首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Road traffic emissions, one of the largest source categories in megacity inventories, are highly uncertain. It is essential to develop methodologies to reduce these uncertainties to manage air quality more effectively. In this paper, we propose a methodology to estimate road traffic emission factors (EFs) from a tracer experiment and from roadside pollutants measurements. We emitted continuously during about 300 non-consecutive hours a passive tracer from a finite line source placed on one site of an urban street. At the same time, we measured continuously the resulting tracer concentrations at the other side of the street with a portable on-line gas chromatograph. We used n-propane contained in commercial liquid petroleum gas (LPG) as a passive tracer. Propane offers several advantages to traditional tracers (SF6, N2O, CFCs): low price, easily available, non-reactive, negligible global warming potential, and easy to detect with commercial on-line gas chromatographs.The tracer experiment was carried out from January to March 2007 in a busy street of Ho Chi Minh City (Vietnam). Traffic volume, weather information and pollutant concentrations were also measured at the measurement site. We used the results of the tracer experiment to calculate the dilution factors and afterwards we used these dilution factors, the traffic counts and the pollutant concentrations to estimate the EFs. The proposed method assumes that the finite emission line represents the emission produced by traffic in the full area of the street and therefore there is an error associated to this assumption. We use the Computational Fluids Dynamics (CFD) model MISKAM to calculate this error and to correct the HCMC EFs. EFs for 15 volatile organic compounds (VOCs) and NO are reported here. A comparison with available studies reveals that most of the EFs estimated here are within the range of EFs reported in other studies.  相似文献   

2.
It is important to develop a general model to accurately simulate the air pollution in urban street areas. In this paper, the Operational Street Pollution Model (OSPM) initially developed in Denmark is tested with measured data from a relatively wide and open street in Beijing. Major factors influencing the dispersion, such as emission factors, stationary source emissions, and solar radiation, are analyzed. Results show that the model can reflect the basic dispersion pattern in the street but gives systematically higher concentrations. After modifications to estimate street-level wind speed in the model, performance is obviously improved.  相似文献   

3.
ABSTRACT

It is important to develop a general model to accurately simulate the air pollution in urban street areas. In this paper, the Operational Street Pollution Model (OSPM) initially developed in Denmark is tested with measured data from a relatively wide and open street in Beijing. Major factors influencing the dispersion, such as emission factors, stationary source emissions, and solar radiation, are analyzed. Results show that the model can reflect the basic dispersion pattern in the street but gives systematically higher concentrations. After modifications to estimate street-level wind speed in the model, performance is obviously improved.  相似文献   

4.
Off-road vehicles used in construction and agricultural activities can contribute substantially to emissions of gaseous pollutants and can be a major source of submicrometer carbonaceous particles in many parts of the world. However, there have been relatively few efforts in quantifying the emission factors (EFs) and for estimating the potential emission reduction benefits using emission control technologies for these vehicles. This study characterized the black carbon (BC) component of particulate matter and NOx, CO, and CO2 EFs of selected diesel-powered off-road mobile sources in Mexico under real-world operating conditions using on-board portable emissions measurements systems (PEMS). The vehicles sampled included two backhoes, one tractor, a crane, an excavator, two front loaders, two bulldozers, an air compressor, and a power generator used in the construction and agricultural activities. For a selected number of these vehicles the emissions were further characterized with wall-flow diesel particle filters (DPFs) and partial-flow DPFs (p-DPFs) installed. Fuel-based EFs presented less variability than time-based emission rates, particularly for the BC. Average baseline EFs in working conditions for BC, NOx, and CO ranged from 0.04 to 5.7, from 12.6 to 81.8, and from 7.9 to 285.7 g/kg-fuel, respectively, and a high dependency by operation mode and by vehicle type was observed. Measurement-base frequency distributions of EFs by operation mode are proposed as an alternative method for characterizing the variability of off-road vehicles emissions under real-world conditions. Mass-based reductions for black carbon EFs were substantially large (above 99%) when DPFs were installed and the vehicles were idling, and the reductions were moderate (in the 20–60% range) for p-DPFs in working operating conditions. The observed high variability in measured EFs also indicates the need for detailed vehicle operation data for accurately estimating emissions from off-road vehicles in emissions inventories.

