首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Khoder MI 《Chemosphere》2002,49(6):675-684
Sulfur dioxide, nitrogen dioxide, particulate sulfate and nitrate, gaseous nitric acid, ozone and meteorological parameters (temperature and relative humidity) were measured during the winter season (1999-2000) and summer season (2000) in an urban area (Dokki, Giza, Egypt). The average particulate nitrate concentrations were 6.20 and 9.80 microg m(-3), while the average gaseous nitric acid concentrations were 1.14 and 6.70 microg m(-3) in the winter and summer seasons, respectively. The average sulfate concentrations were 15.32 microg m(-3) during the winter and 25.10 microg m(-3) during the summer season. The highest average concentration ratio of gaseous nitric acid to total nitrate was found during the summer season. Particulate sulfate and nitrate and gaseous nitric acid concentrations were relatively higher in the daytime than those in the nighttime. Sulfur conversion ratio (Fs) and nitrogen conversion ratio (Fn) defined in the text were calculated from the field measurement data. Sulfur conversion ratio (Fs) and nitrogen conversion ratio (Fn) in the summer were about 2.22 and 2.97 times higher than those in the winter season, respectively. Moreover, sulfur conversion ratio (Fs) and nitrogen conversion ratio (Fn) were higher in the daytime than those in the nighttime during the both seasons. The sulfur conversion ratio (Fs) increases with increasing ozone concentration and relative humidity. This indicates that the droplet phase reactions and gas phase reactions are important for the oxidation of SO2 to sulfate. Moreover, the nitrogen conversion ratio (Fn) increases with increasing ozone concentration, and the gas phase reactions are important and predominant for the oxidation of NO2 to nitrate.  相似文献   

2.
The interference in HNO3 determination due to HNO2 and NOx retention on nylon filters has been evaluated in laboratory and field conditions. Nitrous acid is retained on nylon filters with efficiencies varying from 25% at 12ℓ min−1 to 80% at 2ℓ min−1, yielding NO2 ion. In ambient sampling performed during photochemical smog episodes, NO2 is oxidized to NO3 with conversion factors up to 100%, resulting in a positive bias in HNO3 determination.NO2 reacts heterogeneously with H2O on nylon surfaces according to the reaction 2NO2 + H2O → HNO2 + HNO3 with a removal constant of about 1 × 10−4 ms−1 at a H2O concentration of 20,000 ppm. The resulting nitrite and nitrate are independent of the sampling flow rate, while NO2 concentration, sampling time and exposed nylon surface area play a directly proportional role. Accordingly, the relative interference of NO2 with respect to HNO3 determination is almost negligible for nylon filters, usually run at relatively high flow rates, while it may be significant for nylon denuders, which are characterized by larger exposed surfaces and lower operating flow rates.  相似文献   

3.
Some metal etching operations emit limited flow rates of waste gases with reddish-brown NO2 fume, which may cause visual and acidic-odor complaints, as well as negative health effects. In this study, tests were performed by passing caustic-treated waste gases vented from Al-etching operations through columns packed either with virgin or regenerated granular activated carbon (GAC) to test their adsorptive conversion performance of NO2 in the gases. The gases contained 5–55 ppm NO2 and acetic and nitric acids of below 3 ppm. Exhausted carbon was regenerated by scrubbing it with caustic solution and water, and dried for further adsorption tests. Results indicate that with an (empty bed residence time (EBRT) of 0.15 sec for the gas through the GAC-packed space, around 60% of the influent NO2 of 54 ppm could be removed, and 47% of the removed NO2 was converted by and desorbed from the carbon as NO. GAC used in the present study could be regenerated at least twice to restore its capacity for NO2 adsorption. Within EBRTs of 0.076–0.18 sec, the adsorptive conversion capacity was linearly varied with EBRT. In practice, with an EBRT of 0.20 sec, a conversion capacity of 0.80 kg NO2 (kg GAC)?1 with an influent NO2 of 40 ppm can be used as a basis for system design.

