首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vertical transverse mixing is known to be a controlling factor in natural attenuation of extended biodegradable plumes originating from continuously emitting sources. We perform conservative and reactive tracer tests in a quasi two-dimensional 14 m long sand box in order to quantify vertical mixing in heterogeneous media. The filling mimics natural sediments including a distribution of different hydro-facies, made of different sand mixtures, and micro-structures within the sand lenses. We quantify the concentration distribution of the conservative tracer by the analysis of digital images taken at steady state during the tracer-dye experiment. Heterogeneity causes plume meandering, leading to distorted concentration profiles. Without knowledge about the velocity distribution, it is not possible to determine meaningful vertical dispersion coefficients from the concentration profiles. Using the stream-line pattern resulting from an inverse model of previous experiments in the sand box, we can correct for the plume meandering. The resulting vertical dispersion coefficient is approximately approximately 4 x 10(-)(9) m(2)/s. We observe no distinct increase in the vertical dispersion coefficient with increasing travel distance, indicating that heterogeneity has hardly any impact on vertical transverse mixing. In the reactive tracer test, we continuously inject an alkaline solution over a certain height into the domain that is occupied otherwise by an acidic solution. The outline of the alkaline plume is visualized by adding a pH indicator into both solutions. From the height and length of the reactive plume, we estimate a transverse dispersion coefficient of approximately 3 x 10(-)(9) m(2)/s. Overall, the vertical transverse dispersion coefficients are less than an order of magnitude larger than pore diffusion coefficients and hardly increase due to heterogeneity. Thus, we conclude for the assessment of natural attenuation that reactive plumes might become very large if they are controlled by vertical dispersive mixing.  相似文献   

2.
This paper presents a mixed methodology for the simulation of atmospheric disperson phenomena in which vertical diffusion is computed using an analytical solution of the K-theory equation, while horizontal diffusion is simulated by the Gaussian formula. This new formulation, while maintaining a simple analytical form for the concentration field, incorporates the effects of power-law vertical profiles of both wind speed and eddy diffusivity. The performance of this approach, which has been implemented into a full computer package (KAPPA-G), is evaluated by comparison with data from SF6 tracer experiments.  相似文献   

3.
A large-scale experiment was conducted to investigate the transport of trichloroethylene (TCE) vapors in the unsaturated zone and to determine the mass transfer to the groundwater and the atmosphere. The experiment involved injection of 5 1 of TCE in the unsaturated zone under controlled conditions, with multidepth sampling of gas and water through the unsaturated zone and across the capillary zone into underlying groundwater. The mass transfer of TCE vapors from the vadose zone to the atmosphere was quantified using a vertical flux chamber. A special soil water sampler was used to monitor transport across the capillary fringe. Experimental data indicated that TCE in the unsaturated zone was mainly transported to the atmosphere and this exchange reduced significantly the potential for groundwater pollution. The maximum measured TCE flux to the atmosphere was about 3 g/m(2)/day. Observed and calculated fluxes based on vertical TCE vapor concentration gradients and Fick's law were in good agreement. This confirms that TCE vapor transport under the experimental conditions was governed essentially by molecular diffusion. TCE vapors also caused a lower, but significant contamination of the underlying groundwater by dispersion across the capillary fringe with a corresponding maximum flux of about 0.1 g/m(2)/day. This mass transfer to groundwater is partly uncertain due to an inadvertent entry of some nonaqueous phase liquid (NAPL) from the source area into the saturated zone. Application of an analytical solution to estimate the TCE flux from the unsaturated zone to the groundwater indicated that this phenomenon is not only influenced by molecular diffusion but also by vertical dispersion. The mass balance indicates that, under the given experimental conditions (e.g. proximity of the source emplacement relative to the soil surface, relatively high permeable porous medium), nearly 95% of the initial TCE mass was transferred to the atmosphere.  相似文献   

4.
Atmospheric dispersion models are usually off-line coupled to mesoscale meteorological models. This may generate the loss of mass consistency, defined as the conservation of uniform mixing ratio. We investigate in this short paper the impact of the resulting mass consistency errors. Three methods based on the renormalization of density, on fluxes computed with mass mixing ratio and on the adjustment of the vertical velocity, respectively, are aimed at reducing the mass consistency errors. They are benchmarked and applied to two test cases: air quality modeling over Europe for summer 2001 (typical of reactive dispersion) and simulation of the Chernobyl accident (typical of passive dispersion). Our tests indicate the differences between the passive and the reactive cases. The investigation of the spatial patterns (especially of the vertical distribution) discriminates the method based on the adjustment of the vertical velocity. Indeed, this method suffers from the enhancement of the numerical diffusion (illustrated in the passive case) and from the modification of the escape flux (for ozone).  相似文献   

