首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A reactive plume model that treats secondary aerosol formation is used to investigate the major physical and chemical processes that affect the rate of sulfate and nitrate aerosol formation in power plant plumes. The reactive plume model is evaluated with experimental data collected in three power plant plumes, and model performance is shown to be quite satisfactory. One of these case studies is used to perform singleparameter and multi-parameter analyses of the sensitivity of sulfate and nitrate aerosol concentrations to various meteorological, air quality and chemical kinetic parameters. The results suggest that sulfate aerosol concentrations are most sensitive to relative humidity and temperature at high relative humidity, whereas nitrate aerosol concentrations are most sensitive to temperature, particularly at low relative humidity. The importance of the NOx/reactive hydrocarbon chemistry to sulfate and nitrate aerosol formation is examined.  相似文献   

2.
Aerosol light-scattering in The Netherlands   总被引:2,自引:0,他引:2  
The relation between the (midday) aerosol light-scattering and the concentrations of nitrate and sulfate has been assessed at a site near the coast of the North Sea in The Netherlands. Midday was selected for the measurements because this is the time at which the aerosol is most effective in the scattering of solar radiation. Automated thermodenuders were used for the hourly measurement of the concentration of nitrate and sulfate with a lower detection limit of 0.1 μ m−3. The site is operational since October 1993. The first-year average dry aerosol light-scattering (measured with an integrating nephelometer at a wavelength of 525 nm) was 0.71 × 10−4 m1̄. In arctic marine air the aerosol light-scattering was a factor of 10 lower than the average value, in polluted continental air it was up to a factor of 10 higher. The ratio of the total aerosol light-scattering to the concentration of sulfate was 20 m2 g−1. The contribution of nitrate to the aerosol light-scattering was higher than that of sulfate in the winter and of about equal magnitude in the summer period. In November and December of 1993, the humidity dependence of the aerosol light-scattering was investigated. Two types of (continental) aerosol were found with respect to the humidity behavior. One type showed a significant increase in light-scattering at the deliquescence points of ammonium nitrate and ammonium sulfate, with that of ammonium nitrate the most pronounced. The second type of continental aerosol did not show deliquescence, but followed the typical humidity dependence of aerosol in a supersaturated droplet state. In this latter aerosol type, nitrate dominated over sulfate. It was concluded from the study that the aerosol light-scattering in The Netherlands, in particular its humidity dependence, is governed by (ammonium) nitrate.  相似文献   

3.
Air quality data collected in the California Regional PM10/ PM(2.5) Air Quality Study (CRPAQS) are analyzed to qualitatively assess the processes affecting secondary aerosol formation in the San Joaquin Valley (SJV). This region experiences some of the highest fine particulate matter (PM(2.5)) mass concentrations in California (< or = 188 microg/m3 24-hr average), and secondary aerosol components (as a group) frequently constitute over half of the fine aerosol mass in winter. The analyses are based on 15 days of high-frequency filter and canister measurements and several months of wintertime continuous gas and aerosol measurements. The phase-partitioning of nitrogen oxide (NO(x))-related nitrogen species and carbonaceous species shows that concentrations of gaseous precursor species are far more abundant than measured secondary aerosol nitrate or estimated secondary organic aerosols. Comparisons of ammonia and nitric acid concentrations indicate that ammonium nitrate formation is limited by the availability of nitric acid rather than ammonia. Time-resolved aerosol nitrate data collected at the surface and on a 90-m tower suggest that both the daytime and nighttime nitric acid formation pathways are active, and entrainment of aerosol nitrate formed aloft at night may explain the spatial homogeneity of nitrate in the SJV. NO(x) and volatile organic compound (VOC) emissions plus background O3 levels are expected to determine NO(x) oxidation and nitric acid production rates, which currently control the ammonium nitrate levels in the SJV. Secondary organic aerosol formation is significant in winter, especially in the Fresno urban area. Formation of secondary organic aerosol is more likely limited by the rate of VOC oxidation than the availability of VOC precursors in winter.  相似文献   

