu Yang Zhang Kristen M. Olsen Wen-Xing Wang Bebhinn A. Do George M. Bridgers 《Atmospheric environment (Oxford, England : 1994)》2010,44(20):2443-2456
The prediction of future air quality and its responses to emission control strategies at national and state levels requires a reliable model that can replicate atmospheric observations. In this work, the Mesoscale Model (MM5) and the Community Multiscale Air Quality Modeling (CMAQ) system are applied at a 4-km horizontal grid resolution for four one-month periods, i.e., January, June, July, and August in 2002 to evaluate model performance and compare with that at 12-km. The evaluation shows skills of MM5/CMAQ that are overall consistent with current model performance. The large cold bias in temperature at 1.5 m is likely due to too cold soil initial temperatures and inappropriate snow treatments. The large overprediction in precipitation in July is due likely to too frequent afternoon convective rainfall and/or an overestimation in the rainfall intensity. The normalized mean biases and errors are ?1.6% to 9.1% and 15.3–18.5% in January and ?18.7% to ?5.7% and 13.9–20.6% in July for max 1-h and 8-h O3 mixing ratios, respectively, and those for 24-h average PM2.5 concentrations are 8.3–25.9% and 27.6–38.5% in January and ?57.8% to ?45.4% and 46.1–59.3% in July. The large underprediction in PM2.5 in summer is attributed mainly to overpredicted precipitation, inaccurate emissions, incomplete treatments for secondary organic aerosols, and model difficulties in resolving complex meteorology and geography. While O3 prediction shows relatively less sensitivity to horizontal grid resolutions, PM2.5 and its secondary components, visibility indices, and dry and wet deposition show a moderate to high sensitivity. These results have important implications for the regulatory applications of MM5/CMAQ for future air quality attainment. 相似文献
2.
Litao Wang Carey Jang Yang Zhang Kai Wang Qiang Zhang David Streets Joshua Fu Yu Lei Jeremy Schreifels Kebin He Jiming Hao Yun-Fat Lam Jerry Lin Nicholas Meskhidze Scott Voorhees Dale Evarts Sharon Phillips 《Atmospheric environment (Oxford, England : 1994)》2010,44(28):3449-3457
Following the meteorological evaluation in Part I, this Part II paper presents the statistical evaluation of air quality predictions by the U.S. Environmental Protection Agency (U.S. EPA)’s Community Multi-Scale Air Quality (Models-3/CMAQ) model for the four simulated months in the base year 2005. The surface predictions were evaluated using the Air Pollution Index (API) data published by the China Ministry of Environmental Protection (MEP) for 31 capital cities and daily fine particulate matter (PM2.5, particles with aerodiameter less than or equal to 2.5 μm) observations of an individual site in Tsinghua University (THU). To overcome the shortage in surface observations, satellite data are used to assess the column predictions including tropospheric nitrogen dioxide (NO2) column abundance and aerosol optical depth (AOD). The result shows that CMAQ gives reasonably good predictions for the air quality.The air quality improvement that would result from the targeted sulfur dioxide (SO2) and nitrogen oxides (NOx) emission controls in China were assessed for the objective year 2010. The results show that the emission controls can lead to significant air quality benefits. SO2 concentrations in highly polluted areas of East China in 2010 are estimated to be decreased by 30–60% compared to the levels in the 2010 Business-As-Usual (BAU) case. The annual PM2.5 can also decline by 3–15 μg m?3 (4–25%) due to the lower SO2 and sulfate concentrations. If similar controls are implemented for NOx emissions, NOx concentrations are estimated to decrease by 30–60% as compared with the 2010 BAU scenario. The annual mean PM2.5 concentrations will also decline by 2–14 μg m?3 (3–12%). In addition, the number of ozone (O3) non-attainment areas in the northern China is projected to be much lower, with the maximum 1-h average O3 concentrations in the summer reduced by 8–30 ppb. 相似文献
3.
