首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Total number concentrations, number concentrations of ultrafine (0.01–0.1 μm) and accumulation (0.1–0.5 μm) particles, as well as mass concentration of PM2.5 particles and blackness of PM2.5 filters, which is related to Black Smoke were simultaneously monitored in three European cities during the winter period for three and a half months. The purpose of the study was to describe the differences in concentration levels and daily and diurnal variations in particle number and mass concentrations between European cities. The results show statistically significant differences in the concentrations of PM2.5 and the blackness of the PM2.5 filters between the cities, but not in the concentrations of ultrafine particles. Daily PM2.5 levels were found to be poorly correlated with the daily total and ultrafine number concentrations but better correlated with the number concentration of accumulation particles. According to the principal component analysis airborne particulate pollutants seem to be divided into two major source categories, one identified with particle number concentrations and the other related to mass-based information. The present results underline the importance of using both particle number and mass concentrations to evaluate urban air quality.  相似文献   

2.
In June 1996–June 1997 Berner low-pressure impactors were used at an urban and at a rural site in the Helsinki area for sampling ultrafine particles (UFP, PM0.1). Ten sample pairs, each pair measured simultaneously, were collected in the size range of 0.03–15 μm of particle aerodynamic diameter. More than 40 chemical components were measured. Surprisingly, the average UFP mass concentration was higher at the rural site (520 ng/m3) than at the urban site (490 ng/m3). The average chemical composition of UFP was similar at the two sites. The most abundant of the measured components were sulphate (32 and 40 ng/m3 for the urban and rural sites, respectively), ammonium (22 and 25 ng/m3), nitrate (4 and 11 ng/m3) and the Ca2+ ion (5 and 7 ng/m3). The most important metals at both sites were Ca, Na, Fe, K and Zn with concentrations between 0.7 and 5 ng/m3. Of the heavy metals, Ni, V, Cu, and Pb were important with average ultrafine concentrations between about 0.1 and 0.2 ng/m3. Also the organic anions oxalate (urban 2.1 ng/m3 and rural 1.9 ng/m3) and methanesulphonate (1.3 and 1.7 ng/m3) contributed similarly at both sites. The measured species accounted for only about 15–20% of the total ultrafine mass. The fraction that was not measured includes mainly carbonaceous material and water. It was estimated that the amount of water was about 10% (50 ng/m3) and that of carbonaceous material about 70% (350 ng/m3) at both sites. Aitken modes were observed for most components with the average mass mean mode diameters being between about 0.06 and 0.12 μm. The average concentrations in the Aitken mode differed clearly from those in the UFP for several components.The average contribution of ultrafine mass to the fine particle mass (PM2.5) was about 7% at the urban site and 8.5% at the rural site. At both sites the contribution of ultrafine to fine was especially high for Se, Ag, B, and Ni (10–20%) and at the rural site also for Co (20%), Ca2+ (16%) and Mo (11%). Enrichment in the ultrafine particles suggests that local sources may exist for these elements.Aitken modes turned out to be useful indicators of local sources for several components. The Aitken modes of Ba, Ca, Mg and Sr were similar in several samples, suggesting a common local combustion source for these elements, possibly traffic exhaust. Co, Fe, Mo and Ni formed another group of elements often having similar Aitken modes, the likely source being combustion of heavy fuel oil.  相似文献   

3.
Recent studies have suggested that exposures during traffic participation may be associated with adverse health effects. Traffic participation involves relatively short but high exposures. Potentially relevant exposures include ultrafine particles, fine particles (PM2.5) and noise.Simultaneously, detailed real time exposure of particle number concentration (PNC), PM2.5 and noise has been measured while driving and cycling 12 predefined routes of approximately 10–20 min duration. Sampling took place in eleven medium-sized Dutch cities on eleven weekdays in August till October 2006. To investigate variability in cyclists exposure, we systematically collected information on meteorology, GPS coordinates, type of road, traffic intensity, passing vehicles and mopeds while cycling.The overall mean PNC of car drivers was 5% higher than the mean PNC of cyclists. The overall mean concentration of PM2.5 in the car was 11% higher than during cycling. Slightly higher 1-min peak concentrations were measured in the car (PNC 14%; PM2.5 29% for 95-percentiles). Shorter duration peaks of PNC were higher during cycling (43% for 99-percentile of 1-s averages). Peaks in PNC typically last for less than 10 s. A large variability of exposure was found within and between routes. Factors that significantly predicted PNC variability during cycling were: passing vehicles (mopeds, cars), waiting for traffic lights, passing different types of (large) intersections and bicycle lanes and bike paths close to motorized traffic. No relation was found between PM2.5 and those predictor variables. The correlation between PNC and noise was moderate (median 0.34). PM2.5 had very low correlations with PNC and noise.PNC and PM2.5 exposure of car drivers was slightly higher than that of cyclists. PNC was largely uncorrelated with PM2.5 and reflected local traffic variables more than PM2.5. Different factors were associated with high PNC and high noise exposures.  相似文献   