Implications: Some metal etching operations emit waste gases with reddish-brown (yellow when diluted) NO2 fume which may cause visual and acidic-odor complaints, as well as negative health effects. This study provides a simple process for the adsorptive conversion of NO2 in caustic-treated waste gases vented from metal-etching operations through a GAC column. With an EBRT of 0.20 sec, a conversion capacity of 0.80 kg NO2 (kg GAC)?1 with an influent NO2 of 40 ppm can be used as a basis for system design. Saturated GAC can be regenerated at least twice by simply scrubbing it with aqueous caustic solution.  相似文献   

4.
Nitrous acid (HONO), nitric acid (HNO3), and organic aerosol were measured simultaneously atop an 18-story tower in Houston, TX during August and September of 2006. HONO and HNO3 were measured using a mist chamber/ion chromatographic technique, and aerosol size and chemical composition were determined using an Aerodyne quadrupole aerosol mass spectrometer. Observations indicate the potential for a new HONO formation pathway: heterogeneous conversion of HNO3 on the surface of primary organic aerosol (POA). Significant HONO production was observed, with an average of 0.97 ppbv event?1 and a maximum increase of 2.2 ppb in 4 h. Nine identified events showed clear HNO3 depletion and well-correlated increases in both HONO concentration and POA-dominated aerosol surface area (SA). Linear regression analysis results in correlation coefficients (r2) of 0.82 for HONO/SA and 0.92 for HONO/HNO3. After correction for established HONO formation pathways, molar increases in excess HONO (HONOexcess) and decreases in HNO3 were nearly balanced, with an average HONOexcess/HNO3 value of 0.97. Deviations from this mole balance indicate that the residual HNO3 formed aerosol-phase nitrate. Aerosol mass spectral analysis suggests that the composition of POA could influence HONO production. Several previously identified aerosol-phase PAH compounds were enriched during events, suggesting their potential importance for heterogeneous HONO formation.  相似文献   

5.
A highly sensitive technique for the measurement of atmospheric HONO and HNO3 is reported. The technique is based on aqueous scrubbing using two coil samplers, followed by conversion of HNO3 to nitrite, derivatization of nitrite to a highly light-absorbing azo dye with sulfanilamide (SA) and N-(1-naphthyl) ethylenediamine (NED), and high performance liquid chromatography (HPLC) analysis. HNO3 concentration was obtained by the difference of the two channels. Two scrubbing solutions were used for sampling the two species: a 1-mM phosphate buffer solution (pH 7) for the measurement of HONO and a 180 mM NH4Cl/NH3 buffer solution (pH 8.5) for the measurement of HONO+HNO3. The scrubbing solution flow rate was 0.24 ml min−1 and the gas sampling flow rate was 2 l min−1. HNO3 in the NH4Cl/NH3 buffer solution was quantitatively reduced to nitrite along an on-line 0.8-cm Cd reductor column. Nitrite in both channels was derivatized with 2 mM SA and 0.2 mM NED in 25 mM HCl. Quantitative derivatization was achieved within 5 min at 55°C. The azo dye derivative was then separated from the SA/NED reagent by reversed-phase HPLC and detected with a UV-vis detector at 540 nm. With an on-line SEP-PAK C-18 cartridge for the reagent purification, the method detection limit is estimated to be better than 1 pptv for HONO and about 20 pptv for HNO3. The sample integration time was about 2 min and the sampling frequency is every 10 min. Data collected in downtown Albany and Whiteface Mountain, NY, are shown as examples of applications of this technique in both urban and remote clean environments.  相似文献   