Implications: Measurements of off-road vehicles used in construction and agricultural activities in Mexico using on-board portable emissions measurements systems (PEMS) showed that these vehicles can be major sources of black carbon and NOX. Emission factors varied significantly under real-world operating conditions, suggesting the need for detailed vehicle operation data for accurately estimating emissions inventories. Tests conducted in a selected number of sampled vehicles indicated that diesel particle filters (DPFs) are an effective technology for control of diesel particulate emissions and can provide potentially large emissions reduction in Mexico if widely implemented.  相似文献   


5.
6.
A composite line source emission (CLSE) model was developed to specifically quantify exposure levels and describe the spatial variability of vehicle emissions in traffic interrupted microenvironments. This model took into account the complexity of vehicle movements in the queue, as well as different emission rates relevant to various driving conditions (cruise, decelerate, idle and accelerate), and it utilised multi-representative segments to capture the accurate emission distribution for real vehicle flow. Hence, this model was able to quickly quantify the time spent in each segment within the considered zone, as well as the composition and position of the requisite segments based on the vehicle fleet information, which not only helped to quantify the enhanced emissions at critical locations, but it also helped to define the emission source distribution of the disrupted steady flow for further dispersion modelling. The model then was applied to estimate particle number emissions at a bi-directional bus station used by diesel and compressed natural gas fuelled buses. It was found that the acceleration distance was of critical importance when estimating particle number emission, since the highest emissions occurred in sections where most of the buses were accelerating and no significant increases were observed at locations where they idled. It was also shown that emissions at the front end of the platform were 43 times greater than at the rear of the platform. Although the CLSE model is intended to be applied in traffic management and transport analysis systems for the evaluation of exposure, as well as the simulation of vehicle emissions in traffic interrupted microenvironments, the bus station model can also be used for the input of initial source definitions in future dispersion models.  相似文献   

7.
A one-year-long experiment in which two different tracers were simultaneously released from two different locations was used to test various hybrid receptor modeling techniques to estimate the tracer emissions using the measured air concentrations and a meteorological model. Air concentrations were measured over an 8-hour averaging time at three sites 14 to 40 km downwind. When the model was used to estimate emissions at only one tracer source, 6 percent of the short-term (8-h) emission estimates were within a factor of 2 of the actual emissions. Temporal averaging of the 8-h data enhanced the precision of the estimate such that after 10 days 42 percent of the estimates were within a factor of 2 and after six months all of them (each source-receptor pair) were within a factor of 2. To test the ability of the model to separate two sources, both tracer sources were combined, and a multiple linear regression technique was used to determine the emissions from each source from a time series of air concentration measurements representing the sum of both tracers. In general, 50 percent of the short-term estimates were within a factor of 10, 25 percent were biased low, and in another 25 percent the regression technique failed. The bias and failures are attributed to low or no correlation between measured air concentrations and model calculated dispersion factors. In the regression method increased temporal averaging did not consistently improve the emission estimate since the ability of the model to distinguish emissions between sources was diminished with increased averaging time. However, including progressively longer time periods (more data) into the regression or spatially averaging the data over all the receptors was found to be the most effective method to improve the estimated emissions. At best about 75 percent of the estimated monthly emission data were within a factor of 10 of the measured values. This suggests that the usefulness of meteorological models and statistical methods to address questions of source attribution requires many data points to reduce the uncertainty in the emission estimates.  相似文献   

8.
In many metropolitan areas, traffic is the main source of air pollution. The high concentrations of pollutants in streets have the potential to affect human health. Therefore, estimation of air pollution at the street level is required for health impact assessment. This task has been carried out in many developed countries by a combination of air quality measurements and modeling. This study focuses on how to apply a dispersion model to cities in the developing world, where model input data and data from air quality monitoring stations are limited or of varying quality. This research uses the operational street pollution model (OSPM) developed by the National Environmental Research Institute in Denmark for a case study in Hanoi, the capital of Vietnam. OSPM predictions from five streets were evaluated against air pollution measurements of nitrogen oxides (NO(x)), sulfur dioxide (SO2), carbon monoxide (CO), and benzene (BNZ) that were available from previous studies. Hourly measurements and passive sample measurements collected over 3-week periods were compared with model outputs, applying emission factors from previous studies. In addition, so-called "backward calculations" were performed to adapt the emission factors for Hanoi conditions. The average fleet emission factors estimated can be used for emission calculations at other streets in Hanoi and in other locations in Southeast Asia with similar vehicle types. This study also emphasizes the need to further eliminate uncertainties in input data for the street-scale air pollution modeling in Vietnam, namely by providing reliable emission factors and hourly air pollution measurements of high quality.  相似文献   