4.
A secondary aerosol equilibrium model, SEQUILIB, is applied to evaluate the effects of emissions reductions from precursor species on ambient concentrations during the winter in Phoenix, Arizona. The model partitions total nitrate and total ammonia to gas-phase nitric acid and ammonia and to particle-phase ammonium nitrate. Agreement between these partitions and ambient measures of these species was found to be satisfactory. Equilibrium isopleths were generated for various ammonium nitrate concentrations corresponding to high and low humidity periods which occurred during sampling. These diagrams show that ammonia is so abundant in Phoenix that massive reductions in its ambient concentrations would be needed before significant reductions in particulate ammonium nitrate would be observed. When total nitrate is reduced by reductions in its nitrogen oxides precursor, proportional reductions in particulate nitrate are expected. Many of the complex reactions in SEQUILIB do not apply to Phoenix, and its ability to reproduce ambient data in this study does not guarantee that it will be as effective in areas with more complex chemistry. Nevertheless, the nitrate chemistry in SEQUILIB appears to be sound, and it is a useful model for addressing the difficult apportionment of secondary aerosol to its precursors.  相似文献   

5.
The ionic compositions of particulate matter with aerodynamic diameter < or = 2.5 microm (PM2.5) and size-resolved aerosol particles were measured in Big Bend National Park, Texas, during the 1999 Big Bend Regional Aerosol and Visibility Observational study. The ionic composition of PM2.5 aerosol was dominated by sulfate (SO4(2-)) and ammonium (NH4+). Daily average SO4(2-) and NH4+ concentrations were strongly correlated (R2 = 0.94). The molar ratio of NH4+ to SO4(2-) averaged 1.54, consistent with concurrent measurements of aerosol acidity. The aerosol was observed to be comprised of a submicron fine mode consisting primarily of ammoniated SO4(2-) and a coarse particle mode containing nitrate (NO3-). The NO3- appears to be primarily associated with sea salt particles where chloride has been replaced by NO3-, although formation of calcium nitrate (Ca(NO3)2) is important, too, on several days. Size-resolved aerosol composition results reveal that a size cut in particulate matter with aerodynamic diameter < or = 1 microm would have provided a much better separation of fine and coarse aerosol modes than the standard PM2.5 size cut utilized for the study. Although considerable nitric acid exists in the gas phase at Big Bend, the aerosol is sufficiently acidic and temperatures sufficiently high that even significant future reductions in PM2.5 SO4(2-) are unlikely to be offset by formation of particulate ammonium nitrate in summer or fall.  相似文献   

6.
As a step toward better understanding the reactive Los Angeles air basin atmosphere, a study was undertaken at the University of California—Riverside Campus, to determine the composition and concentration of atmospheric particulate matter as a function of particle size and time. The study involved developing a method for obtaining size-classified, time-fractionated aerosol samples amenable to chemical and physical (including microscopic) analysis. During a 15-day period, samples were obtained over 4-hr periods and subsequently analyzed for nitrate, sulfate, iron, and lead. Concentration of six gaseous pollutantsj total aerosol light-scattering, and several meteorological measurements were simultaneously recorded and averaged over the 4-hr intervals. This data was presented graphically to show the diurnal variation in and relationship between gaseous, particulate, and meteorological measurements. A strong relationship between gaseous peroxyacetyl nitrate, particulate nitrate, and aerosol light-scattering was found. High concentrations of ammonium nitrate particles, mainly in the 0.5-2μ, diameter size range, were found in the atmospheric particulate samples collected on days of very high smog (very limited visibility).  相似文献   

7.
An analysis of fine particulate data in eastern North Carolina was conducted to investigate the impact of the hog industry and its emissions of ammonia into the atmosphere. The fine particulate data are simulated using ISORROPIA, an equilibrium thermodynamic model that simulates the gas and aerosol equilibrium of inorganic atmospheric species. The observational data analyses show that the major constituents of fine particulate matter (PM2.5) are organic carbon, elemental carbon, sulfate, nitrate, and ammonium. The observed PM2.5 concentration is positively correlated with temperature but anticorrelated with wind speed. The correlation between PM2.5 and wind direction at some locations suggests an impact of ammonia emissions from hog facilities on PM2.5 formation. The modeled results are in good agreement with observations, with slightly better agreement at urban sites than at rural sites. The predicted total inorganic particulate matter (PM) concentrations are within 5% of the observed values under conditions with median initial total PM species concentrations, median relative humidity (RH), and median temperature. Ambient conditions with high PM precursor concentrations, low temperature, and high RH appear to favor the formation of secondary PM.  相似文献   