6.
The photoenhanced uptake of nitrogen dioxide (NO2) to the surface of commercially available self-cleaning window glass has been studied under controlled laboratory conditions. This material is one of an array of modern building products which incorporate titanium dioxide (TiO2) nanoparticles and are finding increasing use in populated urban areas. Amongst the principal drivers for the use of these materials is that they are thought to facilitate the irreversible removal of pollutants such as NO2 and organic molecules from the atmosphere and thus act to remediate air quality. While it appears that TiO2 materials do indeed remove organic molecules from built environments, in this study we show that the photoenhanced uptake of NO2 to one example material, self-cleaning window glass, is in fact accompanied by the substantial formation (50–70%) of gaseous nitrous acid (HONO). This finding has direct and serious implications for the use of these materials in urban areas. Not only is HONO a harmful respiratory irritant, it is also readily photolysed by solar radiation leading to the formation of hydroxyl radicals (OH) together with the re-release of NOx as NO. The net effect of subsequent OH initiated chemistry can then be the further degradation of air quality through the formation of secondary pollutants such as ozone and VOC oxidation products. In summary, we suggest that a scientifically conceived technical strategy for air quality remediation based on this technology, while widely perceived as universally beneficial, could in fact have effects precisely opposite to those intended.  相似文献   

7.
Nitrous acid (HONO) may cause adverse effects to mucous membranes and lung function when people are exposed to higher HONO concentrations than those present in typical indoor residential environments. Therefore, determination of HONO concentration in indoor environments is required to investigate occurrences of high HONO levels. In this work, a high-time-resolution measurement system was utilized to better understand the levels and dynamic behavior of HONO in an indoor environment. The performance of the in situ HONO analyzer applied to this work was evaluated using a 12-hr integrated annular denuder technique under ambient conditions. Both methods for the measurements of HONO were in good agreement, with a regression slope of 0.84, an intercept of 0.09, and correlation coefficient (r2) of 0.67. Indoor HONO and nitrogen oxide concentrations were also observed for approximately 5 days in winter in the living room of an apartment that had a gas range for cooking in the kitchen. Investigation of the relationships among nitric oxide (NO), nitrite (NO2), and HONO concentrations suggests that HONO production during combustion could be the result of direct emission, whereas the heterogeneous NO2 chemistry during the background period and after combustion was the possible pathway of HONO production. Controlled combustion experiments, performed at a burning rate of 50% valve setting, show peak HONO concentrations during the unvented combustion to be approximately 8-10 times higher than background levels depending on the time of day. At a burning rate setting of 50%, the peak concentration of HONO during unvented combustion was found to be 33-37% higher than those from "weak" (airflow = 340 m3/hr) and "strong" (airflow = 540 m3/hr) vented combustions. The decay rate of the HONO concentrations for the unvented combustion conditions was approximately 2-fold higher in the daytime than in the nighttime and significantly less than those of NO and NO2.  相似文献   

8.
Heterogeneous chemical processes involving trace atmospheric gases with solid particulates, such as carbonaceous aerosol, are not well understood. In an effort to quantify some relevant carbon aerosol systems, the heterogeneous chemistry of NO2 with both commercial and freshly prepared hexane soot was investigated in an atmospheric reaction chamber. At approximately an atmosphere of total pressure (760 Torr) and under dry conditions (relative humidities⩽1%), kinetic measurements gave an uptake coefficient of (2.4±0.6)×10−8 for n-hexane soot when referenced to the BET surface area of the sample. Commercial carbon black samples were found to yield a similar uptake coefficient. The reaction of HNO3 with commercial carbon black was also investigated and gas phase NO2 was detected as a reaction product. Low-pressure Knudsen cell experiments were carried out to facilitate a quantitative comparison between the two different techniques. The agreement between our current results and previously reported values of the uptake coefficient, with different soot samples and under varied pressure and surface coverage conditions, are discussed along with the possible implications for atmospheric chemistry.  相似文献   