4.
The elemental composition of PM10−2.5 and PM2.5 were studied in winter, summer, stormy and non-stormy dates during a period extending from February 2004 till January 2005, in a populated area of Beirut. Results of PIXE analysis and enrichment factor (E.F.) calculation, using Si as a reference of crustal material, showed that crustal elements (E.F.<10) like Si, Ca, K, Ti, Mn and Fe were more abundant in PM10−2.5 while enriched elements (E.F.>10) like S, Cu, Zn and Pb predominated in PM2.5. In PM10−2.5, concentrations of crustal elements increased during stormy episodes, all time high Ca concentrations were due to the abundance of calcite and limestone rocks in Lebanon, and increased Cl levels correlated with marine air masses. In PM2.5, sulfur concentrations were more prominent in the summer due to the enhancement of photochemical reactions. Sources of sulfur were attributed to local, sea-water and long-range transport from Eastern Europe, with the latter being the most predominate. Anthropogenic elements like Cu and Zn were generated from worn brakes and tires in high traffic density area and spikes of Pb were directly linked to a southerly wind originated from Egypt and/or Israel as determined by the air trajectory HYSPLIT model. In brief, elemental variations depended on the regional variability of the transport pattern and the different removal rates of aerosols.  相似文献   

5.
ABSTRACT

Ultrafine particles (UFPs) pose a human health risk as they can penetrate deep into the respiratory system. The Harvard supersite in Boston, MA provides one of the longest time series of UFP concentrations. This study examined the hypothesis that long-term reductions in PM2.5 mass and sulfur have influenced UFP trends by limiting the ability of UFPs to coagulate onto the accumulation mode via polydisperse coagulation with larger particles. The study used Generalized Additive Models (GAMs) to assess whether changes in PM2.5 mass and sulfur concentrations resulted in smaller than expected (assuming no change in PM2.5 mass or sulfur) decreases in daily UFP trends over the 20-year period from 1999 to 2018. The impact of PM2.5 mass and sulfur changes were represented as UFP penalties. Bootstrapping was applied to calculate standard errors for the different trend and penalty estimates. Results showed that PM2.5 mass and sulfur concentrations declined significantly over the study period. The analysis found an estimated 7.3% (95% CI: 3.5, 11.1%) UFP penalty due to long-term PM2.5 mass trends, and a 9.9% (95% CI: 6.2, 13.7%) UFP penalty due to long-term sulfur trends. Findings from this study suggest that future UFP control efforts should account for the role of PM2.5 mass and sulfur changes.  相似文献   