5.
Although sulphur emissions (mainly as SO2) have been continuously decreasing over the last 20 years in most western industrialized countries, localized SO2 problems still exist in conjunction with strong local emission, meteorological, and topographical factors. In this study, the effect of supplementary installed flue gas desulphurization (FGD) units at high-capacity power plants on regional air pollution in the Carpathian Basin is investigated. The dispersion and accumulation of the SO2 air pollutant are studied with the regional three-dimensional on-line atmosphere-chemistry model REMOTE. The changes in the SO2 air pollution are investigated by parallel simulations in a case study, where the single modified parameter is the SO2 emission rate. The results show that FGD units significantly reduce the horizontal and the vertical dispersion of the emitted SO2, and its transboundary transport, too. Beside the SO2 removal efficiency, the dispersion and accumulation also depend on the seasonal weather conditions. During winter, the dispersion and accumulation are higher than in other seasons. Due to this phenomenon, higher SO2 removal efficiency is needed to guarantee similar air quality features like in the other seasons.  相似文献   

6.
The mode of vertical velocity in convective boundary layers (CBLs) is usually negative and the probability distribution function (PDF) of w, Pw, is rarely symmetric except near the top and bottom of CBLs. Consequently, vertical diffusion from elevated sources is usually asymmetric and exhibits a descending mode of concentration, causing higher peak surface concentrations than predicted by Gaussian models. The main concentration (χ) effects, we argue, can be modeled using the simplest of PDF diffusion models, with tracers responding to Pw at the source height with straight line trajectories and simple reflection at the surface and zi, the mixing depth. The critical element is the choice of Pw. Two Pw models are offered, a bi-Gaussian (BG) and a Gaussian-ramp (GR) formulation. Both have some observational support, and the resulting PDF models are mathematically tractable. Analytical solutions for key variables are given; these show some surprising contrasts between the BG and GR models, but both can approximate laboratory and numerical modeling results for ∝χdy patterns. A diverse selection of atmospheric turbulence measurements is presented; for measures that reflect asymmetry in Pw, the data show wide ranges and do not lend support to any particular form of Pw. Recent lidar measurements of oil fog plumes are presented that show a large variability in ∝χdy patterns, even with substantial averaging periods. The only concurrent turbulence measurement that strongly correlates with the observed vertical diffusion of oil fog is the mode of wind elevation angle. A simple adaptation of the BG model is recommended that fits the average peak ∝χdy and distance of occurrence as observed so far.  相似文献   

7.
This paper presents a local-scale dispersion model, based on atmospheric boundary layer scaling theory. In the vicinity of the source, Gaussian equations are used in both the horizontal and vertical directions. After a specified transition distance, gradient transfer theory is applied in the vertical direction, while the horizontal dispersion is still assumed to be Gaussian. The dispersion parameters and eddy diffusivity are modelled in a form, which facilitates the use of a meteorological pre-processor. We present a novel model of the vertical eddy diffusivity (Kz), which is a continuous function of height in various atmospheric scaling regions. The model also includes a treatment of the dry deposition of gases and particulate matter. The accuracy of the numerical model was analysed by comparing the model predictions with two analytical solutions; the numerical deviations from these solutions were less than 2% for the computational regime. The model has been tested against the Kincaid experimental field data. The agreement of the predictions and the data is good on the average, although the internal variation of the predictions versus data scatter plot is substantial.  相似文献   

8.
A previously obtained analytical solution to model the short-range dispersion of pollutants in low winds from surface releases has been used to simulate diffusion tests conducted during winter in weakly convective conditions at the Indian Institute of Technology (IIT) Delhi. The turbulence parameterization based on friction velocity has been tested to simulate diffusion experiment. Such a parameterization in this study is considered justifiable on two counts: (1) prevailing meteorological and dispersion conditions have been generally of weakly unstable type as indicated by values of Monin–Obukhov length and bulk Richardson number, (2) uncertainties associated with the application of convective velocity based similarity parameterization to simulation of diffusion experiment at IIT Delhi, resulting in significant underprediction in most of the cases (Atmos. Environ. 30 (1996a) 1137). With this parameterization, the model simulations have improved considerably and compare reasonably well with the observations. Further, the results from a simple Gaussian model have been included for comparison. This study is in continuation of the work done earlier to simulate near-source dispersion in weak winds.  相似文献   