Litao Wang Carey Jang Yang Zhang Kai Wang Qiang Zhang David Streets Joshua Fu Yu Lei Jeremy Schreifels Kebin He Jiming Hao Yun-Fat Lam Jerry Lin Nicholas Meskhidze Scott Voorhees Dale Evarts Sharon Phillips 《Atmospheric environment (Oxford, England : 1994)》2010,44(28):3442-3448
Under the 11th Five Year Plan (FYP, 2006–2010) for national environmental protection by the Chinese government, the overarching goal for sulfur dioxide (SO2) controls is to achieve a total national emissions level of SO2 in 2010 10% lower than the level in 2005. A similar nitrogen oxides (NOx) emissions control plan is currently under development and could be enforced during the 12th FYP (2011–2015). In this study, the U.S. Environmental Protection Agency (U.S.EPA)’s Community Multi-Scale Air Quality (Models-3/CMAQ) modeling system was applied to assess the air quality improvement that would result from the targeted SO2 and NOx emission controls in China. Four emission scenarios — the base year 2005, the 2010 Business-As-Usual (BAU) scenario, the 2010 SO2 control scenario, and the 2010 NOx control scenario—were constructed and simulated to assess the air quality change from the national control plan. The Fifth-Generation NCAR/Penn State Mesoscale Model (MM5) was applied to generate the meteorological fields for the CMAQ simulations. In this Part I paper, the model performance for the simulated meteorology was evaluated against observations for the base case in terms of temperature, wind speed, wind direction, and precipitation. It is shown that MM5 model gives an overall good performance for these meteorological variables. The generated meteorological fields are acceptable for using in the CMAQ modeling. 相似文献
4.
《Atmospheric environment (Oxford, England : 1994)》2001,35(7):1203-1215
Comparisons were made between the predictions of six photochemical air quality simulation models (PAQSMs) and three indicators of ozone response to emission reductions: the ratios of O3/NOz and O3/NOy and the extent of reaction. The values of the two indicator ratios and the extent of reaction were computed from the model-predicted mixing ratios of ozone and oxidized nitrogen species and were compared to the changes in peak 1 and 8 h ozone mixing ratios predicted by the PAQSMs. The ozone changes were determined from the ozone levels predicted for base-case emission levels and for reduced emissions of volatile organic compounds (VOCs) and oxides of nitrogen (NOx). For all simulations, the model-predicted responses of peak 1 and 8 h ozone mixing ratios to VOC or NOx emission reductions were correlated with the base-case extent of reaction and ratios of O3/NOz and O3/NOy. Peak ozone values increased following NOx control in 95% (median over all simulations) of the high-ozone (>80 ppbv hourly mixing ratio in the base-case) grid cells having mean afternoon O3/NOz ratios less than 5 : 1, O3/NOy less than 4 : 1, or extent less than 0.6. Peak ozone levels decreased in response to NOx reductions in 95% (median over all simulations) of the grid cells having peak hourly ozone mixing ratios greater than 80 ppbv and where mean afternoon O3/NOz exceeded 10 : 1, O3/NOy was greater than 8 : 1, or extent exceeded 0.8. Ozone responses varied in grid cells where O3/NOz was between 5 : 1 and 10 : 1, O3/NOy was between 4 : 1 and 8 : 1, or extent was between 0.6 and 0.8. The responses in such grid cells were affected by ozone responses in upwind grid cells and by the changes in ozone levels along the upwind boundaries of the modeling domains. 相似文献
5.
Boiler briquette coal versus raw coal: Part II--Energy, greenhouse gas, and air quality implications
The objective of this paper is to conduct an integrated analysis of the energy, greenhouse gas, and air quality impacts of a new type of boiler briquette coal (BB-coal) in contrast to those of the raw coal from which the BB-coal was formulated (R-coal). The analysis is based on the source emissions data and other relevant data collected in the present study and employs approaches including the construction of carbon, energy, and sulfur balances. The results show that replacing R-coal with BB-coal as the fuel for boilers such as the one tested would have multiple benefits, including a 37% increase in boiler thermal efficiency, a 25% reduction in fuel demand, a 26% reduction in CO2 emission, a 17% reduction in CO emission, a 63% reduction in SO2 emission, a 97% reduction in fly ash and fly ash carbon emission, a 22% reduction in PM2.5 mass emission, and a 30% reduction in total emission of five toxic hazardous air pollutant (HAP) metals contained in PM10. These benefits can be achieved with no changes in boiler hardware and with a relatively small amount of tradeoffs: a 30% increase in PM10 mass emission and a 9-16% increase in fuel cost. 相似文献
6.