6.
PM10 measurements were started in November 1992 at Melpitz site. The mean PM10 concentration in 1993 was 38 μg m?3 in the summer season (May until October) and about 44 μg m?3 in the winter season (November until April). The mean PM10 level decreased until 1999 and varies now in ranges from 20–34 μg m?3 to 17–24 μg m?3 (minimum and maximum mean values for 1999–2008) in winter and summer seasons, respectively. High volume filter samples of particles PM10, PM2.5 and PM1 were characterized for mass, water-soluble ions, organic and elemental carbon from 2004 until 2008. The percentage of PM2.5 in PM10 varies between summer (71.6%) and winter seasons (81.9%). Mean concentrations of PM10, PM2.5 and PM1 in Melpitz were 20, 15, and 13 μg m?3 in 2004, 22, 18, and 13 μg m?3 in 2005, 24, 19, and 12 μg m?3 in 2006 and 22, 17, and 12 μg m?3 in 2007, respectively. In the four winters the rural background concentration PM10 at Melpitz exceeded the daily 50 μg m?3 limit for Europe on 8, 8, 7 and 6 days, respectively.Findings for a simple two-sector-classification of the samples (May 2004 until April 2008) using 96-h backward trajectories for the identification of source regions are: Air masses were transported most of time (60%) from the western sector and secondly (17%) from the eastern sector. The lowest daily mean mass concentration PM10 were found during western inflow in summer (17 μg m?3) containing low amounts of sulphate (2.4 μg m?3), nitrate (1.7 μg m?3), ammonium (1.1 μg m?3) and TC (3.7 μg m?3). In opposite the highest mean mass concentration PM10 was found during eastern inflow in winter (35 μg m?3) with high amounts of sulphate (6.1 μg m?3), nitrate (5.4 μg m?3), ammonium (3.8 μg m?3) and TC (9.4 μg m?3). An estimation of secondary formed OC (SOA) shows 0.8–0.9 μg m?3 for air masses from West and 2.1–2.2 μg m?3 from East. The seasonal difference can be neglected.The half-hourly measurements of the particle mass concentration PM10 evaluated as mean daily courses using a TEOM® show low values (14–21 μg m?3) in summer and winter for air masses transported from West and the highest concentrations (31–38 μg m?3) in winter for air masses from East.The results demonstrate the influence of meteorological parameters on long-range transport, secondary particle mass formation and re-emission which modify mass concentration and composition of PM10, PM2.5 and PM1. Melpitz site is located in the East of Germany faraway from strong local anthropogenic emissions (rural background). Therefore, this site is suitable for investigation of the influence of long-range transport of air pollution in continental air masses from the East with source regions inside and outside of the European Union.  相似文献   

7.
To investigate the chemical characteristics of fine particles in the Sihwa area, Korea, atmospheric aerosol samples were collected using a dichotomous PM10 sampler and two URG PM2.5 cyclone samplers during five intensive sampling periods between February 1998 and February 1999. The Inductively Coupled Plasma (ICP)-Atomic Emission Spectrometry (AES)/ICP-Mass Spectrometry (MS), ion chromatograph (IC), and thermal manganese dioxide oxidation (TMO) methods were used to analyze the trace elements, ionic species, and carbonaceous species, respectively. Backward trajectory analysis, factor analysis, and a chemical mass balance (CMB) model were used to estimate quantitatively source contributions to PM2.5 particles collected in the Sihwa area. The results of PM2.5 source apportionment using the CMB7 receptor model showed that (NH4)2SO4 was, on average, the major contributor to PM2.5 particles, followed by nontraffic organic carbon (OC) emission, NH4NO3, agricultural waste burning, motor vehicle emission, road dust, waste incineration, marine aerosol, and others. Here, the nontraffic OC sources include primary anthropogenic OC emitted from the industrial complex zone, secondary OC, and organic species from distant sources. The source impact of waste incineration emission became significant when the dominant wind directions were from southwest and west sectors during the sampling periods. It was found that PM2.5 particles in the Sihwa area were influenced mainly by both anthropogenic local sources and long-range transport and transformation of air pollutants.  相似文献   

8.
Air quality model simulations constitute an effective approach to developing source-receptor relationships (so-called transfer coefficients in the risk analysis framework) because a significant fraction of particulate matter (particularly PM2.5) is secondary (i.e., formed in the atmosphere) and, therefore, depends on the atmospheric chemistry of the airshed. In this study, we have used a comprehensive three-dimensional air quality model for PM2.5 (SAQM-AERO) to compare three approaches to generating episodic transfer coefficients for several source regions in the Los Angeles Basin. First, transfer coefficients were developed by conducting PM2.5 SAQM-AERO simulations with reduced emissions of one of four precursors (i.e., primary PM, sulfur dioxide (SO2), oxides of nitrogen (NOx), and volatile organic compounds) from each source region. Next, we calculated transfer coefficients using two other methods: (1) a simplified chemistry for PM2.5 formation, and (2) simplifying assumptions on transport using information limited to basin-wide emission reductions. Transfer coefficients obtained with the simplified chemistry were similar to those obtained with the comprehensive model for VOC emission changes but differed for NOx and SOz emission changes. The differences were due to the parameterization of the rates of secondary PM formation in the simplified chemistry. In 90% of the cases, transfer coefficients estimated using only basin-wide information were within a factor of two of those obtained with the explicit source-receptor simulations conducted with the comprehensive model. The best agreement was obtained for VOC emission changes; poor agreement was obtained for primary PM2.5.  相似文献   