9.
Using an accurate numerical method for simulating the advection and diffusion of pollution puffs, it is demonstrated that point releases of pollution grow into a shape reflecting the vertical wind shear profile experienced by the puff within a time scale less than 4 h. For distances beyond several 10 s of kilometers from a release point, shear-related dispersion effects are probably the dominant mechanism affecting the area and magnitude of surface impacts. For assessing long-range pollutant dispersion, the common assumption that pollutants disperse as horizontally spherical “puffs” in the atmosphere is inherently inaccurate since shear-induced horizontal spreading of pollution is not a homogeneous “turbulent-like” diffusion process. A Lagrangian puff model can simulate an area impacted by a pollution puff only if larger shear-dependent horizontal puff dispersions are assumed. However, even if impacted areas are reasonably simulated, peak concentrations will be severely underestimated since atmospheric puffs influenced by even small amounts of wind shear are nonspherical. If horizontal dispersion coefficients in a Lagrangian puff model are adjusted so that peak concentrations are correctly simulated, then the calculated pollution impact area will be severely skewed. In shear environments, no choice of horizontal dispersion coefficients in a single-puff Lagrangian model will yield reasonable correlations with puffs that are skewed into nonspherical shapes by atmospheric wind shear.  相似文献   

10.
An analytical solution is presented for one-dimensional vertical transport of volatile chemicals through the vadose zone to groundwater. The solution accounts for the important transport mechanisms of the steady advection of water and gas, diffusion and dispersion in water and gas, as well as adsorption, and first-order degradation. By assuming a linear, equilibrium partitioning between water, gas and the adsorbed chemical phases, the dependent variable in the mathematical model becomes the total resident concentration. The general solution was derived for cases having a constant initial total concentration over a discrete depth interval and a zero initial total concentration elsewhere. A zero concentration gradient is assumed at the groundwater table. Examples are given to demonstrate the application of the new solution for calculating the case of a non-uniform initial source concentration, and estimating the transport of chemicals to the groundwater and the atmosphere. The solution was also used to verify a numerical code called VLEACH. We discovered an error in VLEACH, and found that the new solution agreed very well with the numerical results by corrected VLEACH. A simplified solution to predict the migration of volatile organic chemical due to the gas density effect has shown that a high source concentration may lead to significant downward advective gas-phase transport in a soil with a high air-permeability.  相似文献   

11.
This paper is concerned with the motion of air within the urban street canyon and is directed towards a deeper understanding of pollutant dispersion with respect to various simple canyon geometries and source positions. Taking into account the present days typical urban configurations, three principal flow regimes “isolated roughness flow”, “skimming flow” and “wake interference flow” (Boundary Layer Climates, 2nd edition, Methuen, London) and their corresponding pollutant dispersion characteristics are studied for various canopies aspect ratios, namely relative height (h2/h1), canyon height to width ratio (h/w) and canyon length to height ratio (l/h). A field-size canyon has been analyzed through numerical simulations using the standard k-ε turbulence closure model. It is found that the pollutant transport and diffusion is strongly dependent upon the type of flow regime inside the canyon and exchange between canyon and the above roof air. Some rules of thumbs have been established to get urban canyon geometries for efficient dispersion of pollutants.  相似文献   

12.
The vertical diffusion of NaI solution from a horizontal fracture into and within the surrounding matrix was tracked and quantified over time using an artificially fractured chalk core (30x5 cm) and a second-generation X-ray computed tomography (CT) scanner. The different tracer-penetration distances imaged in the matrix above and below the horizontal fracture are indicative of a greater tracer mass penetrating into the lower matrix. The enhanced transport in the matrix below the fracture was related to the Rayleigh-Darcy instability induced by the density differences between the heavier tracer solution in the fracture (1.038) and the distilled water that had initially resided in the matrix. Our observations suggest that below the fracture, the tracer is propagated by an advection-diffusion process that is characterized by both higher rates and higher concentrations relative to its propagation by diffusion above the fracture. The experimental results suggest that the prediction of contaminant migration in a rock intersected by both vertical and horizontal (e.g. along bedding planes) fractures is difficult because of density effects that result in different solute-penetration rates.  相似文献   