8.
Chemical coupling between ammonia, acid gases, and fine particles   总被引:2,自引:0,他引:2  
The concentrations of inorganic aerosol components in the fine particulate matter (PM(fine)< or =2.5 microm) consisted of primarily ammonium, sodium, sulfate, nitrate, and chloride are related to the transfer time scale between gas to particle phase, which is a function of the ambient temperature, relative humidity, and their gas phase constituent concentrations in the atmosphere. This study involved understanding the magnitude of major ammonia sources; and an up-wind and down-wind (receptor) ammonia, acid gases, and fine particulate measurements; with a view to accretion gas-to-particle conversion (GTPS) process in an agricultural/rural environment. The observational based analysis of ammonia, acid gases, and fine particles by annular denuder system (ADS) coupled with a Gaussian dispersion model provided the mean pseudo-first-order k(S-1) between NH(3) and H(2)SO(4) aerosol approximately 5.00 (+/-3.77)x10(-3) s(-1). The rate constant was found to increase as ambient temperature, wind speed, and solar radiation increases, and decreases with increasing relative humidity. The observed [NH(3)][HNO(3)] products exceeded values predicted by theoretical equilibrium constants, due to a local excess of ammonia concentration.  相似文献   

9.
Khoder MI 《Chemosphere》2002,49(6):675-684
Sulfur dioxide, nitrogen dioxide, particulate sulfate and nitrate, gaseous nitric acid, ozone and meteorological parameters (temperature and relative humidity) were measured during the winter season (1999-2000) and summer season (2000) in an urban area (Dokki, Giza, Egypt). The average particulate nitrate concentrations were 6.20 and 9.80 microg m(-3), while the average gaseous nitric acid concentrations were 1.14 and 6.70 microg m(-3) in the winter and summer seasons, respectively. The average sulfate concentrations were 15.32 microg m(-3) during the winter and 25.10 microg m(-3) during the summer season. The highest average concentration ratio of gaseous nitric acid to total nitrate was found during the summer season. Particulate sulfate and nitrate and gaseous nitric acid concentrations were relatively higher in the daytime than those in the nighttime. Sulfur conversion ratio (Fs) and nitrogen conversion ratio (Fn) defined in the text were calculated from the field measurement data. Sulfur conversion ratio (Fs) and nitrogen conversion ratio (Fn) in the summer were about 2.22 and 2.97 times higher than those in the winter season, respectively. Moreover, sulfur conversion ratio (Fs) and nitrogen conversion ratio (Fn) were higher in the daytime than those in the nighttime during the both seasons. The sulfur conversion ratio (Fs) increases with increasing ozone concentration and relative humidity. This indicates that the droplet phase reactions and gas phase reactions are important for the oxidation of SO2 to sulfate. Moreover, the nitrogen conversion ratio (Fn) increases with increasing ozone concentration, and the gas phase reactions are important and predominant for the oxidation of NO2 to nitrate.  相似文献   