9.
Twelve hours integrated fine particles (PM2.5) and 24-h average size-segregated particles were collected to investigate the chemical characteristics and to determine the size distribution of ionic species during October–December 1999 in three cities of different urban scale; Chongju, Kwangju, and Seoul, Korea. Concentrations of 5-min PM2.5 black carbon (BC) and hourly criteria air pollutants (PM10, CO, NOx, SO2, and O3) were also measured using the Aethalometer and ambient air monitoring system, respectively.Highest PM2.5 mass concentrations at Chongju, Kwangju, and Seoul sites were 63.0, 77.9, and 143.7 μg m−3, respectively. For the time period when highest PM2.5 mass occurred, BC level out of PM2.5 chemical species was highest at both Chongju and Kwangju, and highest NO3 (23.6 μg m−3) followed by BC (23.1 μg m−3) were observed at Seoul site, indicating that highest PM2.5 pollution is closely associated with the traffic emissions. Strong relationships of Fe with BC and Zn at both Kwangju and Seoul sites support that the Fe and Zn measured there are originated partly from same source as BC, i.e. diesel traffics. However, it is suggested that the Fe measured at Chongju is most likely derived from dispersion of soil dust.The size distributions of SO42−, NO3, and NH4+ ionic species indicated similar unimodal distributions at all sampling sites. However, different unimodal patterns in the accumulation mode size range with a peak in the smaller size (0.28–0.53 μm, condensation mode) in both Kwangju and Seoul, and in the relatively larger size (0.53–1.0 μm, droplet mode) in Chongju, were found. The potassium ion under the study sites dominates in the fine mode, and its size distribution showed unimodal character with a maximum in the size range 0.56–1.0 μm.  相似文献   

10.
Windblown dust contributes to high PM2.5 concentrations   总被引:5,自引:0,他引:5  
The revised National Ambient Air Quality Standards for PM include fine particulate standards based upon mass measurements of PM2.5. It is possible in arid and semi-arid regions to observe significant coarse mode intrusion in the PM2.5 measurement. In this work, continuous PM10, PM2.5, and PM1.0 were measured during several windblown dust events in Spokane, WA. PM2.5 constituted approximately 30% of the PM10 during the dust event days, compared with approximately 48% on the non-dusty days preceding the dust events. Both PM10 and PM2.5 were enhanced during the dust events. However, PM1.0 was not enhanced during dust storms that originated within the state of Washington. During a dust storm that originated in Asia and impacted Spokane, PM1.0 was also enhanced, although the Asian dust reached Washington during a period of stagnation and poor dispersion, so that local sources were also contributing to high particulate levels. The "intermodal" region of PM, defined as particles ranging in aerodynamic size from 1.0 to 2.5 microns, was found to represent a significant fraction of PM2.5 (approximately 51%) during windblown dust events, compared with 28% during the non-dusty days before the dust events.  相似文献   

11.
基于珠三角大气超级站2013年8月至2014年3月PM2.5、PM2.5中主要水溶性无机离子组分及其重要气态前体物等参数的逐时在线监测结果,揭示当地大气PM2.5中二次无机组分与其气态前体物的相互作用,以及PM2.5理化特性与成因的季节差异。结果表明,观测期间,PM2.5、PM10的年平均质量浓度分别为64.2、105.1μg/m3,PM2.5在PM10中所占比例(PM2.5/PM10)平均为61.1%。SO2-4、NO-3、NH+4的年平均质量浓度分别为16.6、9.0、10.2μg/m3,3者之和(SNA)占PM2.5的比例(SNA/PM2.5)平均为55.8%,体现了二次转化对珠三角地区PM2.5污染的重要影响;不同季节,SNA/PM2.5为46.0%~64.3%,夏季最低,冬季最高,其中SO2-4、NH+4对PM2.5的贡献相对稳定,NO-3贡献的季节差异较大;秋、冬季各项观测参数浓度的日变化规律相对明显,夏季除HNO3和NH3外,多项观测参数在低浓度水平波动,日变化规律不明显;珠三角大气中具有足量气态NH3以中和硫酸盐和硝酸盐,PM2.5中NH+4、SO2-4、NO-3主要以(NH4)2SO4和NH4NO3形式存在;本研究站点夏季的硫氧化率和氮氧化率均高于广州市,这充分体现了该站点的区域性特征。  相似文献   