13.
This paper is concerned with the motion of air within the urban street canyon and is directed towards a deeper understanding of pollutant dispersion with respect to various simple canyon geometries and source positions. Taking into account the present days typical urban configurations, three principal flow regimes “isolated roughness flow”, “skimming flow” and “wake interference flow” (Boundary Layer Climates, 2nd edition, Methuen, London) and their corresponding pollutant dispersion characteristics are studied for various canopies aspect ratios, namely relative height (h2/h1), canyon height to width ratio (h/w) and canyon length to height ratio (l/h). A field-size canyon has been analyzed through numerical simulations using the standard k-ε turbulence closure model. It is found that the pollutant transport and diffusion is strongly dependent upon the type of flow regime inside the canyon and exchange between canyon and the above roof air. Some rules of thumbs have been established to get urban canyon geometries for efficient dispersion of pollutants.  相似文献   

14.
A method for calculating the dispersion of plumes in the atmospheric boundary layer is presented. The method is easy to use on a routine basis. The inputs to the method are fundamental meteorological parameters, which act as distinct scaling parameters for the turbulence. The atmospheric boundary layer is divided into a number of regimes. For each scaling regime we suggest models for the dispersion in the vertical direction. The models directly give the crosswind-integrated concentrations at the ground, xy, for nonbuoyant releases from a continuous point source. Generally the vertical concentration profile is proposed to be other than Gaussian. The lateral concentration profile is always assumed to be Gaussian, and models for determining the lateral spread σy are proposed. The method is limited to horizontally homogeneous conditions and travel distances less than 10km. The method is evaluated against independent tracer experiments over land. The overall agreement between measurements and predictions is very good and better than that found with the traditional Gaussian plume model.  相似文献   

15.
Reactive pollutant dispersion in an urban street canyon with a street aspect ratio of one is numerically investigated using a computational fluid dynamics (CFD) model. The CFD model developed is a Reynolds-averaged Navier–Stokes equations (RANS) model with the renormalization group (RNG) k–ε turbulence model and includes transport equations for NO, NO2, and O3 with simple photochemistry. An area emission source of NO and NO2 is considered in the presence of background O3 and street bottom heating (ΔT=5 °C) with an ambient wind perpendicular to the along-canyon direction. A primary vortex is formed in the street canyon and the line connecting the centers of cross-sectional vortices meanders over time and in the canyon space. The cross-canyon-averaged temperature and reactive pollutant concentrations oscillate with a period of about 15 min. The averaged temperature is found to be in phase with NO and NO2 concentrations but out of phase with O3 concentration. The photostationary state defect is small in the street canyon except for near the roof level and the upper downwind region of the canyon and its local minimum is observed near the center of the primary vortex. The budget analysis of NO (NO2) concentration shows that the magnitude of the advection or turbulent diffusion term is much larger (larger) than that of the chemical reaction term and that the advection term is largely balanced by the turbulent diffusion term. On the other hand, the budget analysis of O3 concentration shows that the magnitude of the chemical reaction term is comparable to that of the advection or turbulent diffusion term. The inhomogeneous temperature distribution itself affects O3 concentration to some extent due to the temperature-dependent photolysis rate and reaction rate constant.  相似文献   

16.
Performance of a Lagrangian dispersion model was examined in connection with its dependency on the boundary layer modelling and the input data resolution. The European Tracer Experiment (ETEX) data were used as reference. According to the sensitivity analysis of the model performance, the long-range dispersion model with the sparse input data was not noticeably different from that with the finer resolution data. The assumption of the prescribed constant mixing depth did not largely degrade the prediction results as compared with the simulation results with the temporally changing boundary layer. It is, therefore, concluded that the model is practical, considering the limited input data in the operational mode. However, it was also pointed out that the parameterization for the horizontal and vertical diffusion processes used in the present model enhanced the growth of plume. The improvement of input data resolution in time and space caused further dispersion of tracer deterministically. These resulted in the underestimation of the maximum concentration and the unfocussed concentration distribution map although the mean concentration was predicted fairly well.  相似文献   