Wolff GT Dunker AM Rao ST Porter PS Zurbenko IG 《Journal of the Air & Waste Management Association (1995)》2001,51(2):273-282
Ozone and precursor trends can be used to measure the effectiveness of regulatory programs that have been implemented. In this paper, we review trends in the concentrations of O3 NOx, and HCs over North America that have been reported in the literature. Although most existing trend studies are confounded by meteorological variability, both the raw data trends and the trends adjusted for meteorology collectively indicate a general decreasing trend in O3 concentrations in most areas of the United States during 1985-1996. In Canada, mean daily maximum 1-hr O3 concentrations at urban sites show mixed trends with a majority of sites showing an increase from 1980 to 1993. Mean daily maximum 1-hr O3 at most regionally representative Canadian sites appears to decrease from 1985 to 1993 or shows no significant change. There are far fewer data and analyses of NOx and HC trends. Available studies covering various ranges of years indicate decreases in ambient NO and HC concentrations in Los Angeles, CA, decreases in HC concentrations in northeastern U.S. cities, and decreases in NOx concentrations in Canadian cities. Two key needs are long-term HC and NOx measurements, particularly at rural sites, and a systematic comparison of trend detection techniques on a reference data set. 相似文献
7.
Laurie A. McNair Robert A. Harley Armistead G. Russell 《Atmospheric environment (Oxford, England : 1994)》1996,30(24):4291-4301
The Southern California Air Quality Study database provides a valuable resource with which to test urban-scale photochemical models and to achieve a better understanding of the atmospheric dynamics of pollutant formation. The CIT model was evaluated using the SCAQS database according to traditional model performance guidelines. A first application, reported previously, focused on model enhancement and application of the model to the 27–29 August 1987 episode. This study evaluates the CIT model using the 24–25 June SCAQS episode, providing further evaluation of the model. Results show that the CIT airshed model can follow the diurnal variations of reactive species and the transport for relatively unreactive species. The normalized gross error for ozone was 31 % in June compared to 38% in August. However, to fully judge model performance in proper perspective, a question arises: “How well do the measurements reflect the air quality surrounding the monitoring station, not just in that location?” This is an important but seldom quantitatively considered factor, not only in model evaluation but in the study of health effects as well. Analyses indicate that individual concentration measurements only approximately represent the true volume-averaged concentrations within a computational grid cell and that significant spatial variations exist. Thus any evaluation of models using these data sets should take these local variations into consideration. A series of tests found that the local inhomogeneities had a normalized gross error in the range of 25–45% depending on the pollutant. In this context, the performance of the CIT model is consistent with known modeling limitations such as emissions inventories and sub-grid scale variation of observations. 相似文献
8.
Richard Derwent 《Journal of the Air & Waste Management Association (1995)》2017,67(7):789-796
The intercomparison of seven chemical mechanisms for their suitability for air quality policy formulation and assessment is described. Box modeling techniques were employed using 44 sets of background environmental conditions covering North America to constrain the chemical development of the longer lived species. The selected mechanisms were modified to enable an unbiased assessment of the adequacy of the parameterizations of photochemical ozone production from volatile organic compound (VOC) oxidation in the presence of NOx. Photochemical ozone production rates responded differently to 30% NOx and VOC reductions with the different mechanisms, despite the striking similarities between the base-case ozone production rates. The 30% reductions in NOx and VOCs also produced changes in OH. The responses in OH to 30% reductions in NOx and VOCs appeared to be more sensitive to mechanism choice, compared with the responses in the photochemical ozone production rates. Although 30% NOx reductions generally led to decreases in OH, 30% reductions in VOCs led to increases in OH, irrespective of mechanism choice and background environmental conditions. The different mechanisms therefore gave different OH responses to NOx and VOC reductions and so would give different responses in terms of changes in the fate and behavior of air toxics, acidification and eutrophication, and fine particle formation compared with others, in response to ozone control strategies. Policymakers need to understand that there are likely to be inherent differences in the responses to ozone control strategies between different mechanisms, depending on background environmental conditions and the extents of NOx and VOC reductions under consideration.