10.
The externally-mixed source-oriented UCD/CIT air quality model was applied to determine the significance of inter-regional transport for primary and secondary particulate matter (PM) in California's Central Valley during a severe wintertime PM pollution episode from December 15, 2000 to January 7, 2001. The gases and primary PM emitted from eight different geographical sub-regions were tracked separately in a model simulation that included transport, physical and chemical transformation and deposition processes. The model results directly predict the contribution that each sub-region makes to PM concentrations throughout the entire model domain. The boundary layer was relatively stagnant during the simulated 3-week air quality episode, and no consistent transport pattern for primary PM was predicted. Several significant inter-regional transport events were identified that each lasted a few days. Each of these inter-regional events was characterized by transport of gas-phase precursors of nitrate that combined with local emissions of ammonia to produce particulate nitrate. Nitrate already in the particle phase was not transported efficiently due to higher dry deposition rates for particles relative to gas-phase nitrogen oxides. The distinctive pattern of transport for nitrate precursors reflects the relatively long timescales required to convert NOx emissions to nitrate during winter conditions characterized by low temperatures, weak photolysis rates, and low oxidant concentrations. The equilibrium partitioning of nitrate and ammonia to the particle phase is relatively fast once the nitrate has been produced. The most-likely transport distance for nitrate during the current episode varied from 130–140 km for the northern portion of the Central Valley to 50–60 km in the southern portion of the Central Valley. Sub-regions further south in the Valley have smaller transport distances because of slower wind speeds and the greater abundance of ammonia in these areas, leading to faster conversion of gas-phase reactive nitrogen into particulate nitrate, which has a higher dry deposition rate than the gas-phase species. The most-likely transport distance for primary organic compounds (OC) was found to be less than that for nitrate, varying from 50 to 60 km for the northern portion of the Valley to 20–30 km for southern portion of the Valley. Overall, 68% of the particulate nitrate formed in the most polluted sub-regions of the Central Valley originates from emissions in those same sub-regions. Local emissions controls should therefore provide an effective strategy to reduce airborne particulate matter concentrations to acceptable levels.  相似文献   

11.
Background, Aims and Scope Secondary inorganic aerosol (SIA), i.e. particulate sulphate (S(VI)), ammonium and nitrate (N(V)) is formed from gaseous precursors i.e., sulfur dioxide (S(IV)), ammonia and nitrogen oxides, in polluted air on the time-scale of hours to days. Besides particulate ammonium and nitrate, the respective gaseous species ammonia and nitric acid can be formed, too. SIA contributes significantly to elevated levels of respirable particulate matter in urban areas and in strongly anthropogenically influenced air in general. Methods The near-ground aerosol chemical composition was studied at two stationary sites in the vicinity of Berlin during a field campaign in summer 1998. By means of analysis of the wind field, two episodes were identified which allow to study changes within individual air masses during transport i.e., a Lagrangian type of experiment, with one station being upwind and the other downwind of the city. By reference to a passive tracer (Na+) and estimates on dry depositional losses, the influences of dispersion and mixing on concentration changes can be eliminated from the data analysis. Results and Discussion Chemical changes in N(-III), N(V) and S(VI) species were observed. SIA i.e., N(V) and S(VI), was formed from emissions in the city within a few hours. The significance of emissions in the city was furthermore confirmed by missing SIA formation in the case of transport around the city. For the two episodes, SIA formation rates could be derived, albeit not more precise than by an order of magnitude. N(V) formation rates were between 1.4 and 20 and between 1.9 and 59 % h-1 on the two days, respectively, and S(VI) formation rates were > 17 and > 10 % h-1. The area south of the city was identified as a source of ammonia. Conclusion The probability of occurrence of situations during which the downwind site (50 km downwind of Berlin) would be hit by an urban plume is > 7.4%. Furthermore, for the general case of rural areas in Germany it is estimated that for more than half of these there is a significant probability to be hit by an urban plume (> 8%). The S(VI) formation rates are higher than explainable by homogeneous gas-phase chemistry and suggest the involvement of heterogeneous reactions of aerosol particles. Recommendation and Outlook The possible contribution of heterogeneous processes to S(VI) formation should be addressed in laboratory studies. Measurements at more than two sites could improve the potential of Lagrangian field experiments for the quantification of atmospheric chemical transformations, if a second downwind site is chosen in such a way that, at least under particular stability conditions, measurements there are representative for the source area.  相似文献   