9.
M. Baumg  rtner  E. Bock  R. Conrad 《Chemosphere》1992,24(12):1943-1960
Atmospheric NO2 was taken up by samples of various soils and building stones. The NO2 uptake rate constants were highest in soil samples taken during the summer months. However, the NO2 uptake rate constants of the soils and building stones were not significantly correlated with any of the following variables: moisture, pH, ammonium, nitrite, or nitrate. NO2 uptake by soil and stone was not abolished by autoclaving indicating a chemical uptake process. NO2 uptake by acidic and air-dry soils and stones resulted in nearly stoichiometric reduction of NO2 to NO. This reduction was enhanced by the addition of ferrous iron and was further enhanced by incubation under 1 ppmv SO2. The results suggest that NO2 reduction may be coupled to oxidation of ferrous to ferric iron which may be reduced again by atmospheric SO2 thus regenerating the ferrous iron content of the soil or stone. Conversion of NO2 to NO was not observed in neutral or/and moist soils and stones. NO2 was also taken up by purified and sterilized quartz sand moistend with water. This uptake was enhanced by addition of humic material but not by addition of bacteria which both had been extracted from genuine soil. Under most conditions, only uptake but no release of NO2 was observed. However, NO2 was released in air-dry soils that were heated to 45–65°C, or in ammonium-fertilized soil or stone that was drying up at room temperature. Under the latter conditions mimicking field practice, the NO2 release reached rates that were similar to the NO release rates.  相似文献   

10.
The use of meta-analysis is becoming more common in the medical literature, but it is not common in the environmental literature. Although meta-analysis cannot combine a group of poorly executed, conflicting studies to get an unequivocal answer, there are certain situations where it can be helpful. The inability of studies to produce similar results may be a function of the power of the studies rather than a reflection of their quality. The literature on the effects of nitrogen dioxide on the odds of respiratory illness in children is such an example. Three quantitative methods for the synthesis of this evidence are presented. Although the methods produce slightly different results, the conclusion from all three methods is that the increase in the odds of respiratory illness in children exposed to a long-term increase of 30 micrograms/m3 (comparable to the increase resulting from exposure to a gas stove) is about 20 percent. This estimated increase is not sensitive to the method of analysis.  相似文献   

11.
12.
In vivo exposure of rats to 10 ppm nitrogen dioxide (NO2) for 12h caused changes in fatty acids composition of alveolar lavage phospholipids. Among the fatty acid species, the relative ratio of palmitic acid, myristic acid and palmitoleic acid increased significantly. While the relative ratio of stearic acid, oleic acid, linoleic acid and arachidonic acid decreased significantly. Both the increase in the incorporation of palmitic acid in phosphatidylcholine which would be released into the alveoli and the increase in the release of phosphatidylcholine into the alveoli may account for the changes in the fatty acid composition of the present findings.  相似文献   

13.
Increasing concentrations of nitrogen dioxide pollution in rural Wales   总被引:2,自引:0,他引:2  
Monitoring of nitrogen dioxide pollution was carried out in rural environments throughout Wales during a 1-year survey to quantify any changes in background concentrations and distribution of the pollutant since an earlier survey in 1986. There were 23 sites in the present survey of which 16 had been monitored during the 1986 survey. The remaining 7 sites were based on moorland in mid-Wales within map squares for which critical loads for soil acidification are expected to be exceeded by the year 2005. All sites were chosen so as to be remote from major local sources of NO(2) and the values obtained were deemed to be minimum concentrations for the different regions. Measurements were made using diffusion tubes which aimed to provide mean concentrations of NO(2) for 2-week exposure periods. Concentrations of NO(2) were found to be higher in the winter months for most sites and this is probably related to a greater use of fossil fuels for heating buildings at this time of year. The exception was the high concentrations of NO(2) in May and June for several sites in North Wales, and in July and August for a site on Mount Snowdon. These high summer concentrations in North Wales are thought to be related to increased traffic associated with tourism. It is apparent that there has been a substantial increase in rural concentrations of NO(2) throughout Wales since the earlier survey of 1986. As an average of all 16 sites used in both surveys, there was a 53% increase in the annual mean concentration of NO(2). Also, it is evident that, since 1986, there has been a substantial increase in the area of south-eastern Wales which has a background level in excess of 10 ppb NO(2) and a notable reduction in land area with concentrations below 6 ppb NO(2) as an annual mean concentration. The possible future impact of increasing rural concentrations of NO(2) on Welsh vegetation is discussed with references to estimates of critical levels of NO(2) for adverse effects on plants.  相似文献   