12.
Environmental Science and Pollution Research - China is experiencing rapid urbanization and industrialization with correspondingly high levels of air pollution. Although the harm of PM2.5 has been...  相似文献   

13.
14.
Fine particles in urban atmospheres contain substantial quantities of semi-volatile material [e.g., NH4NO3 and semi-volatile organic compounds (SVOCs)] that are lost from particles during collection on a filter. Several diffusion denuder samplers have been developed for the determination of both NO3- and organic semi-volatile fine particulate components. The combination of technology used in the BOSS diffusion denuder sampler and the Harvard particle concentrator has resulted in the Particle Concentrator-Brigham Young University Organic Sampling System (PC-BOSS) for the 24-hr (or less) integrated collection of PM2.5, including NH4NO3 and semi-volatile organic material. Modification of the BOSS sampler allows for the weekly determination of these same species. Combination of BOSS denuder and tapered element oscillating microbalance (TEOM) monitor technology has resulted in the real-time ambient mass sampler (RAMS) for the continuous measurement of PM2.5, including the semi-volatile components. Comparison of the results obtained with the BOSS and with each of the newly developed modifications of the BOSS indicates that the modified versions can be used for the continuous, daily, or weekly monitoring of PM2.5, including semi-volatile species, as appropriate to the design of each sampler.  相似文献   

15.
Understanding local-scale transport and dispersion of pollutants emitted from traffic sources is important for urban planning and air quality assessments. Predicting pollutant concentration patterns in complex environments depends on accurate representations of local features (e.g., noise barriers, trees, buildings) affecting near-field air flows. This study examined the effects of roadside barriers on the flow patterns and dispersion of pollutants from a high-traffic highway in Raleigh, North Carolina, USA. The effects of the structures were analyzed using the Quick Urban & Industrial Complex (QUIC) model, an empirically based diagnostic tool which simulates fine-scale wind field and dispersion patterns around obstacles. Model simulations were compared with the spatial distributions of ultrafine particles (UFP) from vehicular emissions measured using a passenger van equipped with a Differential Mobility Analyzer/Condensation Particle Counter. The field site allowed for an evaluation of pollutant concentrations in open terrain, with a noise barrier present near the road, and with a noise barrier and vegetation present near the road.Results indicated that air pollutant concentrations near the road were generally higher in open terrain situations with no barriers present; however, concentrations for this case decreased faster with distance than when roadside barriers were present. The presence of a noise barrier and vegetation resulted in the lowest downwind pollutant concentrations, indicating that the plume under this condition was relatively uniform and vertically well-mixed. Comparison of the QUIC model with the mobile UFP measurements indicated that QUIC reasonably represented pollutant transport and dispersion for each of the study configurations.  相似文献   

16.
This paper explores the range of CALINE4's PM2.5 modeling capabilities by comparing previously collected PM2.5 data with CALINE4 predicted values. Two sampling sites, a suburban site located at an intersection in Sacramento, CA, and an urban site located in London, were used. Predicted concentrations are graphed against observed concentrations and evaluated against the criterion that 75% of the points fall within the factor-of-two prediction envelope. For the suburban site, data estimated by CALINE4 produced results that fell within the acceptable factor-of-two percentage envelope. A reverse dispersion test was also conducted for the suburban site using observed and calculated emission factors, and although it showed correlations between the observed values and CALINE4 predicted values, it could not conclusively prove that the model is accurate at predicting PM2.5 concentrations. Although the results suggest that CALINE4 PM2.5 predictions may be reasonably close to observed values, the number of observations used to verify the model was small and consequently, findings from the suburban site should be considered exploratory. For the urban site, a much larger data set was evaluated; however, the CALINE4 results for this site did not fall 75% within the factor-of-two envelope. Several factors, including street canyon effects, likely contributed to an inaccuracy of the emission factors used in CALINE4, and therefore, to the overall CALINE4 predictions. In summary, CALINE4 does not appear to perform well in densely populated areas and differences in topography may be a decisive factor in determining when CALINE4 may be applicable to modeling PM2.5. For critical transportation projects requiring PM2.5 analysis, use of CALINE4 may not be optimal because of its inability to produce reasonable estimates for highly trafficked areas. Additional data sets for CALINE4 analysis, particularly in urban environments, are required to fully understand CALINE4's PM2.5 modeling capabilities.  相似文献   