Implications: The purpose of this paper is to compare predicted ozone responses to NOx and VOC reductions with seven chemical mechanisms under North American conditions. The good agreement found between the tested mechanisms should provide some support for their application in the air quality models used for policymaking. 相似文献
9.
10.
Dane Westerdahl Xing Wang Xiaochuan Pan K. Max Zhang 《Atmospheric environment (Oxford, England : 1994)》2009,43(3):697-705
In this paper, we report the results and analysis of a recent field campaign in August 2007 investigating the impacts of emissions from transportation on air quality and community concentrations in Beijing, China. We conducted measurements in three different environments, on-road, roadside and ambient. The carbon monoxide, black carbon and ultrafine particle number emission factors for on-road light-duty vehicles are derived to be 95 g kg?1-fuel, 0.3 g kg?1-fuel and 1.8 × 1015 particles kg?1-fuel, respectively. The emission factors for on-road heavy-duty vehicles are 50 g kg?1-fuel, 1.3 g kg?1-fuel and 1.1 × 1016 particles kg?1-fuel, respectively. The carbon monoxide emission factors from this study agree with those derived from remote sensing and on-board vehicle emission testing systems in China. The on-road black carbon and particle number emission factors for Chinese vehicles are reported for the first time in the literature. Strong traffic impacts can be observed from the concentrations measured in these different environments. Most clear is a reflection of diesel truck traffic activity in black carbon concentrations. The comparison of the particle size distributions measured at the three environments suggests that the traffic is a major source of ultrafine particles. A four-day traffic control experiment conducted by the Beijing Government as a pilot to test the effectiveness of proposed controls was found to be effective in reducing extreme concentrations that occurred at both on-road and ambient environments. 相似文献
11.
This paper introduces an integrated observational-modeling approach to transform the deterministic nature of attainment demonstrations of the National Ambient Air Quality Standard (NAAQS) into the probabilistic framework. While the methods presented here can be used to address any air quality standard that is based on extreme values, this paper focuses on the application to the 1-hr and 8-hr NAAQS for ozone. Extreme value statistics and resampling techniques are applied to estimate the probability of exceeding the NAAQS for both 1-hr and 8-hr ozone concentrations. Within the integrated observation-modeling analysis approach, we show that the model-to-model differences in the predicted responses to emission reductions are smaller than the model-to-model differences in predicted absolute ozone concentrations. We illustrate that the emission reductions stemming from a real-world emission control strategy would substantially reduce the probability of exceeding the NAAQS over a large portion of the eastern United States, especially for the 8-hr average ozone concentrations. 相似文献
12.
Jeffrey R. Brook Leiming Zhang Franco Di-Giovanni Jacob Padro 《Atmospheric environment (Oxford, England : 1994)》1999,33(30):1
This paper describes the development of a detailed dry deposition model for routine computation of dry deposition velocities of SO2, O3, HNO3 and fine particle SO42− across much of North America. Four different dry deposition/surface exchange sub-models have been combined with the current Canadian weather forecast model (Global Environmental Multiscale model) with a 3 h time resolution and a horizontal spatial resolution of 35 km. The present model uses the US Geological Survey North American Land Cover Characteristics data to obtain fourteen different land use and five seasonal categories. The four sub-models used are a multi-layer model for gaseous species over taller canopy land-use types, a big-leaf model for gaseous species over lower canopies (including bare soil and water) and for HNO3 under all surface types and, two different models for SO42−, one for tall canopies and the other for short canopies. All necessary parameters for each sub-model, chemical species, land-use and seasonal categories have been selected from available data libraries or from the values reported in the literature. The purpose for developing this model (referred to as the Routine Deposition Model (RDM)), when coupled with air concentration data, is to provide estimates of seasonal dry deposition, which can be combined with wet deposition to produce total deposition estimates. Model theory is discussed in this paper and model sensitivity tests and results will be presented in a companion paper. 相似文献
13.