14.
There is a possibility of further controls on emissions to the atmosphere of nitrogen oxides to meet air quality objectives in the UK. Data in the National Air Quality Archive were used to calculate the likely sensitivity of hourly concentrations of nitrogen dioxide in ambient urban air to changes in the total oxides of nitrogen. Since the role of atmospheric chemical reactions is to make the response non-linearly dependent on the emissions control, we seek to establish the magnitude and sign of the effects that this non-linearity might cause. We develop a quantitative approach to analysing the non-linearity in the data. Polynomial curve fits have been developed for the empirical ratio NO2 : NOx (the ‘yield’). They describe nitrogen dioxide concentrations using total oxides of nitrogen. The new functions have the important feature of increased yield in winter episodes. Simpler functions tend to omit this feature of the yields at the highest hourly concentrations. Based on this study, the hourly nitrogen dioxide objective in the UK may require emissions control of no more than ≈50% on total oxides of nitrogen at the most polluted sites: other sites require less or even no control.  相似文献   

15.
On the basis of Project MISTT data and proposed homogeneous gas phase oxidation mechanisms for sulfur dioxide, it has been suggested that the degree of mixing with background air, the chemical composition of the background air, and the intensity of the sunlight available are key factors determining the rate of sulfur dioxide to sulfate conversion. These hypotheses are examined in light of Lagrangian measurements of conversion rates in power plant plumes made during the Tennessee Plume Study and Project Da Vinci. It is found that the Lagrangian conversion rate measurements are consistent with these hypotheses. It has also been suggested that the concentration of ozone may serve as a workable surrogate for the concentrations of the free radicals involved in the homogeneous gas phase mechanism. The night-time Lagrangian data remind one that the gross difference in mean lifetime of ozone and free radicals can lead to situations in which the ozone concentration is not a good surrogate for the free radical concentrations.  相似文献   

16.
One-month-old soybean (Glycine max [L.] Merrill), cultivar 'Williams', plants were exposed to nitrogen dioxide (0.1, 0.2, 0.3 and 0.5 ppm) and carbon filtered air (control), 7 h per day, for 5 days, under a controlled environment. Leaf chlorophyll content (Ch a, Ch b, and total Ch content) and foliar nitrogen content (%N) were determined before and after the exposure. The influence of NO(2) treatments up to 0.3 ppm on leaf chlorophyll content was negligible although a stimulatory effect was evident in Ch a and total Ch content with 0.2 ppm NO(2). Marked decline in Ch content was observed with 0.5 ppm treatment; the reductions in Ch a and total Ch were 45% and 47%, respectively. Foliar-N contents of plants treated with 0.2 and 0.3 ppm NO(2) were higher than the control; plants exposed to 0.5 ppm NO(2) showed a 41% reduction in foliar-N compared to pre-exposure values.  相似文献   

17.

The land disposal of waste and wastewater is a major source of N2O emission. This is due to the presence of high concentrations of nitrogen (N) and carbon in the waste. Abattoir wastewater contains 186 mg/L of N and 30.4 mg/L of P. The equivalent of 3 kg of abattoir wastewater-irrigated soil was sieved and taken in a 4-L plastic container. Abattoir wastewater was used for irrigating the plants at the rates of 50 and 100 % field capacity (FC). Four crop species were used with no crop serving as a control. Nitrous oxide emission was monitored using a closed chamber technique. The chamber was placed inside the plastic container, and N2O emission was measured for 7 days after the planting. A syringe and pre-evacuated vial were used for collecting the gas samples; a fresh and clean syringe was used each time to avoid cross-contamination. The collected gas samples were injected into a gas chromatography device immediately after each sampling to analyse the concentration of N2O from different treatments. The overall N2O emission was compared for all the crops under two different abattoir wastewater treatment rates (50 and 100 % FC). Under 100 % FC (wastewater irrigation), among the four species grown in the abattoir wastewater-irrigated soil, Medicago sativa (23 mg/pot), Sinapis alba (21 mg/pot), Zea mays (20 mg/pot) and Helianthus annuus (20 mg/pot) showed higher N2O emission compared to the 50 % treatments—M. sativa (17 mg/pot), S. alba (17 mg/pot), Z. mays (18 mg/pot) and H. annuus (18 mg/pot). Similarly, pots with plants have shown 15 % less emission than the pots without plants. Similar trends of N2O emission flux were observed between the irrigation period (4-week period) for 50 % FC and 100 % FC. Under the 100 % FC loading rate treatments, the highest N2O emission was in the following order: week 1 > week 4 > week 3 > week 2. On the other hand, under the 50 % FC loading rate treatments, the highest N2O emission was recorded in the first few weeks and in the following order: week 1 > week 2 > week 3 > week > 4. Since N2O is a greenhouse gas with high global warming potential, its emission from wastewater irrigation is likely to impact global climate change. Therefore, it is important to examine the effects of abattoir wastewater irrigation on soil for N2O emission potential.