17.
It will be many years before the recently deployed network of fine particulate matter with an aerodynamic diameter less than 2.5 microm (PM2.5) Federal Reference Method (FRM) samplers produces information on nonattainment areas, trends, and source impacts. However, data on PM2.5 and its major constituents have been routinely collected in California for the past 20 years. The California Air Resources Board operated as many as 20 dichotomous (dichot) samplers for PM2.5 and coarse PM (PM10-2.5). The California Acid Deposition Monitoring Program (CADMP) collected 12-h-average PM2.5 and PM10 from 1988 to 1995 at ten urban and rural sites and 24-h-average PM2.5 at five urban sites since 1995. Beginning in 1994, the Children's Health Study collected 2-week averages of PM2.5 in 12 communities in southern California using the Two-Week Sampler (TWS). Comparisons of collocated samples establish relationships between the dichot, CADMP, and TWS samplers and the 82-site network of PM2.5 FRM samplers deployed since 1999 in California. PM mass data from the different monitoring programs have modest to high correlation to FRM mass data, fairly small systematic biases and negative proportional biases ranging from 7 to 22%. If the biases are taken into account, all of the programs should be considered comparable with the FRM program. Thus, historical data can be used to develop long-term PM trends in California.  相似文献   

18.
The purpose of the present study is to analyze the elemental composition and the concentrations of PM10 and PM2.5 in the Guaíba Hydrographic Basin with HV PM10 and dichotomous samplers. Three sampling sites were selected: 8° Distrito, CEASA and Charqueadas. The sampling was conducted from October 2001 to December 2002. The mass concentrations of the samplers were evaluated, while the elemental concentrations of Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu and Zn were determined using the Particle-Induced X-ray Emission (PIXE) technique. Factor Analysis and Canonical Correlation Analysis were applied to the chemical and meteorological variables in order to identify the sources of particulate matter. Industrial activities such as steel plants, coal-fired power plants, hospital waste burning, vehicular emissions and soil were identified as the sources of the particulate matter. Concentration levels higher than the daily and the annual average air quality standards (150 and 50 μg m−3, respectively) set by the Brazilian legislation were not observed.  相似文献   

19.
使用β射线法在线监测仪连续监测了贵阳市白云区PM_(10)和PM_(2.5)浓度,分析了2014年6月1日—12月31日7个月内PM_(10)、PM_(2.5)的浓度水平、时变规律和PM_(2.5)/PM_(10)的变化情况。结果表明,监测时段内PM_(10)和PM_(2.5)的日均浓度平均值分别为76.8μg/m~3和40.0μg/m~3,均达到国家二级标准;浓度超标的天数占总观测天数的5.1%和9.3%,属污染轻微的地区。PM_(2.5)/PM_(10)在25.3%~78.8%之间周期性波动,平均值为52.1%。PM_(10)和PM_(2.5)的浓度变化具有很好的正相关性(r=0.919 8,p0.000 1);日均值在7个月中呈现明显的周期性变化,各月相对稳定,12月的PM_(10)和PM_(2.5)浓度最高且变化最为剧烈,6月最为平缓。PM_(10)和PM_(2.5)浓度小时变化总体上呈双峰型分布,最高值出现在出现在09:00—10:00和19:00—21:00前后,最低值出现在14:00—17:00之间。  相似文献   

20.
分析了2015年南京市PM2.5和PM10的浓度特征和大致来源类型。PM2.5和PM10的年均浓度分别为56.6 μg·m-3和96.5 μg·m-3,污染水平较高。颗粒物浓度的季节变化特征一致:冬 > 春 > 秋 > 夏;PM2.5的日变化呈"单峰单谷"型,而PM10的呈"单峰双谷"型。颗粒物浓度在城区高于郊区;植被茂盛区域的浓度较低。对PM2.5/PM10而言,比值在冬季和梅雨期较大,分别受取暖和降水的影响;比值在春季和夏末秋初较小,分别受沙尘和秸秆焚烧的影响。PM2.5多为二次颗粒物,PM10多为一次颗粒物;固定污染源对PM2.5的间接贡献和对PM10的直接贡献较移动污染源而言更大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号