12.
Abstract

Air quality data collected in the California Regional PM10/PM2.5 Air Quality Study (CRPAQS) are analyzed to qualitatively assess the processes affecting secondary aerosol formation in the San Joaquin Valley (SJV). This region experiences some of the highest fine particulate matter (PM2.5) mass concentrations in California (≤188 μg/m3 24-hr average), and secondary aerosol components (as a group) frequently constitute over half of the fine aerosol mass in winter. The analyses are based on 15 days of high-frequency filter and canister measurements and several months of wintertime continuous gas and aerosol measurements. The phase-partitioning of nitrogen oxide (NOx)-related nitrogen species and carbonaceous species shows that concentrations of gaseous precursor species are far more abundant than measured secondary aerosol nitrate or estimated secondary organic aerosols. Comparisons of ammonia and nitric acid concentrations indicate that ammonium nitrate formation is limited by the availability of nitric acid rather than ammonia. Time-resolved aerosol nitrate data collected at the surface and on a 90-m tower suggest that both the daytime and nighttime nitric acid formation pathways are active, and entrainment of aerosol nitrate formed aloft at night may explain the spatial homogeneity of nitrate in the SJV. NOx and volatile organic compound (VOC) emissions plus background O3 levels are expected to determine NOx oxidation and nitric acid production rates, which currently control the ammonium nitrate levels in the SJV. Secondary organic aerosol formation is significant in winter, especially in the Fresno urban area. Formation of secondary organic aerosol is more likely limited by the rate of VOC oxidation than the availability of VOC precursors in winter.  相似文献   

13.
The role of aerosol concentrations on summer precipitation was examined in Atlanta, Georgia for the period 2003–2004. Each day of the week was examined to ascertain their aerosol concentrations. Thursday had the highest median 2.5 μm particulate matter (PM 2.5) concentrations at two of three Environmental Protection Agency stations. Monday and Thursday had the largest area of significantly different precipitation when compared to other days of the week. All but the southeast quadrant of the metropolitan area had a significant difference in precipitation on high versus low aerosol days. High aerosol days had greater instability (higher average convective available potential energy and lower convective inhibition), and a slightly more shallow mixing layer when compared to low aerosol days. Most of metropolitan Atlanta had higher precipitation amounts on high aerosol days and was significantly different from low aerosol days.  相似文献   

14.
The CIT/UCD three-dimensional source-oriented externally mixed air quality model is tested during a severe photochemical smog episode (Los Angeles, 7–9 September 1993) using two different chemical mechanisms that describe the formation of ozone and secondary reaction products. The first chemical mechanism is the secondary organic aerosol mechanism (SOAM) that is based on SAPRC90 with extensions to describe the formation of condensable organic products. The second chemical mechanism is the caltech atmospheric chemistry mechanism (CACM) that is based on SAPRC99 with more detailed treatment of organic oxidation products.The predicted ozone concentrations from the CIT/UCD/SOAM and the CIT/UCD/CACM models agree well with the observations made at most monitoring sites with a mean normalized error of approximately 0.4–0.5. Good agreement is generally found between the predicted and measured NOx concentrations except during morning rush hours of 6–10 am when NOx concentrations are under-predicted at most locations. Total VOC concentrations predicted by the two chemical mechanisms agree reasonably well with the observations at three of the four sites where measurements were made. Gas-phase concentrations of phenolic compounds and benzaldehyde predicted by the UCD/CIT/CACM model are higher than the measured concentrations whereas the predicted concentrations of other aromatic compounds approximately agree with the measured values.The fine airborne particulate matter mass concentrations (PM2.5) predicted by the UCD/CIT/SOAM and UCD/CIT/CACM models are slightly greater than the observed values during evening hours and lower than observed values during morning rush hours. The evening over-predictions are driven by an excess of nitrate, ammonium ion and sulfate. The UCD/CIT/CACM model predicts higher nighttime concentrations of gaseous precursors leading to the formation of particulate nitrate than the UCD/CIT/SOAM model. Elemental carbon and total organic mass are under-predicted by both models during morning rush hour periods. When this latter finding is combined with the NOx under-predictions that occur at the same time, it suggests a systematic bias in the diesel engine emissions inventory. The mass of particulate total organic carbon is under-predicted by both the UCD/CIT/SOAM and UCD/CIT/CACM models during afternoon hours. Elemental carbon concentrations generally agree with the observations at this time. Both the UCD/CIT/SOAM and UCD/CIT/CACM models predict low concentrations of secondary organic aerosol (SOA) (<3.5 μg m−3) indicating that both models could be missing SOA formation pathways. The representation of the aerosol as an internal mixture vs. a source-oriented external mixture did not significantly affect the predicted concentrations during the current study.  相似文献   