Xue Yifeng Nie Lei Zhou Zhen Tian Hezhong Yan Jing Wu Xiaoqing Cheng Linglong 《Environmental science and pollution research international》2017,24(20):16946-16957
Environmental Science and Pollution Research - The consumption of natural gas in Beijing has increased in the past decade due to energy structure adjustments and air pollution abatement. In this... 相似文献
14.
《Atmospheric environment (Oxford, England : 1994)》2001,35(8):1351-1363
A detrending technique is developed for short-term and yearly variations in order to identify long-term trends in primary and secondary pollutants. In this approach, seasonal and weekly variations are removed by using a mean year; the residual meteorological short-term variation is removed by using a multiple linear regression model. This methodology is employed to detrend ozone (O3), NOx, VOC and CO concentrations in Switzerland. We show that primary pollutants (NOx,VOC and CO) at urban and sub-urban stations show a downward trend over the last decade which correlates well with the reductions in the estimated Swiss emissions. In spite of these large decreases achieved in precursor emissions, summer peak ozone concentrations do not show any statistically significant trend over the last decade. Application of this method to ozone concentrations measured at the Jungfraujoch (3580 m a.s.l.) also shows no trend over the last 10 years. Detrended summer ozone correlates well with European Union gross national product and industrial production growth rates. These results suggest that if substantial reductions in summer peak ozone in Switzerland are desired, emissions reduction strategies must be part of control program involving a much larger region. 相似文献
15.
Experiments were performed to measure the transfer of trichloroethylene (TCE), a volatile organic compound (VOC), from tap water in showers to indoor air. In these experiments, the loss of TCE from tap water in the shower is based on the difference between influent and effluent concentrations. We have developed and previously published a three-compartment model, which we use to simulate the 24-h concentration history of VOCs in the shower, bathroom, and remaining household volumes resulting from the use of contaminated tap water. An important input to this model is the transfer efficiency of the VOC from water to air. The experiments reveal that the transfer efficiency of TCE from shower water to air has an arithmetic mean value of 61 percent and an arithmetic standard deviation of 9 percent. Analysis of the results shows that there is no statistically significant difference between the transfer efficiency measured with hot (37 degrees C) or cold (22 degrees C) shower water and that there is no statistically significant change in transfer efficiency with time during a 20-min shower. The implications for exposure assessment are considered. 相似文献
16.
Experiments were performed to measure the transfer of trichloroethylene (TCE), a volatile organic compound (VOC), from tap water in showers to indoor air. In these experiments, the loss of TCE from tap water in the shower is based on the difference between influent and effluent concentrations. We have developed and previously published a three-compartment model, which we use to simulate the 24-h concentration history of VOCs in the shower, bathroom, and remaining household volumes resulting from the use of contaminated tap water. An important input to this model is the transfer efficiency of the VOC from water to air. The experiments reveal that the transfer efficiency of TCE from shower water to air has an arithmetic mean value of 61 percent and an arithmetic standard deviation of 9 percent. Analysis of the results shows that there is no statistically significant difference between the transfer efficiency measured with hot (37 degrees C) or cold (22 degrees C) shower water and that there is no statistically significant change in transfer efficiency with time during a 20-min shower. The implications for exposure assessment are considered. 相似文献
17.