9.
The dispersion formulation incorporated in the U.S. Environmental Protection Agency's AERMOD regulatory dispersion model is used to estimate the contribution of traffic-generated emissions of select VOCs – benzene, 1,3-butadiene, toluene – to ambient air concentrations at downwind receptors ranging from 10-m to 100-m from the edge of a major highway in Raleigh, North Carolina. The contributions are computed using the following steps: 1) Evaluate dispersion model estimates with 10-min averaged NO data measured at 7 m and 17 m from the edge of the road during a field study conducted in August, 2006; this step determines the uncertainty in model estimates. 2) Use dispersion model estimates and their uncertainties, determined in step 1, to construct pseudo-observations. 3) Fit pseudo-observations to actual observations of VOC concentrations measured during five periods of the field study. This provides estimates of the contributions of traffic emissions to the VOC concentrations at the receptors located from 10 m to 100 m from the road. In addition, it provides estimates of emission factors and background concentrations of the VOCs, which are supported by independent estimates from motor vehicle emissions models and regional air quality measurements. The results presented in the paper demonstrate the suitability of the formulation in AERMOD for estimating concentrations associated with mobile source emissions near roadways. This paper also presents an evaluation of the key emissions and dispersion modeling inputs necessary for conducting assessments of local-scale impacts from traffic emissions.  相似文献   

10.
Vehicle deterioration and technological change influence emission factors (EFs). In this study, the impacts of vehicle deterioration and emission standards on EFs of regulated pollutants (carbon monoxide [CO], hydrocarbon [HC], and nitrogen oxides [NOx]) for gasoline light-duty trucks (LDTs) were investigated according to the inspection and maintenance (I/M) data using a chassis dynamometer method. Pollutant EFs for LDTs markedly varied with accumulated mileages and emission standards, and the trends of EFs are associated with accumulated mileages. In addition, the study also found that in most cases, the median EFs of CO, HC, and NOx are higher than those of basic EFs in the International Vehicle Emissions (IVE) model; therefore, the present study provides correction factors for the IVE model relative to the corresponding emission standards and mileages.

Implications: Currently, vehicle emissions are great contributors to air pollution in cities, especially in developing countries. Emission factors play a key role in creating emission inventory and estimating emissions. Deterioration represented by vehicle age and accumulated mileage and changes of emission standards markedly influence emission factors. In addition, the results provide collection factors for implication in the IVE model in the region levels.  相似文献   


11.
The testing re-entrained aerosol kinetic emissions from roads technique is compared with distance-based emission factors (EFs; g/VKT) measured downwind of a dirt road by using towers instrumented with real-time meteorological and particle sensors at multiple heights. The emission potential (EP), defined as the EF divided by the vehicle speed (m/sec), and weight index permits the intercomparison of emissions from multiple roadways surveyed by the TRAKER vehicle. A survey of 72 km of unpaved roads on the Ft. Bliss Military Base near El Paso, Texas, indicated that 60% of all measured EPs fell between 6.7 (g/VKT)/(m/sec) and 9.6 (g/VKT)/(m/sec). The EP measured across the base was approximately 50% lower than those collected in the vicinity of the instrumented towers. This implies that EFs measured for other vehicles on the same test section should be reduced by 50% to more accurately represent EFs for the entire military base. Using geographic information system-based soil maps, the inferred EFs are related to differences in soil types over the survey area. Variations among five different soil types accounted for <10% of variation in EP. Individual measurements using the testing re-entrained aerosol kinetic emissions from roads technique did show larger spatial variations in EP; however, these were not effectively captured by the soil classifications, partly because of the comparatively coarse spatial classification used in the soil survey data.  相似文献   