  相似文献   

18.
We report here direct observation by differential optical absorption spectroscopy (DOAS) of the formation of ppb levels of gaseous nitrous acid (MONO) from the reaction of ppm levels of nitrogen dioxide (NO2) with water vapor, in an indoor environment. The rate of formation of HONO displayed first order kinetics with respect to NO2 with a rate of (0.25 ±0.04) ppb min−1 per ppm of NO2 present. Assuming a lifetime of l h with respect to both physical and chemical removal processes for HONO, this leads to an estimated steady state concentration of ~ 15 ppb of HONO per ppm of NO2 present. This relatively high level of HONO associated with NO2-air mixtures raises new questions concerning the health implications of elevated NO2 concentrations in indoor environments e.g. HONO is a respirable nitrite known to convert secondary amines in vitro to carcinogenic nitrosamines.  相似文献   

19.
Oxides of nitrogen (NOx) [nitrogen oxide (NO) + nitrogen dioxide (NO2)] and sulfur dioxide (SO2) are removed individually in traditional air pollution control technologies. This study proposes a combined plasma scrubbing (CPS) system for simultaneous removal of SO2 and NOx. CPS consists of a dielectric barrier discharge (DBD) and wet scrubbing in series. DBD is used to generate nonthermal plasmas for converting NO to NO2. The water-soluble NO2 then can be removed by wet scrubbing accompanied with SO2 removal. In this work, CPS was tested with simulated exhausts in the laboratory and with diesel-generator exhausts in the field. Experimental results indicate that DBD is very efficient in converting NO to NO2. More than 90% removal of NO, NOx, and SO2 can be simultaneously achieved with CPS. Both sodium sulfide (Na2S) and sodium sulfite (Na2SO3) scrubbing solutions are good for NO2 and SO2 absorption. Energy efficiencies for NOx and SO2 removal are 17 and 18 g/kWh, respectively. The technical feasibility of CPS for simultaneous removal of NO, NO2, and SO2 from gas streams is successfully demonstrated in this study. However, production of carbon monoxide as a side-product (approximately 100 ppm) is found and should be considered.  相似文献   

20.
A dynamic multi-compartment computer model has been developed to describe the physical processes determining indoor pollutant concentrations as a function of outdoor concentrations, indoor emission rates and building characteristics. The model has been parameterised for typical UK homes and workplaces and linked to a time-activity model to calculate exposures for a representative homemaker, schoolchild and office worker, with respect to NO2. The estimates of population exposures, for selected urban and rural sites, are expressed in terms of annual means and frequency of hours in which air quality standards are exceeded. The annual mean exposures are estimated to fall within the range of 5–21 ppb for homes with no source, and 21–27 ppb for homes with gas cooking, varying across sites and population groups. The contribution of outdoor exposure to annual mean NO2 exposure varied from 5 to 24%, that of indoor penetration of outdoor air from 17 to 86% and that of gas cooking from 0 to 78%. The frequency of exposure to 1 h mean concentrations above 150 ppb was very low, except for people cooking with gas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号