15.
The heterogeneous reaction of ozone with oleic acid (OA) aerosol particles was studied as function of humidity and reaction time in an aerosol flow reactor using an off-line gas chromatography mass spectrometry (GC–MS) technique. We report quantitative yields of the major C9 ozonolysis products in both gas and condensed phases and the effect of relative humidity on the product distribution. The measurements were carried out with OA aerosol particles at room temperature. The results indicate that the product yields are increasing with increasing relative humidity during the reaction. Nonanal (NN) was detected as the major gas-phase product (55.6 ± 2.3%), with 94.5 ± 2.4% of the NN yield in the gas, and 5.5 ± 2.7% in the particulate phase, whereas nonanoic, oxononanoic and azelaic acids were detected exclusively in the particulate phase. Using UV-spectrometry, we observed that peroxides make up the largest fraction of products, about half of the product aerosol mass, and their concentration decreased with increasing humidity.  相似文献   

16.
During Winter 2004, a series of elevated PM2.5 events occurred in Logan, Utah, coinciding with strong winter inversions. This period resulted in 17 exceedances of the 24-h PM2.5 standard, and some of the highest PM2.5 mass loadings recorded in the United States, including 9 days of 24-h PM2.5 measurements over 100 μg m−3. During the 3-month period, we monitored the size and mass concentrations of airborne particles using an aerosol mass spectrometer. PM2.5 concentrations were dominated by the formation of ammonium nitrate, accounting for over 50% of the non-refractory aerosol matter throughout the study and 80% on the highest pollution days. Another 15–20% of the particulate matter was composed of organic carbon. The high particle concentration loadings in Utah's Cache Valley result from a combination of unfavorable meteorology dominated by a severe cold-temperature inversion, a mix of rural and urban emission sources, and a confined geographical area. As a rapidly growing formerly rural area, the Cache Valley is representative of future air pollution problems facing areas of the interior west undergoing rapid urbanization.  相似文献   

17.
During the course of one year (March 2004–March 2005), PM2.5 particulate nitrate concentrations were semi-continuously measured every 10 min at a Madrid suburban site using the Rupprecht and Patashnick Series 8400N Ambient Particulate Nitrate Monitor (8400N). Gaseous pollutants (NO, NO2, O3, HCHO, HNO2) were simultaneously measured with a DOAS spectrometer (OPSIS AR-500) and complementary meteorological information was obtained by a permanent tower. The particulate nitrate concentrations ranged from the instrumental detection limit of around 0.2 μg m−3, up to a maximum of about 25 μg m−3. The minimum monthly average was reached during August (0.32 μg m−3) and the maximum during November (3.0 μg m−3). Due to the semi-volatile nature of ammonium nitrate, peaks were hardly present during summer air pollution episodes. A typical pattern during days with low dispersive conditions was characterized by a steep rise of particulate nitrate in the morning, reaching maximum values between 9 and 14 UTC, followed by a decrease during the evening. On some occasions a light increase was observed at nighttime. During spring episodes, brief diurnal nitrate peaks were recorded, while during the autumn and winter episodes, later and broader nitrate peaks were registered. Analysis of particulate nitrate and related gaseous species indicated the photo-chemical origin of the morning maxima, delayed with respect to NO and closely associated with secondary NO2 maximum values. The reverse evolution of nitrate and nitrous acid was observed after sunrise, suggesting a major contribution from HNO2 photolysis to OH formation at this time of the day, which would rapidly produce nitrate in both gaseous and particulate phase. Some nocturnal nitrate maxima appeared under high humidity conditions, and a discussion about their origin involving different possible mechanisms is presented, i.e. the possibility that these nocturnal maximum values could be related to the heterogeneous formation of nitrous and nitric acid by the hydrolysis of NO2 on wet aerosols.  相似文献   