17.
An open-bottom and a closed-bottom mesocosm were developed to investigate the release of mercury from sediments to the water column in a frozen freshwater lake. The mesoscosms were deployed in a hole in the ice and particulate mercury (HgP) and total dissolved mercury (TDHg) were measured in sediments and in water column vertical profiles. In addition, dissolved gaseous mercury (DGM) in water and mercury water/airflux were quantified. Concentrations of TDHg, DGM, and mercury flux were all higher in the open-bottom mesocosm than in the closed-bottom mesocosm. In this paper we focus on the molecular diffusion of mercury from the sediment in comparison with the TDHg accumulation in the water column. We conclude that the molecular diffusion and sediment resuspension play a minor role in mercury release from sediments suggesting that solute release during ebullition is an important transport process for mercury in the lake.  相似文献   

18.
This study deals with two-dimensional solute transport in an aquifer–aquitard system by maintaining rigorous mass conservation at the aquifer–aquitard interface. Advection, longitudinal dispersion, and transverse vertical dispersion are considered in the aquifer. Vertical advection and diffusion are considered in the aquitards. The first-type and the third-type boundary conditions are considered in the aquifer. This study differs from the commonly used averaged approximation (AA) method that treats the mass flux between the aquifer and aquitard as an averaged volumetric source/sink term in the governing equation of transport in the aquifer. Analytical solutions of concentrations in the aquitards and aquifer and mass transported between the aquifer and upper or lower aquitard are obtained in the Laplace domain, and are subsequently inverted numerically to yield results in the real time domain (the Zhan method). The breakthrough curves (BTCs) and distribution profiles in the aquifer obtained in this study are drastically different from those obtained using the AA method. Comparison of the numerical simulation using the model MT3DMS and the Zhan method indicates that the numerical result differs from that of the Zhan method for an asymmetric case when aquitard advections are at the same direction. The AA method overestimates the mass transported into the upper aquitard when an upward advection exists in the upper aquitard. The mass transported between the aquifer and the aquitard is sensitive to the aquitard Peclet number, but less sensitive to the aquitard diffusion coefficient.  相似文献   

19.
Passive diffusion tubes are recognised as a cost-effective sampling method for characterising the spatial variability, as well as the seasonal and annual trends, of NO2 concentrations in urban areas. In addition, NOX and O3 passive diffusion tubes have been developed and deployed in urban and rural areas. Despite their many advantages (e.g. low operational and analysis cost, small size and no need for power supply), they have certain limitations mainly related to their accuracy and precision. In particular, the absorbent solution used, the length of the exposure period, the exact location and use of protective devices, and other environmental conditions (e.g. wind, ambient temperature and relative humidity) may have a significant impact on the performance of passive diffusion tubes. The aim of this study is to evaluate the performance of co-located NO2, NOX and O3 diffusion tubes in an urban environment.A one-year passive sampling campaign was carried out in Birmingham (UK) for this purpose. NO2, NOX and O3 diffusion tubes (including triplicate sets of each) were co-located at one urban background and two roadside permanent air quality monitoring stations equipped with standard gas analysers. In addition, meteorological data, such as wind speed and direction, ambient temperature and relative humidity, were obtained during the same period of time. A thorough QA/QC procedure, including storage and laboratory blanks was followed throughout the campaign. The analysis of results showed a very good agreement of NO2 passive samplers with co-located chemiluminescence analysers, but substantial underestimations of total NOX levels by the diffusion tubes. The O3 diffusion sampler appeared to marginally overestimate the automatic UV analyser results, especially during warm weather periods.  相似文献   

20.
Many towns and cities consist of similarly sized buildings in relatively regular arrangements with smaller scale roughness elements such as roofs, chimneys and balconies. The objective of this study is to investigate how small scale roughness elements modify the influence of the large scale organized roughness on the dispersion of a passive scalar in a turbulent boundary layer. Wind tunnel experiments were performed using a passive tracer released from a line source and concentration profiles were measured with a Flame Ionisation Detector. The measurements are compared with numerical solutions of the advection–diffusion equation.The results show that decreasing the cavity aspect ratio increases the turbulent vertical mass fluxes, and that the small scale roughness enhances these fluxes, but only in the skimming flow regime. Numerical simulations showed that outside the roughness sub-layer (RSL) the changes in surface roughness could be accounted for by a simple variation of the friction velocity, but inside the RSL the spatial variability of the flow imposed by the roughness elements has much more influence. A simple model for a spatially averaged dispersion coefficient in the RSL has been developed and is shown to agree satisfactorily with the concentrations measured in these experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号