12.
In the present study, the real-world on-road liquefied petroleum gas (LPG) vehicle/taxi emissions of carbon monoxide (CO), hydrocarbon (HC) and nitric oxide (NO) were investigated. A regression analysis approach based on the measured LPG vehicle emission data was also used to estimate the on-road LPG vehicle emission factors of CO, HC and NO with respect to the effects of instantaneous vehicle speed and acceleration/deceleration profiles for local urban driving patterns. The results show that the LPG vehicle model years and driving patterns have a strong correlation to their emission factors. A unique correlation of LPG vehicle emission factors (i.e., g km−1 and g l−1) on different model years for urban driving patterns has been established. Finally, a comparison was made between the average LPG, and petrol [Chan, T.L., Ning, Z., Leung, C.W., Cheung, C.S., Hung, W.T., Dong, G., 2004. On-road remote sensing of petrol vehicle emissions measurement and emission factors estimation in Hong Kong. Atmospheric Environment 38, 2055–2066 and 3541] and diesel [Chan, T.L., Ning, Z., 2005. On-road remote sensing of diesel vehicle emissions measurement and emission factors estimation in Hong Kong. Atmospheric Environment 39, 6843–6856] vehicle emission factors. It has shown that the introduction of the replacement of diesel taxis to LPG taxis has alleviated effectively the urban street air pollution. However, it has demonstrated that proper maintenance on the aged LPG taxis should also be taken into consideration.  相似文献   

13.
The U.S. Environmental Protection Agency's National Exposure Research Laboratory is pursuing a project to improve the methodology for modeling human exposure to motor vehicle emissions. The overall project goal is to develop improved methods for modeling the source through the air pathway to human exposure in significant exposure microenvironments. Current particulate matter (PM) emission models, particle emission factor model (used in the United States, except California) and motor vehicle emission factor model (used in California only), are suitable only for county-scale modeling and emission inventories. There is a need to develop a site-specific real-time emission factor model for PM emissions to support human exposure studies near roadways. A microscale emission factor model for predicting site-specific real-time motor vehicle PM (MicroFacPM) emissions for total suspended PM, PM less than 10 microm aerodynamic diameter, and PM less than 2.5 microm aerodynamic diameter has been developed. The algorithm used to calculate emission factors in MicroFacPM is disaggregated, and emission factors are calculated from a real-time fleet, rather than from a fleet-wide average estimated by a vehicle-miles-traveled weighting of the emission factors for different vehicle classes. MicroFacPM requires input information necessary to characterize the site-specific real-time fleet being modeled. Other variables required include average vehicle speed, time and day of the year, ambient temperature, and relative humidity.  相似文献   

14.
Numerous emission and air quality modeling studies have suggested the need to accurately characterize the spatial and temporal variations in on-road vehicle emissions. The purpose of this study was to quantify the impact that using detailed traffic activity data has on emission estimates used to model air quality impacts. The on-road vehicle emissions are estimated by multiplying the vehicle miles traveled (VMT) by the fleet-average emission factors determined by road link and hour of day. Changes in the fraction of VMT from heavy-duty diesel vehicles (HDDVs) can have a significant impact on estimated fleet-average emissions because the emission factors for HDDV nitrogen oxides (NOx) and particulate matter (PM) are much higher than those for light-duty gas vehicles (LDGVs). Through detailed road link-level on-road vehicle emission modeling, this work investigated two scenarios for better characterizing mobile source emissions: (1) improved spatial and temporal variation of vehicle type fractions, and (2) use of Motor Vehicle Emission Simulator (MOVES2010) instead of MOBILE6 exhaust emission factors. Emissions were estimated for the Detroit and Atlanta metropolitan areas for summer and winter episodes. The VMT mix scenario demonstrated the importance of better characterizing HDDV activity by time of day, day of week, and road type. More HDDV activity occurs on restricted access road types on weekdays and at nonpeak times, compared to light-duty vehicles, resulting in 5-15% higher NOx and PM emission rates during the weekdays and 15-40% lower rates on weekend days. Use of MOVES2010 exhaust emission factors resulted in increases of more than 50% in NOx and PM for both HDDVs and LDGVs, relative to MOBILE6. Because LDGV PM emissions have been shown to increase with lower temperatures, the most dramatic increase from MOBILE6 to MOVES2010 emission rates occurred for PM2.5 from LDGVs that increased 500% during colder wintertime conditions found in Detroit, the northernmost city modeled.  相似文献   