18.
We use an inorganic aerosol thermodynamic equilibrium model in a three-dimensional chemical transport model to understand the roles of ammonia chemistry and natural aerosols on the global distribution of aerosols. The thermodynamic equilibrium model partitions gas-phase precursors among modeled aerosol species self-consistently with ambient relative humidity and natural and anthropogenic aerosol emissions during the 1990s.Model simulations show that accounting for aerosol inorganic thermodynamic equilibrium, ammonia chemistry and dust and sea-salt aerosols improve agreement with observed SO4, NO3, and NH4 aerosols especially at North American sites. This study shows that the presence of sea salt, dust aerosol and ammonia chemistry significantly increases sulfate over polluted continental regions. In all regions and seasons, representation of ammonia chemistry is required to obtain reasonable agreement between modeled and observed sulfate and nitrate concentrations. Observed and modeled correlations of sulfate and nitrate with ammonium confirm that the sulfate and nitrate are strongly coupled with ammonium. SO4 concentrations over East China peak in winter, while North American SO4 peaks in summer. Seasonal variations of NO3 and SO4 are the same in East China. In North America, the seasonal variation is much stronger for NO3 than SO4 and peaks in winter.Natural sea salt and dust aerosol significantly alter the regional distributions of other aerosols in three main ways. First, they increase sulfate formation by 10–70% in polluted areas. Second, they increase modeled nitrate over oceans and reduce nitrate over Northern hemisphere continents. Third, they reduce ammonium formation over oceans and increase ammonium over Northern Hemisphere continents. Comparisons of SO4, NO3 and NH4 deposition between pre-industrial, present, and year 2100 scenarios show that the present NO3 and NH4 deposition are twice pre-industrial deposition and present SO4 deposition is almost five times pre-industrial deposition.  相似文献   

19.
A major difficulty encountered in laboratory research on the atmospheric interaction of an aerosol-gas system is the unstable nature of the aerosol phase. Previously reported aerosol stabilizing techniques often severely alter the aerosol so that laboratory results cannot be validly extrapolated to the atmospheric environment. A new technique which does not alter the nature of the aerosol is described in this paper.

Aerosol particles are deposited on an inert substrate such as Teflon beads. The deposition is carried out in a fluidized-bed to ensure discrete aerosol deposition and to achieve a uniform distribution of aerosol concentration on the supporting beads. Aerosol-gas interactions can be investigated conveniently by exposing these stabilized aerosols to the reacting gases in dynamic or static systems. Laboratory results obtained by using stabilized aerosols may be extrapolated to the atmospheric environment.

This aerosol stabilizing technique was incorporated into an investigation of the particulate-catalyzed atmospheric oxidation of sulfur dioxide. Teflon beads with deposited aerosol particles of CuCl2, MnCl2, and NaCI were exposed to 4–42 ppm of sulfur dioxide in a plug flow reactor. The rate of oxidation of sulfur dioxide was found to be influenced by type of catalyst, concentration of catalyst, relative humidity and concentration of sulfur dioxide. The rate of oxidation by sodium chloride particulate was measurable at low to moderate relative humidities (45–60%), but the rate was several times higher when the sodium chloride catalyst particles change from solid form into droplet form at high relative humidities (>80%).  相似文献   

20.
The water uptake by fine aerosol particles in the atmosphere has been investigated at three rural National Parks in the United States (Great Smoky Mountains, Grand Canyon and Big Bend National Parks). The relative humidity (RH) of sample aerosols was varied from less than 20% to greater than 90% using Perma Pure drying tubes as the scattering coefficient of the aerosol was measured with a Radiance Research M903 nephelometer. Data from these studies show that growth curves at all the three sites are similar in shape but the magnitude of growth can vary considerably from day to day. The growth curves from Great Smoky Mountains show smooth continuous growth over the entire range of RH, while the growth curves from the Grand Canyon and Big Bend show smooth and continuous growth on some days and deliquescence on other days. Comparing 12-h filter samples of chemical composition data with the aerosol growth curves, we find that higher fractions of soluble inorganic compounds (sulfate and nitrate) produce growth curves of greater magnitude than do higher concentrations of either organic carbon or soil material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号