Soliman AS Jacko RB Palmer GM 《Journal of the Air & Waste Management Association (1995)》2006,56(11):1540-1549
The purpose of the study was to quantify the impact of traffic conditions, such as free flow and congestion, on local air quality. The Borman Expressway (I-80/94) in Northwest Indiana is considered a test bed for this research because of the high volume of class 9 truck traffic traveling on it, as well as the existing and continuing installation of the Intelligent Transportation System (ITS) to improve traffic management along the highway stretch. An empirical traffic air quality (TAQ) model was developed to estimate the fine particulate matter (PM2.5) emission factors (grams per kilometer) based solely on the measured traffic parameters, namely, average speed, average acceleration, and class 9 truck density. The TAQ model has shown better predictions that matched the measured emission factor values more than the U.S. Environmental Protection Agency (EPA)-PART5 model. During congestion (defined as flow-speeds < 50 km/hr [30 mi/hr]), the TAQ model, on average, overpredicted the measured values only by a factor of 1.2, in comparison to a fourfold underprediction using the EPA-PART5 model. On the other hand, during free flow (defined as flow-speeds > 80 km/hr [50 mi/hr]), the TAQ model was conservative in that it overpredicted the measured values by 1.5-fold. 相似文献
18.
Assessment of 2010 air quality in two Alpine valleys from modelling: Weather type and emission scenarios 总被引:1,自引:0,他引:1
G. Brulfert C. Chemel E. Chaxel J.-P. Chollet B. Jouve H. Villard 《Atmospheric environment (Oxford, England : 1994)》2006,40(40):7893-7907
Alpine valleys are sensitive to anthropogenic emissions. Local atmospheric dynamics are a key factor that may lead to an accumulation of pollutants in the bottom of the Chamonix and Maurienne valleys. Assessment of 2010 pollutant concentrations variability needs to take these specificities into account. A meteorological data classification is combined with different emission scenarios in order to run an air quality model. Using simulations of representative scenarios rather than complete years allows for a fine spatial and temporal representation of local atmospheric dynamics and gives access to detailed chemical breakdowns. Results demonstrate the variability of primary and secondary species due to emissions and the predominance of local effects on pollutant concentrations. 相似文献
19.
Eri Saikawa Vaishali Naik Larry W. Horowitz Junfeng Liu Denise L. Mauzerall 《Atmospheric environment (Oxford, England : 1994)》2009,43(17):2814-2822
Aerosols are harmful to human health and have both direct and indirect effects on climate. China is a major contributor to global emissions of sulfur dioxide (SO2), a sulfate (SO42?) precursor, organic carbon (OC), and black carbon (BC) aerosols. Although increasingly examined, the effect of present and potential future levels of these emissions on global premature mortality and climate change has not been well quantified. Through both direct radiative effects and indirect effects on clouds, SO42? and OC exert negative radiative forcing (cooling) while BC exerts positive forcing (warming). We analyze the effect of China's emissions of SO2, SO42?, OC and BC in 2000 and for three emission scenarios in 2030 on global surface aerosol concentrations, premature mortality, and radiative forcing (RF). Using global models of chemical transport (MOZART-2) and radiative transfer (GFDL RTM), and combining simulation results with gridded population data, mortality rates, and concentration–response relationships from the epidemiological literature, we estimate the contribution of Chinese aerosols to global annual premature mortality and to RF in 2000 and 2030. In 2000, we estimate these aerosols cause approximately 470 000 premature deaths in China and an additional 30 000 deaths globally. In 2030, aggressive emission controls lead to a 50% reduction in premature deaths from the 2000 level to 240 000 in China and 10 000 elsewhere, while under a high emissions scenario premature deaths increase 50% from the 2000 level to 720 000 in China and to 40 000 elsewhere. Because the negative RF from SO42? and OC is larger than the positive forcing from BC, Chinese aerosols lead to global net direct RF of ?74 mW m?2 in 2000 and between ?15 and ?97 mW m?2 in 2030 depending on the emissions scenario. Our analysis indicates that increased effort to reduce greenhouse gases is essential to address climate change as China's anticipated reduction of aerosols will result in the loss of net negative radiative forcing. 相似文献