15.
In this work, stationary and mobile point source tracer release techniques have been used to determine PM10 emission rates from four-lane commercial/residential paved roads under sanded and unsanded conditions, and from unpaved roads relative to site-specific vehicular and ambient parameters. Measured street (4 + lanes; ? 10,000 vehicles per day) emission factors for unsanded and sanded roads were 40 and 20% lower, respectively, than the EPA approved reference value. The sanded road emission factor was approximately 40% higher than that for the unsanded road. These results indicate a consistent relationship between PM10 and relative humidity under unsanded conditions. There is some evidence to suggest that street sweeping has a measurable effect on PM,, emission reduction during periods of low relative humidity (i.e. ? 30%). Within the constraints imposed by the variable experimental conditions, the emission factors determined for unpaved roads agreed reasonably well with the unpaved road empirical formula. Limited correlations were observed with ambient meteorological parameters. The capability of the “upwind-dowiawind” concentration modeling method to predict accurate emission was tested using a Gaussian dispersion model (SIMFLUX). Predictions agreed well with the experimentally determined emission factors.  相似文献   

16.
Measuring emissions from nonuniform area sources, such as waste repository sites, has been a difficult problem. A simple but reliable method is not available. An objective method of inverting downwind concentration measurements, utilizing an assumed form of atmospheric dispersion to reconstruct total emission rate and distribution, is described in this study. The Gaussian dispersion model is compared to a more realistic model based on K-theory and similarity expressions. A sensitivity analysis is presented indicating the atmospheric conditions under which a successful application of the method could be anticipated. Field releases of sulfur hexaf luoride (SF6) from a simulated area source in flat terrain were conducted to check the method,ability to reconstruct source distribution, and total emission rate. The sensitivity analysis and the field study confirm that a few ground-level concentration measurements and a simple determination of the atmospheric dispersion characteristics are sufficient, under neutral to stable conditions, to obtain the total emission rate accurately. Reconstruction of the spatial pattern of the source is possible by utilizing concentration information from samplers located on two separate ground-level receptor lines, if a shift in the wind direction occurs and if it can be assumed that the total emission rate is time invariant. A method of cross-checking the accuracy of the reconstruction, using a simultaneous tracer release, is presented.  相似文献   

17.
Determination of the effect of vehicle emissions on air quality near roadways is important because vehicles are a major source of air pollution. A near-roadway monitoring program was undertaken in Chicago between August 4 and October 30, 2014, to measure ultrafine particles, carbon dioxide, carbon monoxide, traffic volume and speed, and wind direction and speed. The objective of this study was to develop a method to relate short-term changes in traffic mode of operation to air quality near roadways using data averaged over 5-min intervals to provide a better understanding of the processes controlling air pollution concentrations near roadways. Three different types of data analysis are provided to demonstrate the type of results that can be obtained from a near-roadway sampling program based on 5-min measurements: (1) development of vehicle emission factors (EFs) for ultrafine particles as a function of vehicle mode of operation, (2) comparison of measured and modeled CO2 concentrations, and (3) application of dispersion models to determine concentrations near roadways. EFs for ultrafine particles are developed that are a function of traffic volume and mode of operation (free flow and congestion) for light-duty vehicles (LDVs) under real-world conditions. Two air quality models—CALINE4 (California Line Source Dispersion Model, version 4) and AERMOD (American Meteorological Society/U.S. Environmental Protection Agency Regulatory Model)—are used to predict the ultrafine particulate concentrations near roadways for comparison with measured concentrations. When using CALINE4 to predict air quality levels in the mixing cell, changes in surface roughness and stability class have no effect on the predicted concentrations. However, when using AERMOD to predict air quality in the mixing cell, changes in surface roughness have a significant impact on the predicted concentrations.

Implications: The paper provides emission factors (EFs) that are a function of traffic volume and mode of operation (free flow and congestion) for LDVs under real-world conditions. The good agreement between monitoring and modeling results indicates that high-resolution, simultaneous measurements of air quality and meteorological and traffic conditions can be used to determine real-world, fleet-wide vehicle EFs as a function of vehicle mode of operation under actual driving conditions.  相似文献   


18.
19.
Quantifying the emissions and concentrations of heavy metals in urban air is a prerequisite for assessing their health effects. In this paper a combination of measurements and modelling is used to assess the contribution from road traffic emissions. Concentrations of particulate heavy metals in air were measured simultaneously during 1 year at a densely trafficked street and at an urban background site in Stockholm, Sweden. Annual mean concentrations of cadmium were 50 times lower than the EU directive and for nickel and arsenic concentrations were 10 and six times lower, respectively. More than a factor of two higher concentrations was in general observed at the street in comparison to roof levels indicating the strong influence from local road traffic emissions. The only compound with a significantly decreasing trend in the urban background was Pb with 9.1 ng m?3 in 1995/96 compared to 3.4 ng m?3 2003/04. This is likely due to decreased emissions from wear of brake linings and reduced emissions due to oil and coal combustion in central Europe.Total road traffic emission factors for heavy metals were estimated using parallel measurements of NOx concentrations and knowledge of NOx emission factors. In general, the emission factors for the street were higher than reported in road tunnel measurements. This could partly be due to different driving conditions, since especially for metals which are mainly emitted from brake wear, more stop and go driving in the street compared to in road tunnels is likely to increase emissions. Total emissions were compared with exhaust emissions, obtained from the COPERT model and brake wear emissions based on an earlier study in Stockholm. For Cu, Ni and Zn the sum of brake wear and exhaust emissions agreed very well with estimated total emission factors in this study. More than 90% of the road traffic emissions of Cu were due to brake wear. For Ni more than 80% is estimated to be due to exhaust emissions and for Zn around 40% of road traffic emissions are estimated to be due to exhaust emissions. Pb is also mainly due to exhaust emissions (90%); a fuel Pb content of only 0.5 mg L?1 would give similar emission factor as that based on the concentration increment at the street. This is the first study using simultaneous measurements of heavy metals at street and roof enabling calculations of emission factors using a tracer technique.  相似文献   

20.
ABSTRACT

Volatile organic compounds (VOCs) evaporate and vent from a vehicle’s fuel tank to its evaporative control system when the vehicle is both driven and parked. VOCs making it past the control system are emissions. Driving and parking activity, fuel volatility, and temperature strongly affect vapor generation and the effectiveness of control technologies, and the wide variability in these factors and the sensitivity of emissions to these factors make it difficult to estimate evaporative emissions at the macro level. Established modeling methods, such as COPERT and MOVES, estimate evaporative emissions by assuming a constant in-use canister condition and consequently contain critical uncertainty when real conditions deviate from that standard condition. In this study, we have developed a new method to model canister capacity as a representative variable, and estimated emissions for all parking events based on semi-empirical functions derived from real-world activity data and laboratory measurements. As compared to chamber measurements collected during this study, the bias of the MOVES diurnal tank venting simulation ranges from ?100% to 129%, while the bias for our method’s simulation is 1.4% to 8.5%. Our modeling method is compared to the COPERT and MOVES models by estimating evaporative emissions from a Euro-3/4/5 and a Tier 2 vehicle in conditions representative for Chicago, IL, and Guangzhou, China. Estimates using the COPERT and MOVES methods differ from our method by ?56% to 120% and ?100% to 25%, respectively. The study highlights the importance for continued modeling improvement of the anthropogenic evaporative emission inventory and for tightened regulatory standards.

Implications: The COPERT and MOVES methodologies contain large uncertainties for estimating evaporative emissions, while our modeling method is developed based on chamber measurements to estimate evaporative emissions and can properly address those uncertainties. Modeling results suggested an urgent need to complete evaporative emissions inventories and also indicated that tightening evaporative emission standards is urgently needed, especially for warm areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号